288 P]mplv: I'hree

Exercises

(W]

Solutions to the *

b and ¢ are used again after this segment. You may 12nore an) possible excep

tions. The individual statements are numbered (o proy

[15/15] <3.1, 3.2> This chapter examines hardw
instruction-level paral
exploit 1LP.

Consider the following four MIPS code fragments cach containing two Insing

fions:

~

12

all data references are shoy

s appear in Appendix B. |

1/15] <3.1. 3.2. 3.3. 3.6 For the following code fragment, assume &8

1. that all values are defined before use. and that o

an easy reference,

it (a = c) | i
2. d 5
3 a +d + e;t I

I else {
4 e e + 2; [
5 f f 4 24 |
A - FL.

C . Fs
b a + f;

[12] <3.1> List the control dependences For each control dependence, §

whether the dependent statement can be scheduled before the if st
based on the data references

3.3, 3.6> Assume a dynamically scheduled. multiple-issueps

[12]<3.1.

cessor without speculation and w ith a window that 1s holding

entire co
fragment. Find the data dependences and use this information to make &

of the successive groups of statements that are issued together

and ¢ are live after the code %8

| <3.1> It is given that only the values b
ment. 17 itis known that a value is not live at some point in the code, then i
tatement that defines that value can be deleted without changing the progras

meaning. Find any values that are not hive within the given code

and list the statement(s) that a compiler with this information could delete

(18] <31,.32, 3.6> How does the result for part (¢) affect the i

(b1? What does this illustrate about meass

achieved by the processor of pal

ing computer performance factors such as ILP. making hardware dess

L'i]('ll_-_'\. and Ll]l]l]".l._'l lechnnol

exploing

are approaches

ism. This exercise asks how well hardware can find s

1e that

1 on

3

.'.\.i,'(_':i—

2, tell

:ment

2 pro-
code

a list

: seg-
n the
aram
nernit,
e
ILP

dsur-

2512n

inting
I and
truc-

3.4

Exercises 289

SD R1,7(R1)
a. |15] <3.1> For each code fragment (1) to (1v) identify each type of depen
dence that exists or that may exist (a fragment may have no dependences) and
d
cause the dependence.

of the ambiguity and identify the ime at w hich that uncertainty is resolved

eseribe what data flow. name reuse, or control structure causes or would

For a dependence that may exist, describe the source
b. [15] <3.2> For each code fragment, discuss w hether dynamic scheduling is.
may be. or is not sufficient to allow out-ol order execution of the fragment.

3 1. A= Consider the following MIPS assembly code

a. [12] <3.1> Identity each dependence by type: list the two nstructions
mvolved: identify which instruction is dependent: and il there 1s one. name
the storaee location involved

11, A> Use information about the MIPS hve-stage pipeline rom

wendix A and assume a register file that writes in the first hall of the clock
en

and reads in the second half-cycle forwarding. Which of the de

dences that you found in part (a) become hazards and which do not? Why

20/15/20/15/15] <1, 2. 3.1> Stack and accumulator instruction set architectures

(see Figures 2.1 and 2.2) were common in the e Iy days of electronic computers
I s Tor both can be [I{]|‘|-_‘]'_I_‘!1];‘\§ with a small number ol logic gates. With

rOCessS

the technology of the time. vacuum tubes. only small circuits had reasonable cost

and acceptable reliability. Solid-state ntegration of extremely inexpensive

highly reliable transistors has made very la

» circuits feasible. Current proces-

sors use the register-register (load-store) instruction set architecture. which

e sates to build. Increased feasible ¢ ircuit size could explain growing

requires mo
use of the load-store ISA. but is that sufficient to explain the absence of new gen

erations of stack and accumulator processors? The following explores other pos

sible reasons: cost, clock speed. dependences. and opportunity for instruction
scheduling

|. 2> Chapter | presents a model for integrated circuit die cost that

a. |20
shows cost escalates rapidly with increasing die area. The essential core cir-

cuit of a stack processor (ALU, two stack positions. control logic. and data

cand

paths) or of an accumulator processot (ALU, accumulator. control log

290

Chapter Three Instri

data paths) is smaller than the essential core circuit of a register-r

ister pi
cessor (ALUL set of at least three registers for operands and result, controf §
logic. and data paths). For current processors, investigate how much die are
is devoted to functions other than the essential core execution logic and whit 3
reliability 1s achieved. Discuss how much cost and reliability advantage stak 8
or accumulator designs would have with respect 1o current load-store proces
sor designs if they could cut essential core execution logic area by 10%, b

50%. and by more than 99%.

b: [15

> Consider the block diagram circuits shown in Figure 2.1 for the
stack. accumulator, and load-store ISAs, How mught achievable clock speeds

differ among the processor circuits?
c. [20] <2, 3.1= Consider the following simple computation:

C=A+B8
E=D=~C

Using Figure 2.2 as a start. write instruction sequences to perform the compe
tation on stack, accumulator. and load-store architectures. Assume that (he
stack architecture subtracts the next-to-top-of-stack from the top-of-stack
Assume that the accumulator architecture subtracts a memory location frog
the accumulator. Use distinet registers for all data values in the load-sto
sequence. Carefully examine your code 1o find the dependences. For eah
dependence, list its type. the two instructions involved, which instruction i
dependent. and the storage location involved. Rank the architectures by thei
potential to exploit instruction-level parallelism

d. [15] <2, 3.1> For your code in part (c¢), describe the different instructios

schedules that a compiler could produce for each architecture

4+

[15]<1. 2, 3.1> Which of the factors examined in parts (a) through (d)—cos

clock speed. dependences, and opportunity for instruction scheduling—

explain the dominance of today’s processor designs by the register-registes

(load-store) ISA and why are these factors critical?

@ 3.5 [15/15/15/15/12] <3.3> This exercise examines the basic Tomasulo algorithm %
Answer the following questions based upon the tabular description of the algs
rithm given in Figure 3.5.

a. [15] <3.3> For each row of the table, state (1) whether that row could apply
simultancously to more than one program instruction (ILP); (2) whether the
fTomasulo algorithm allows ILP for that row: (3) if ILP is not allowed, how ¥
that restriction is enforced: and (4) if ILP is allowed, what if anything could !
prevent achieving the maximum ILP present in the program.

b. [15] <3.3> Which one of rs and rt holds the name of the base address regis-

ter for a load or store instruction? Explain yvour answer in sufficient detail
be a prool

er pro-
:ontrol
ie area
I what
* stack
roces-

%. by

wr the

peeds

npu-
t the
tack
from
store
zach
m is
heir

fion

1.

10~

C. |15]<3.3> In the terminology of the table. write the function(s) performed by
the Address unit in Figure 3.2

d. |15] <3.3> Write the table entries required to support mteger ALU operation

N
[12] <3.3> Consider how branch instructions atfect the instruction processing
described 1in the table. Show the modifications to the table necessary 1o take

the presence of branch instructions in the program into account.

Lons on

<3.2. 3.3. 3.6, 3.7> In this exercise. we will look at how vari

Tomasulo’s algorithm perform when running a common vector loop. The loop is
the so-called DAXPY loop (double-precision «X plus ¥Y) and 15 the central
cration in Gaussian elimination. The following code implements the operation

Y =aX +Y ftoravector of length 100, Initially, R1 = () and FO contains a.

ADD.D

S.D
DADDUI
DADDUI

D f
r
R if

I'he pipeline function units are described in Figure 3.62

Assume the following

® Function units are not pipelined.

® There is no forwarding between function units: results are communicated by

he CDB
= Th (EX) does both the effective address calculation and the

nemory access Tor loads and stores. Thus the pipeline is [F /1D /IS /EX / WB.

® [oads take | clock cycle.
® The issue (IS) and write result (WB) stages cach take | clock cycele.
Number of
reservation
FU type Cycles in EX Number of FUs stations
1Nl I 1 &
FP adder 4 |
P el 15

Figure 3.62 Information about pipeline function units.

292

Chapter Three

In

®m There are 5 load buffer slots and 5 store buffer slots

® Assume that the BNEQZ instruction takes 0 clock cycles.

a. [20]<3.2. 3.3> For this problem use the single-issue Tomasulo MIPS pipeline
of Figure 3.2 with the pipeline latencies from Figure 3.63. Show the number
of stall cycles for each nstruction and what clock cycle each instruction
begins execution (i.e., enters its first EX cycle) for three iterations of the loop
How many clock cycles does each loop iteration take? Report your answer in
the form of a table like that in Figure 3.25.

b. [25] <3.6> Use the MIPS code for DAXPY above and a fully pipelined FPU
with the latencies of Figure 3.63. Assume a two-issue Tomasulo’s algorithm
for the hardware with one integer unit taking one execution cycle (a latency of
0 cycles to use) for all integer operations. Show the number of stall cycles for
cach mstruction and what clock cycele each instruction begins execution (i.¢
enters its first EX cycle) for three iterations of the loop. Show your answer in
the form of a table like that in Figure 3.25,

c. [25] <3.7> Using the MIPS code for DAXPY above. assume Tomasulo's
algorithm with speculation as shown in Figure 3.29. Assume the latencies
shown in Figure 3.63. Assume that there are separate integer function units
for effective address calculation. for ALU operations, and for branch condi-
tion evaluation. Create a table as in Figure 3.34 for the first three iterations of
this loop.

[15/15] <3.2, 3.3> Tomasulo’s algorithm has a disadvantage: Only one result can

complete per clock, per CDB.

a. [15] <3.2> Use the hardware configuration from Figure 3.2 and the FP laten-
cies from Figure 3.63. Find a code sequence of no more than 10 instructions
where Tomasulo’s algorithm must stall due to CDB contention. Indicate
where this occurs in your sequence.

b.

[15] 3.2, 3.3> Generalize your result from part (a) by describing the charac-
teristic of any code sequence that will eventually experience structural hazard
stall given n CDBs.

Instruction producing result Instruction using result Latency in clock cycles

FP multiply I'I’_.-\l.i.. op O

FP add ' FPALUop 4
['-Eu;lli}\.]_\ FP \:E I o
FP add _ FP store - o
Intege r operation -‘?:1}) - 0 o

(including load)

Figure 3.63 Pipeline latencies where latency is number of cycles between pro-
ducing and consuming instruction.

2line
nber

‘tion
Dop.

T in

‘PU
thim
v of
for
L <A

I In

d

o

3.8

39

Exercises 293

[20] <3.4> Branch-prediction buffers are indexed using the low-order address
bits of the branch instruction. Assume now that some other subset of address bits
is chosen. Discuss the etfects on bulfer operation.

[15/15/15] <3.4> Increasing the size of a branch-prediction buffer means that 1t is
less likely that two branches in a program will share the same predictor. A single
predictor predicting a single branch instruction 1s generally more accurate than is

that same predictor serving more than one branch mstruction

a. [15] <3.4> List a sequence of branch taken and not taken actions to show a

simple example of 1-bit predictor sharing that reduces misprediction rate

b. |15] <3.4> List a sequence of branch taken and not taken actions that show a

simple example of how sharing a 1-bit predictor increases misprediction

c. |15] <3.4> Discuss why the sharing of branch predictors can be expecied to
increase mispredictions for the long instruction execution sequences of actual
programs.

[15] <3.4> Construct a version of the table in Figure 3.13 on page 203 assuming

the 1-bit predictors are initiahzed to NT, the correlation bit is initialized to T. and

the value of d (leftimost column of the table) alternates 1. 2. 1. 2. Also, note and
count the instances of misprediction.

[20/15/15/15] <3.4> Figure 3.15 on page 206 and Figure 3.18 on page 208 show

that the prediction accuracy of a local 2-bit predictor improves very slowly with

increasing branch-prediction buffer size, once size exceeds some amount

Because prediction buffers must be of finite size, two or more branches may be

mapped to the same buffer entry. While it is possible for sharing to improve

branch prediction by accidentally allowing sharing of information between
related branches. typically the sharing results in destructive interference. For the
following, assume that prediction accuracy is always worse when branches share

a predicton

a. [20] <3.4> For a branch-prediction buffer implementing a given type of pre-
dictor, what characteristic of any program guarantees that prediction accuracy
as a funcoon of increasing buffer size must eventually become constant (1.e.,

examine the contents of and compare the

independent of buffer size)? His
prediction accuracy of branch-prediction bulters of different sizes on a simple

code fragment such as the following:

Loop: DSUBI RI1,RI1,#1
BNEZ R1,Loop
LD R10,0(R3)

b. [15] <3.4> Figure 3.15 shows that. to within the precision of the measure-
ments, the SPECR8Y benchmarks nasa7, tomcaty, and gee were the only pro-
grams to have less branch misprediction when bufter size increased from
4096 entries to infinite. Based on the answer to part (a), what quantitative
measure can you infer about the machine instruction count of the executable

codes for these tour benchmarks?

294

Chapter Three Insiruction-Level Parallelism and Its Dynami

M

[15] <3.4> Can you infer anything similar to the result in part (b) about the
instruction counts of the other seven benchmarks?

d. [15] <3.4> How might an optimizing compiler improve prediction accuracy
tor the other seven benchmarks in part (¢) and when would this be and not be
possible?

[30] <3.4= Implement a simulator to evaluate the performance of a branch-
prediction buffer that does not store branches that are predicted as untaken. Con-
sider the following prediction schemes: a 1-bit predictor storing only predicted-
taken branches, a 2-bit predictor storing all the branches, a scheme with a target
buffer that stores only predicted-taken branches, and a 2-bit prediction buffer.
Explore different sizes for the buffers, keeping the total number of bits (assuming
32-bit addresses) the same for all schemes. Determine what the branch penalties
are, using Figure 3.21 as a guideline. How do the different schemes compare both
m prediction accuracy and in branch cost?

130

<3.4> Implement a simulator to evaluate various branch-prediction schemes,
You can use the instruction portion of a set of cache traces to simulate the branch-
prediction bulfer. Pick a set of table sizes (e.g.. 1K bits, 2K bits, 8K bits, and 16K
bits). Determine the performance of both (0.2) and (2,2) predictors for the various
table sizes. Also compare the performance of the degenerate predictor that uses
no branch address information for these table sizes. Determine how large the
table must be for the degenerate predictor to perform as well as a (0.2) predictor
with 256 entries.

[15] <3.5> Suppose we have a deeply pipelined processor, for which we imple-
ment a branch-target buifer for the conditional branches only. Assume that the
misprediction penalty is always 4 cycles and the buffer miss penalty is always 3
cycles. Assume 90% hit rate and Y0% accuracy, and 15% branch frequency. How
much faster 1s the processor with the branch-target buffer versus a processor that

has a fixed 2-cycle branch penalty? Assume a base CPI without branch stalls of |

[10/15] <3.5> Consider a branch-target buffer that has penalties of 0. 2. and 2
clock cycles for correct conditional branch prediction, incorrect prediction, and a
butfer miss, respectively. Consider a branch-target buffer design that distin-
guishes conditional and unconditional branches, storing the target address for a

conditional branch and the target instruction for an unconditional branch

a. [10] <3.5> What is the penalty in clock cycles when an unconditional branch
is found in the buffer?

b. [15] <3.5> Determine the improvement from branch folding for uncondi-
tional branches. Assume a 90% hit rate, an unconditional branch frequency of
5%. and a 2-cycle penalty for a buffer miss. How much improvement is
gained by this enhancement? How high must the hit rate be for this enhance-

ment to provide a performance gain?

[10/20/20/20/20/15] <3.1, 3.6 This exercise explores variations on the theme of

the example on page 221. Each part of this exercise lists changes to make to the

set of assumptions given in the example. For parts (b) through (d) do the follow-

DY

3.17

295

Exercises

ing: (i) produce a new version of the table in Figure 3.25 covering enough itera
.|.i

instruction completion rate, and (ii1) provide any other information requested in

tions to re: a steady-state condition, (ii) compute a value for the sustained

that part.
Make the following two assumptions also:
L 'here 1s l.‘rill:r one memory access port

I there is contention for a resource, then the earliest instruction in program

ven access to that resource.

order 1s

a. [10] <3.1. 3.6 What structural hazards occur in the example?

b. [20] <3.6> Assume that there are two integer functional units. Describe any
structural hazards and compare them to the case for the original example

c. |20] <3.6> Assume that three instructions may issue simultancously (but the
BNE still issues separately). Describe any structural hazards

d. [20] <3.6> Assume branches are speculated and issue with another instruc
tion. Assume that branch prediction is perfect. Count and describe the struc
tural hazards.

e. [20] <3.6> Assume branches are speculated and issue with another instruc-
tion. Assume that branch prediction is perfect. Assume that there are two inte
ger functional units.

f. [15] <3.6> Discuss the relative magnitude of performance benefit derived from
adding an integer functional unit, increasing issue width. and supporting spec-

ulation. Comment on the potential for synergy between various enhancements.

<3.6> To keep the issue step ol the statically scheduled superscalar

[10/20/15
MIPS processor quite simple, an issue limit of one integer and one floating-point
instruction per clock was imposed. Let’s remove this restriction and see how
issue step workload grows with increasing multiple-issue capability. Assume a
five-stage superscalar pipeline (IF, 1D, EX, MEM, WB) with no issue restrictions
and no structural hazards. Also. regardless of instruction, each stage always takes
Just | clock cycle 1o complete 1ts task. and an struction may have up to two
operands and one result.

a. [10] <3.6> The 1D stage must check for what type(s) ot data dependences?

h. [201] <3.6> For a two-issue design with 32 integer registers and 32 floating-
point registers, how many bits must be brought to comparators in the 1D stage
and how many comparisons must be performed during each clock cycle 1o
check just for data hazards? How many if the issue width is doubled?

c. [15] <3.6> Let the issue limit be # instructions. and assume the total numbet

ol registers is unbounded. How many comparisons. as a function of #, must

be performed to check just for data hazards?

296 Chapter Three Instruction-Level Par

ol

5| <3.7> Consider the execution of the following loop, which searches an
array, on a single-issue processor, first with dynamic scheduling and then with

speculation:

Loop: LD R2,0(R1) :R2=array element
DADDI RZ2,RZ,#1 ;increment R2
SD R2,0(R1) ;store result

DADDI R1,R1, #: ;decrement pointer
BNEZ RZ,LO0P ;branch if Tast element!=Q

Assume that there are separate integer functional units for eff
culation,

cctive address cal-
for ALU operations, and for branch condition evaluation. Create a table
as in Figure 3.27 for the first three iterations of this loop Tor both machines.
Assume that one instruction can commit per clock

3.19 [15] <3.7> Use of a speculative technique may decrease performance. This is cer-
tainly true in particular when a spec

‘ulative guess is wrong; performance at that

point in the program is less than it would have been without speculation. How-

cver, 1t can also be true in general, that 1s, for a substantial workload such as an

entire program. For a speculative technique 1o improve performance in general
what mathematical condition must be true? Hint: Construct a model in terms of

speculation costs, benefits. and frequencies.

@ 3.20 [15]<1.6, 3.7> When an instruction 1s correctly speculated. what is the effect on
the three factors comprising the CPU time formula (from Chapter

Instruction count, average clocks per instruction,

[): dynamic

and clock cyele time? When

speculation is incorrect, it is possible for CPU time to increase. W hich factor(s)

of the CPU time formula best model this increase and w hy?
& 321 [15] <3.7> Consider the speculative Tomasulo processor shown in Figure 3
page 225. Assume that the ROB has three buffer entries. named 0. I, and 2. For
the following code fragment, assume that ADD.D. SUB.D. and ADDI instructions

execute for | cycle, and MUL.D executes for |

'8 on

0 cycles. Assume that the processor

has sufficient function units to avoid stalling instruction issue

ADD.D FO, F8, F8
MUL.D F2, F8, F8
SUB.D F4, FO, F2
DADDI R10,R12,RI2

Fill in the table below to show ROB contents and history as it would exist on the

cycle that the ADDI instruction writes its result. Assume that FS and |
tiahized and that the ROB

12 are ini-
is initially empty. (One table entry is already filled in
to provide a fixed starting point for your answer.) Because a ROB is imple

mented as a circular queue, the entry number labels repeat modulo 3 reading
down the table. If a ROB entry would be reallocated during the simulated execu-

tion time. write the details of the new allocation in the next available corre-

spondingly numbered table row. Use the rightmost column to

indicate il the

mstruction has been committed,

vy}
b
(5]

(¥¥
]

5

LXETCISES 297

ROB fields Committed?
Entry Instruction Destination Value Yes/no
0 ADD.D ' :
1
— I S —— == — " -
- = -
1
= S . e = S S

[20/15] <3.5. 3.7> Consider our speculative processor from Section 3.7. Since the
reorder buffer contains a value field, you might think that the value field of the
reservation stations could be eliminated

[20] <3.5. 3.7> Show an example where this is the case and an example

d
where the value field of the reservation stations is still needed. Use the specu-
lative machine shown in Figure 3.29. Show MIPS code for both examples
How many value fields are needed in each reservation station”

b. [15] <3.5. 3.7> Find a modification to the rules for mstruction commit that

allows elimination of the value fields in the reservation station. What are the

negative side effects of such a change?
[25] <3.7= Our implementation ol speculation uses a reorder buffer and intro-
duces the concept of instruction commit, delayimg commil and the irrevocable
updating of the registers until we know an instruction will complete. There are
two other possible implementation techniques, both originally developed as a
method for preserving precise interrupts when issuing out of order. One 1dea
introduces a future file that keeps future values of a register: this idea is similar to
the reorder buffer. An alternative is to keep a history buffer that records values ol
registers that have been speculatively overwritten
Design a speculative processor like the one n Section 3.7 but using a history
buffer. Show the state of the processor, including the contents of the history bufter.
for the example in Figure 3.31. Show the changes needed to Figure 3.32 for a his-
tory buffer implementation. Describe exactly how and when entries n the history

buffer are read and written. including what happens on an incorrect speculation
115/25] <3.8. 3.9> Aggressive hardware support for ILP is detailed at the begin-
ning of Section 3.9. Keeping such a processor from stalling due to lack of work
requires an average instruction fetch rate, f, that equals the average instruction
completion rate, ¢. Achieving a high fetch rate is challenging in the presence of
cache misses. Branches add to the difficulty and are ignored in this exercise. To
explore just how challenging, model the average instruction memaory access time
as i + mp. where /it is the time in clock cycles for a successful cache access. m is

°k

the rate of unsuccessful cache access. and p is the extra time, or penalty, in cloc

cveles 1o fetch from main memory instead of the cache

298

fists

Chapter Three

HoHon-Levet

)= Write an equation for the number of instructions that the

DIro-

cessor must attempt to fetch each clock cycle to achieve on average fetch rate
] =i
b. [25

spreadsheet, plot the equation from part (a) for 0,01 < m < 0.1, 10 < p < 100,

<3.8. 3.9> Using a program with suitable graphing capability, such as a

| <4< 2and acompletion rate of 4 instructions per clock cycle. Comment on
the mportance of low average memory access lime to the feasibility of

achieving even modest average fetch rates.
[45] <3.2. 3.3> One benefit of a dvnamically scheduled processor is its ability to
tolerate changes in latency or issue capability without requiring recompilation,
This capability was a primary motivation behind the 360/91 implementation of
Tomasulo’s algorithm. The purpose of this programming assignment 1s to evalu-
ate this effect. Implement a version of Tomasule’s algorithm for MIPS to issue
one instruction per clock: your implementation should also be capable of in-
order issue. Assume fully pipelined functional units and the execution times in
Figure 3.64.
Choose 5-10 small FP benchmarks (with loops) to run: compare the performance
with and without dynamic scheduling. Try scheduling the loops by hand and see
how close you can get with the statically scheduled processor to the dynamically
scheduled results.,
Change the processor to the configuration shown in Figure 3.65. Rerun the loops
and compare the performance of the dynamically scheduled processor and the
statically scheduled processor.
[45] <3.6> Perform the investigation of Exercise 3.25 but for a multiple-issue

version of Tomasulo’s algorithm. Use and/or adapt appropriate simulation tools,

[30/30] <3.8. 3.9> This exercise involves a programming assignment to evaluate
what types of parallelism might be expected in more modest. and more realistic,
processors than those studied in Section 3.8. These studies will require execution
traces. You may be able to find traces or obtain them from a tracing program, For
simplicity, assume perfect caches. For a more ambitious project. assume a real

cache. To simplhify the task, make the following assumptions

B Assume perfect branch and jump prediction: hence you can use the trace as
the input to the window. without having to consider branch effects—the trace
is perfect

B Assume there are 64 spare integer and 64 spare floating-point registers; this is
easily implemented by stalling the issue of the processor whenever there are

more live registers required

B Assume a window size of 64 instructions (the same for alias detection). Use

oreedy scheduling of instructions in the window. That 1s, at any clock cycle,
pick for execution the first # instructions n the window that meet the issue
constraints.

Exercises 299

Unit Execution time (clocks)
Integer 7
Branch Y

Load-store 11

FP add 13
FP mul 15
FP divide 17

Figure 3.64 Execution times for functional unit pipelines.

Unit Execution time (clocks)
]IliL':T‘:_‘I . |‘:;
Branch 21
l_n.n_i—_\lmx‘ - —i.k o
FPadd ' 25 -
FP ml_Il - - 27

. _ . — -

FP divide

Figure 3.65 Execution times for functional units, configuration 2.

a. [30] <3.8. 3.9> Determine the effect of limited instruction issue by perform-
ing the following experiments:
® Vary the issue count from 4 tol6 instructions per clock
B Assuming eight issues per clock, determine the effect of restricting the
processor to two memory references per clock.
b. [30] <3.8. 3.9> Determine the impact of latency in instructions. Remember
that with limited issue and a greedy scheduler. the impact of latency effects

will be greater. Assume the following latency models for a processor that

issues up to 16 mstructions per clock:
m Model I: All latencies are | clock

®m Model 2: Load latency and branch latency are | clock; all FP latencies are
2 clocks.

m Model 3: Load and branch latency is 2 clocks: all FP latencies are
clocks.

<3.2.3.3> There is a subtle problem that must be considered when

3.28 [Discussion

ementing Tomasulo’s algorithm. It might be called the “twao ships passing m

mp
the night problem.” What happens if an instruction is being passed to a reserva
tion station during the same clock period as one of its operands is going onto the
common data bus? Before an instruction is in a reservation station, the operands

are fetched from the register file: but once it is in the station, the operands are

300 Chapter Three Instruction-1.over Pui

always obtained from the ¢ DB. Since the instruction and its operand tag are ip
transit to the reservation station, the tag cannot be matched against the tag on the
CDB. So there is 2 possibility that the instruction will then sit in the reservation
station forever waiting for jis operand, which it just missed. How might this prob-
lem be solved? You might consider subdiy iding one of the steps in the algorithm

mto multiple parts. (This intriguing problem is courtesy of 1. E. Smith.)

3.29 [Discussion| <3.3. 37> Dynamic instruction scheduling requires a considerahle
investment in hardware. In return. this capability allows the hardware Lo run pro-
grams that could not be run a full speed with only compile time, static schedyl-
ing. What trade-offs should be taken into account i trying to decide between g
dynamically and a statically scheduled implementation” W hat situations in either
hardware technology or program characteristics are likely 1o favor one approach
or the other? Most speculative schemes rely on dynamic scheduling; how does
speculation affect the arguments in favor of dynamic scheduling?

3.30 [Discussion] <3.55 A by anch-target buffer offers potenual performance gains, but

at a cost. Power ¢ msumption and clock cycle time may be critical design issues
lor a processor. Discuss the effect that a branch-target buffer has on these param-
eters as a function of buffer size How is this BTB effect on power and clock
cycle time similar 1o or different from that of other pipeline structures, such as the
register file or ALU? What Ways can you think of to improve the benefits of g
BTB while at the same time meeting or exceeding power ¢ msumption and clock
cycele time coals?

3.31 [Discussion] <3.6. A> Discuss the advantages and disads antages of a superscalar

tmplementation and a superpipelined implementation in the context of MIPS
What types of ILP favor each approach? What other concerns would vou consider

in choosing which type of processor to build? How does speculation affect the

results?

