454

Chapter 6 Enhancing Performance with Pipelining

With remarkable advances in processing, Amdahl’s law suggests that another part
of the system will become the bottleneck. That bottleneck is the topic of the next
chapter: the memory system.

An alternative to pushing uniprocessors o automatically exploit parallelism at
lelism at much

the instruction level is trying multiprocessors, which exploit para
coarser levels. Parallel processing is the topic of @ Chapter 9, which appears on the

CD;

) Historical Perspective and Further
i Reading

This section, which appears on the CD, discusses the history of the first pipelined
processors, the earliest superscalars, the development of out-of-order and specula-

tive techniques, as well as important developments in the accompanying compiler

technology.

MW Exercises

- 1f the time for an ALU operation can be shortened by 25% (com-

6.1 [5] <§6.
g 2

pared to the description in Figure 6.2 on page 373);

1. Will it affect the speedup obtained from pipelining? 1f ves, by how much?
Otherwise, why?

b. What if the ALU operation now takes 25% more time?

6.2 [10] <§6.1> A computer architect needs to design the pipeline of a new micro-
processor. She has an example workload program core with 10" instructions. Each

instruction takes 100 ps to finish.

a. How long does it take to execute this program core on a nonpipelined proces-
S0r7

b. The current state-of-the-art microprocessor has about 20 pipeline stages
Assume it is perfectly pipelined. How much speedup w ill it achieve compared
to the nonpipelined processor?

c. Real pipelining isn’t perfect, since implementing pipelining introduces some

overhead per pipeline stage. Will this overhead affect instruction latency,

instruction throughput, or both?

6.14 Exercises 455

6.3 |5] <86.1> Using a drawing similar to | igure 6.5 on page 377, show the for

warding paths needed to execute the following four instructions

6.4 [10] <86.1> Identity all of the data dependencies in the following code. Which

endencies are data hazards that will be resolved via forwarding? Which depen-

es are data hazards that will cause a stall?

6.5 |5] =506.1 @ 'or More Practice: Delaved Branches

6.6 |10 Using Figure 6.22
markers to show which portions of the datapath are active and which are inactive

on page 400 as a guide, use colored pens o

in each of the five stages of the 5w instruction. We suggest that you use five pho-

tocopies of Figure 6.22 to answer this exercise. (We hereln grant you permission

to violate the Copyright Protection Act in doing the exercises in Chapters 5 and 6!)

Be sure to include a | gend to explain vour color scheme.,

More Practice: Understanding Pipelines by | rawing Them

6.7 |5] <86.2

6.8 5| <86.2 i More Practice: Understandine Pipelines by Drawing Them

o

6.9 [I5] <$6.2> @ For More Practice: Understanding Pipelines by Drawing

[\ "

6.10 |5| <§6.2

or More Practice: Pipeline Registers

6.11 [I5] <§94.8,6.2> @ For More Practice: Pipelining Floating Point
6.12 |15| <$6.3> Figure 6.37 on page 417 and Figure 6.35 on page 415 are two

styles of drawing pipe

ines. To make sure vou understand the relationship between

these two styles, draw the information in Figures 6.31 through 6.35 on pages 410

ol Figure 6.37 on page 417, Hig

through 415 using the style light the active por-

tions of the data paths in the figure.

6.13

©. For More Practice section, but the instructions are unidentified. Determine as

§6.3= Figure 614,10 1s similar to | igure 6.14.7 on page 6.14-9 in the

much as you can al

ut the five instructions in the five pipeline stages. If you can-

not fill in a field of an instruction, state why. For some fields it will be easier to

decode the machine instructions into asseml

v lang

I5

uage, using Figure 3.18 on

456

Chapter 6 Enhancing Performance with Pipelining

page 205 and Figure A.10.2 on page A-50 as references. For other fields it will be eas-

ier to look at the values of the control signals, using Figures 6.26 through 6.28 on
pages 403 and 405 as references. You ma) need to carefully examine Figures 6.14.5
through 6.14.9 to understand how collections of control values are presented (i.c.,
the leftmost bit in one cycle will become the uppermost bit in another cycle). For
example, the EX control value for the subtract mstruction, 1100, computed during
the 1D stage of cycle 3 in Figure 6.14.6, becomes three separate values specifving

RegDst (1), ALUOp (10}, and ALUSrc (0) in cycle 4.

is executed using the pipeline shown

6.14 [40] <§06.3> The following piece of cade

in Figure 6.30 on page 409:

At cycle 5, right before the instructions are executed, the processor state is as follows:

1. The PC has the value 100, , the address of the sub fy
n

a., register

b. Every register has the mitial value 10, plus the register number (¢

£8 has the initial value 18,,,,)

c. Every memory word accessed as data has the initial value 1000, plus the byte

address of the word (e.g., Memory|8] has the initial value 1008,.,)
Determine the value of every field in the four pipeline registers in cycle 5
6.15 [20] <§6.3> @ For More Practice: Labeling Pipeline Diagrams with Control
6.16 (20| <§6.4> @ For More Practice: Illustrating Diagrams with Forwarding
6.17 |5] <§§6.4, 6.5> Consider executing the following code on the pipelined data
path of Figure 6.36 on page 416:

r
b

At the end of the fifth cycle of execution, which registers are being read and which
register will be written?

slain what the

6.18 [5| <§86.4, 6.5> With regard to the program in | xercise 6.17, ex

forwarding unit is doing during the fifth cycle of execution. If any comparisons are

being made, mention them.

6.14 Exercises

457

6.19 [5] <8§86.4, 6.5> With regard to the program in Exercise 6.17. explain what the
: prog

hazard detection unit is doing during the fifth cycle of execution. If any comparisons

are being made, mention them,
6.20 [20] <8§6.4, 6.5> @ For More Practice: Forwarding in Memory

am of 107 instructions in the format of " v,

r

|)

6.21 [5| <§6.5> We have a pr
... The add instruction depends (and only depends) on the |w instruction
right before it. The Tw instruction also depends (and only depends) on the
instruction right before it. If the program is exccuted on the pipelined datapath of
Figure 6.36 on page 416:

a. What would be the actual CPI?
b. Without forwarding, what would be the actual CPI?

6.22 [5] <$86.4, 6.5 Consider executing the following code on the pipelined data

vath of Figure 6.36 on page 416:
E P'ei

How many cycles will it take to execute this code? Draw a diagram like that of Figure
6.34 on page 414 that illustrates the dependencies that need to be resolved. and pro
vide another diagram like that of | 1igure 6.35 on page 415 that illustrates how the
code will actually be executed (incorporating any stalls o forwarding) so as to

resolve the identified problems.

6.23 |15 <86.5> List all the inputs and outputs of the forwarding unit in Figure
6.36 on page 416. Give the names, the number of bits, and brief us 1ge for cach inpui
and output.

6.24 [20] <$6.5> @] For More Practice: lustrating Diagrams with Forwarding and
Stalls

A

6.25 (20| <§6.5> @] For Morc
Stage

l-\‘n'.iii_L‘:]."np.ILI on [i.‘['\\\ll'\“i]_u &1 _"-\]\;-\ illl_-]I to 1D

6.26 |15 <§%6.2-6.5> @ For More Practice: [mpact of Memory Addressing Mode

on J‘Jpplmc

6.27 [10] <856.2-6.5> @ For More Practice Impact of Arithmetic Operations

with Memory Operands on Pipeline

6.28 [30] <%6.5, Appendix C> @ For More Practice Forwarding Unit Hardware

Design

458

Chapter 6 Enhancing Performance with Pipelining

led with this hook, collect sta

6.29 |1 week| <886.4,6.5 Using the simulator provic
tistics on data hazards for a C program {sup yplied by either the mstructor ot with the

You will write a subroutine

that 1s passe - the instruction to be executed,

soltware).
. Have vour pro-

and this routine must model the five-stage pipeline in this chapte

gram collect the following statistics:

@ Number of instructions exed uted

m Number of data hazards not resolved by forwarding and number resolved |

forwarding,.
m If the MIPS C compiler that vou are using Issues instructions to avoud

h.'i,f.m.la, count the number ol s instructions as well

alwavs take 1 clock cycle, calculate the average
s mser 'l_'\i by

Assuming that the memory accesses
es per inst uction. Classity o nstructions as st

number of clock cvel
from the number of instr

software, then subtract them uctions executed in the t

- 1 P

calculation.

6.30 |7] <§%6.4, 6.5> In the example on page 125. we saw that the performance
gn was limited by the longer time requil ed to acce

advantage of the mu |11\, vele desi 58
\LL ,.‘wum‘--.'mc'ln memory access became
cle designs. In the next

Memory versus ‘Ll‘w'l;h.' ;"Ll 1L] uL| llll“
Find the relative performance of the single-cy: cle and multicy

few exercises, we extend this to the | ' |u|=.1.:c~ lots more work!

pe |]1\Ufl{wl"|1 which

6.31 | 10| <86.6> @ For More Practice: Coding with (onditional Moves
f Conditional

6.32 [10] <§6.6> @ For More Practice: Performance Advantage of

?\]11'\L'
6.33 [20] <§86.2-6.6> In the example on page 425, we saw that the performance
ind the pipelined designs was limited by the longer

advantage ol both the multicvcle a
\LU. Suppose the memory access

time :'r:L]Llllui [0 access MEmory versus use the

1. Draw the I11'I\|IHL_| l"||k|‘|u_ List all the Pll\\ll_"l&' new [or

|".L‘_.‘\{‘.1-'.' 2 L'l\!'\'n_ '.."-'Ll' 5 |[r.
warding situations and all possible new hazards and their length.
6.34 |20] ©<§86.2-6.6> Re do the example on page 42 25 using the restructured pipe-
the single-cycle and multicy

le. For br |||k|1\

line of Exercise 6.33 to compare

Assunme ||]u

same prediction accuracy, but increase the penalty as appropriate '-.m‘

pend on the load with ||\1|\|

loads, assume that 1llk subsequent instructions de \
of 1 1/4, 1/8, 1/16, and so on. That is, the instruction following a load by two has
a 25% probability of usimg the load result as one of its sources. lgnoring any other

l"L_]IIL\i Li&'\]\|l]'\||h"lll" '-.'_I\

data hazards, find the relative perforn yance of the pi

design with the restruc tured pipeline.

6.35 |10] <§§6.4-6.6> As pointed out on page {18, moving the branch comparison
ity for both forwarding and hi

that show the possible

rds that

up to the 11 stage mtroduces an opportun

cannol e resolved by Torw arding. (Ve asel ol code sequences

6.14 Exercises

459

forwarding paths required and hazard cases that must be detected, considering onls

one of the two operands. The number of cases should equal the maximum length of

the hazard if no forwarding existed.
6.36 | 15| <86.6> We have a program core consisting of five conditional branches.
The program core will be executed thousands of times. Below are the outcomes of
each branch for one execution of the program core (T for taken, N for not taken)

Branch 1: T-T-1

Branch 2: N-N-N-N

Branch 3: T-N-T-N-T-N

Branch 4: T-T-T-N-T1

Branch 5: T-T-N-T-T-N-T
\ssume the behavior of each branch remains the same for each program core execu
tion. For dynamic schemes, assume each branch has its own prediction buffer and
cach buffer initialized to the same state before each execution. List the predictions
for the following branch prediction schemes:

a. Always taken

b. Always not taken

c. I-bit predictor, inttialized to predict taken

d. 2-bit predictor, initialized to weakly predict taken
What are the prediction accuracies?

6.37 [10] <§96.4-6.6> Sketch all the forwarding paths for the branch inputs and

show when they must be enabled (as we did on page 40

6.38 [10] <§56.4-6.6> Write the logic to detect any hazards on the branch sources.
as we did on page 410,
6.39 |10]| <§86.4-6.6> The example on page 378 shows how to maxinize perfor

mance on our pipelined datapath with forwarding and stalls on a use following a

load. Rewrite the following code to minimize performance on this datapath—that is,

reorder the instructions so that this sequence takes the most clock cycles to execute

while still obtaining the same result.

Chapter 6 Enhancing Performance with Pipelining

6.40 [20] <§6.6> Consider the pipelined datapath in Figure 6.54 on page 461. Can
an attempt to flush and an attempt to stall occur simultaneously? If so, do they result
in conflicting actions and/or cooperating actions? If there are any cooperating

Jow do they work together? If there are any conflicting actions, which should

actions,
take priority? Is there a simple change you can make to the datapath to ensure the
necessary priority? You may want to consider the following code sequence to help

vou answer this question:

pl, b | \ei. | 1 Lme il | 1 r

1w (%

1ld , $3. b4
[A C O $1, &1, 3
6.41 [15] <§§6.4,6.7>The Ver ilog for implementing forwarding in Figure 6.7.2 on
page 6.7-4-6.7-5 did not consider forwarding of a result as the value to be stored by
1 SW instruction. Add this to the Verilog code.
6.42 [5] <§56.5, 6.7 The Verilog for implementing stalls in Figure 6.7.3 on page

6.7-6-6.7-7 did not consider forwarding of a result to use in an address calculation.

Make this simple addition to the Verilog code.

6.43 [15) <§806.6,6.7> [he Verilog code for implementing branch hazard detection
and stalls in Figure 6.7.3 on page 6.7-6-6.7-7 does not detect the possibility of data
hazards for the two source registers of a BEQ instruction. Extend the Verilog in Figure
6.7.3 on page 6.7-6-6.7-7 to handle all data hazards for branch operands. Write both

the forwarding and stall logic needed for completing br anches during 1D
6.44 |10] <§§6.6, 6.7 Rewrite theVerilog code in 6.7.3 on page 6 7-6-6.7-7 10

implement a delayed branch strategy

6.45 |20] <§586.6, 6.7> Rewrite the verilog code in Figure 6 7.3 on page 6.7-6-6 7-7
to implement a branch target buffer. Assume the buffer is implemented with a mod-

ule with the following definition:

Make sure vou accomodate all three yossibilities: a correct prediction, a miss in the
|

buffer (that is, miss = true), and an incorrect prediction. In the last two cases, you

must also update the prediction.

tlin] ..___

I jan i

{1 "Youeiq Y} SMO]Jjo}

¥

Yaueag 2y s |

B2y} UOI}oNIIsul @

1S L
Yy} Ysnjj o3 dIempie

O PLOIS | I5ir)s 11

____._J...,_._

y Suipnjous ‘youeiq ioy yedelea S'9 JUNDIL

%

Aowaw
ElRQ

S
@ -
|l
W ' 7
\ ..\. —
| | [\
| |puaixa|
_ \ ubig |
| ¥ \ /
o \ / e o ey
7 < | | o
_lil.| n =g _ B
_ \\ W |
g, L= | [X Lt L
| NIV 1 il
7 | Y [sizsibay |
N Y |
i [[o
|———— [T [
7 sl W | w | ! _
J _ | Iz _w_._
| 7 \4 "\ Hus |
_ l.-\ 4 «\ 7
3 aid
N ., —
x re0 "
_ — - n |-
| | W
ELE] o o B < /
x3/0

faowaw
uonansuy| |

n

[-

-9 Dd [

|

(page 461)

462

Chapter 6 Enhancing Performance with Pipelining

6.46 |1 month| <§85.4, 6.3-6.8> If you have access to a simulation system such
as Verilog or ViewLogic, first design the single-cycle datapath and control from
Chapter 5. Then evolve this design into a pipelined organization, as we did in this
chapter. Be sure to run MIPS programs at each step to ensure that your refined

design continues to operate correctly.

6.47 |10] =§6.9> The following code has been unrolled ance but not yet sched

uled. Assume the loop index is a multiple of two (1.e., $10 is a multiple of eight):
ub %
b4 |]

] 4 |

T T bh,
A [1 (%1

i kil 1
bn 0. f [I

Schedule this code for fast execution on the standard MIPS pipeline (assume that

it supports addi instruction). Assume initially $10 is 0 and $30 is 400 and that
branches are resolved in the MEM stage. How does the scheduled code compare

against the original unscheduled code?

6.48 [20| <$6.9> This exercise is similar to Exercise 6.47, except this time the

twice (creating three copies of the codel. However, itis

code should be unrollec

not known that the loop index is a multiple of three, and thus you will need to
I

invent a means of ensuring that the code still executes properly. (Hint: Consider

le'\' CAses

adding some code to the beginning o1 end of the loop that takes care ol
not handled h the !Unp.)

6.49 (20| <§6.9> Using the code in Exercise 6.47, unroll the code four times and
schedule it for the static multiple-issue version of the MIPS processor described on
pages 436-439. You may assume that the loop executes for a multiple of four times
6.50 [10] <$86.1-6.9> As technology leads to smaller teature sizes, the wires

4

become relatively slower (as compared to the logic). As logic becomes faster with

the shrinking feature size and clock rates increase, wire delavs consume more clock
cycles. That is why the Pentium 4 has several pipeline stages dedicated to transter-

at are the draw-

ring data along wires from one part of the pipeline to another.
backs to having to add pipe stages for wire delays?

6.51 [30]| <§6.10> New processors are introduced more quickly than new ver-
sions of textbooks. To keep your textbook current, investigate some of the latest
developments in this area and write a one-page elaboration to insert at the end of
Section 6.10. Use the World-Wide Web to explore the characteristics of the lastest

processors from Intel or AMD as a starting point.

6.14 Exercises

o

861, page 384: 1. Stall on the LW result
bypass required.

§6.2, page 399: Statements 2 and 5 are correct: the rest are mcorrect.
36.6, page 426: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction.
§6.7, @ page 6.7-3: Statements | and 3 are both true.

N7, [@: page

§6.8, page 4.

7-7: Only statement #3 s \'-.\|'|1|1lc1_-\i}' accurate

96.4 : Only #4 is totally accurate. #2 is partially accurate

86.9, page 447: Speculation: both; reorder buffer: hardware: register renaming:
both; out-of-arder execution: hardware: predication: software; branch prediction:
both; VLIW: software; superscalar: hardware; EPIC: both, since there is substantial

hardware support; multiple issue: both; dynamic sche duling: hardware.

20,10, page 450: All the statements are false

' Bypass the ADD result. 3. No stall or

463

Answers to
Check Yourself

