198

Chapter 2 Instructions: Language of the Computer

2.19.1 [15] <2.8> Implement the C code in the table in MIPS assembly. Whatis

the total number of MIPS instructions needed to execute the function?

2.19.2 [5] <2.8> Functions can often be implemented by compilers “in-line
An in-line function is when the body of the function is copied into the program
space, allowing the overhead of the function call to be eliminated. Implement a
“in-line” version of the C code in the ta

ole in MIPS assembly. What is the reductioa
M

in the total number of MIPS assembly instructions needed to completet
Assume that the C variable n is initialized to 5

1¢e function!

2.19.3 [5] <2.8> For each function call, show the contents of the stack after the

function call is made. Assume the stack pointer is originally at addresss 0x7f

and follow the register conventions as specified in Figure 2.11.

I'he following three problems in this exercise refer to a function f that calls anothe

function func. The code for C function func is alreads compiled in another moduk

using the MIPS calling convention from Figure 2.14. The function declaration for fu

15" [C L a, nt D) ;7 The code for function f is as follows:

2.19.4 [10] <2.8> Translate function f into MIPS assembler,also using the MIP§
calling convention from Figure 2.14. If you need to use registers $ L0 through §¢7
use the lower-numbered registers first.

2.19.5 [5] <2.8> Can we use the tail-call optimization in this function? If n

explain why not. If yes, what is the difference in the number of executed instructioss
in with and without the optimization?

2.1
L][J)
we |

1ts ¢

Ex
Thi:

the
HH'\

€rro

2.2(
a giv
retur
MIP

2.2(

the 1

at is

ine”,
ram
L an
tion
ion?

the
ttfc,

ther
dule

[PS

no,
ons

2.21 Exercises 199

ht before vour function T from Problem 2.19.4 returns, what

919.6 (5] <2.8> Rig
v know about contents of registers pth 453, tra,and $ it Keep in mind that
| t the entire function ooks like, but for function | we only know

Exercise 2.20

+ deals with recursive procedure calls. For the tollowmg l?l-:]','1|l_'l'|‘|\\
f a number.

has an assembly code tragment that computes the factor ial o
.l.l'.' entries 1 'Il_‘lx _I:Wl"' 1ave errors, -.'4"I\|. VoLl \'“ be .'I.ﬁ]-\L"Ll [0 1‘|"\ ‘It‘n'\t_'

MIPS assembly program above compules the factorial of

2201 (5] <2.5 [

_and the result is

oiven input. The integer input is passed through register
there are a few errors Correct the

Cln the .'1\2\L".‘II!'1|'- code, |

L"i'-l'](‘il. mn

MIPS errors.

Eor the recursive factorial MIPS program above, assume thal

2.20-2 [101

the input is 4. R

vrite the factorial program 1o operate 1n 4 nonrecursive manner.

Chapter 2 Instructions: Language of the Computer

Restrict your register usage to registers $50-35/ What is the total number of
instructions used to execute your solution from 2.20.2 versus the recursive version

of the factorial program?

2.20.3 [5] <2.8> Show the contents of the stack after each function call, assuming

that the input is 4.

For the following problems, the table has an assembly code fragment that computss
1 Fibonacci number. However, the entries in the table have errors, and you will be

asked to fix these errors.

2.20.4
a given |
returned
\]”“‘\ cr

2.20.5
the inpu
Restrict
instruct
of the fa

2.20.6
that the

Exerc

Assume
global |
the call
P'.'{\M‘d 1

may on

mber of
* version

ssuming

ymputes

1 \m’ill he

2.21 Exercises

2.20.4 [5| <2.8> The MIPS assembly program above computes the Fibonacci of
4 given input. The integer input is passed through register $a0, and the result is
returned in register $v0. In the assembly code, there are a few errors. Correct the

MIPS errors.

2.20.5 [10] <2.8> For the recursive Fibonaca Ml PS program above, assume that
the input is 4. Rewrite the Fibonacct program to operate in a nonrecursive manner.
to registers $s0-$s7. What is the total number of

Restrict your register usage

istructions used to execute your solution from 2.20.2 versus the recursive version

of the factorial program?

2.20.6 5| <2.8> Show the contents of the stack after each function call, assuming

that the input 1s 4.

Exercise 2.21

Assume that the stack and the static data segments are empty and that the stack and
global pointers start at address Ox7Eff fffc and 0x1000 8000, respectively. Assume
the calling conventions as specified in Figure 2.11 and that function mputs are
. Assume that leaf functions

passed using registers $a0 and returned in register

ved]'J':‘__i‘w!{'- 8

may only use sa

201

202

Chapter 2 Instructions: Language of the Computer

| <2.8> Show the contents of the stack and the static data segments atter

2.21.1 |5
each function call.
2.21.2 |5] <2.8 Write MI1PS code for the code in the table above.

2.21.3 [5] <2.8> If the leaf function could use temporary registers (31

etc.), write the MIPS code for the code in the table above

I'he following three problems in this exercise refer to this function, written in MIP§

assembler following the calling conventions from Figure 2.14:

2.21.4 [10] <2.8> This code contains a mistake that violates the MIPS calling

convention. What is this mistake and how shou

d it be fixed:

2.21.5 [10] <2.8> What is the C equivalent of this code? Assume that the

function’s areuments are named 4, b, ¢, etc. in the C version of the function.

2.21.6 i 10] <2.8> At the }1{1i|1| where this function is callec regisier
b7 and $a2 have values 1, 100, 1000, and 30, respectively. What is the vali
returned by this function? If another function g is called from . assumc that th

value returned from g is always 500.

Exercise 2.22

This exercise L‘\}?|\‘-1'('n ASCII and Unicode conversion. The |-\H\‘r'x‘.".lli'_ table shows

strings of characters. ;
-

2.22.1

2.22.2

and the
The fol

b.

2.22.:

Exer

In this
strings

2.23.]
ASCII
Your p
string
should
numbe
your p
a0 pc
24",

Exer

Assum
$LZ cc
a.

b.

2.24.:

1000

'ments after

enin MIPS

[PS calling

r_‘.]ﬂ]-;' '1]1(!'\\'.‘\

2.21 Exercises 203

2.22.1 [5] <2.9- Translate the strings into decimal ASCIT byte values.

2.22.2 (5| <2.9> Translate the strings into 16-bit Unicode (using hex notation

and the Basic Latin character set)

table shows hc\.m_]u_'illl.'l-. ASCII clm racter values

2.22.3 |5] <2.5, 2.9> Translate the hexadecimal ASCILI values to texl

Exercise 2.23

In this exercise, you will be asked to write a MIPS assembly program that converts

strings into the number format as specified in the table

2.23.1 [10] <2.9> Write a program in MIPS assembly language to convert an
\SCIl number string with the conditions listed in the table above, to an integer.

Your program should expect register $a0 to hold the address of a null-terminated

g containing some combination of the digits 0 through 9. Your program

e integer value equivalent to this string of digits, then place the

should compute

number in register $vi. If a nondigit character appears anywhere n the string,

your program should stop with the value -1 in register . For example, if registe
.52 .0, (the null-terminated string
ten 1en ba

/0 should contain the value 24

points to a sequence of three bytes 50,

247}, then when the program stops, registe

-4 o
Exercise 2.24
Assume that the register ! contains the address 0x1000 0000 and the register
it7 contains the address Ox 1000 0010,
a.
b.
2.24.1 (5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is: e

204

Chapter 2 Instructions: Language of the Computer

What value is stored at the address pointed to by register $£7? Assume that the

memory location pointed to $£2 is initialized to OxFFFF FFFE
2.24.2 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000is

1000 0000 80 80 80 80

What value is stored at the address pointed to by register $t77 Assume tha
F S

memory location pointed to $12 is initialized to 0x0000 0000
2.24.3 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 s

1000 0000 11 00 00 FF

What value is stored at the address pointed to by register $t27 Assume that the

memory location pointed to $ 12 1s initialized to 0x5555 5555

Exercise 2.25

[n this exercise, you will explore 32-bit constants in MIPS. For the following

problems, vou will be using the binary data in the table below.

2.25.1 [10] <2.10> Write the MIPS code that creates the 32-bit constants liste

above and stores that value to register % f

2.25.2 [5]| <2.6,2.10> If the current value of the PC is 0x00000000, can vou used
single jump instruction to get to the PC address as shown in the table above?

2.25.3 |5] <2.6,2.10> If the current value of the PC is 0x00000600, can you use
single branch instruction to get to the PC address as shown in the table above?
2.25.4 |5] <2.6,2.10> If the current value of the PC is 0x00400600, can vou usé:

single branch mmstruction to get to the PC address as shown in the table above!
2.25.5 [10] <2.10> If the immediate field of a MIPS instruction was only 8 bit
wide, write the MIPS code that creates the 32-bit constants listed above and stors

that value to register $t1. Do not use the 147 instruction.

-
For the following problems, you will be using the MIPS assembly code as listed s

the table.

2.2!
in tk

2.2
table
bits.

Exe

For 1
MIP!

a.

b.

2.26

jumpg

2.26
instri

get tc

2.26
desig
16 bit
are n¢

For tl
Instru

b.

2.26.
the in
above
that a

1e that the

100 0000 1s:

1e that the

100 0000 is:

ne that the

following

tants listed

N you use a

bove?

nyou use a

Yove?

i

M yoOLu use a

rabove?

only 8 bits
> and stores

as listed in

205

2.21 Exercises

9.25.6 |5| <2.6,2.10> What is the value of register 51U alter the sequence of code

in the table ab

2.25.7 |5] <2.6,2.10 > Write { code that is equivalent to the assembly code in the
1 |

-aesl constant that you can load into a 3.

bit integer 1s 16

=

table. Assume that t

Dits

Exercise 2.26

For this exercise, vou will explore the range of branch and jump instruction:

¢ DCIOW.

MIPS. For the following problems, use the hexadecimal data in the tab

296.1 [10] <2.6,2.10> 1 the PC is at address 0x00000000 how many branch (no
ump nstructions) do vou need 1o get to the ¢

address in the table abo

2.26.2 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many jump
nstructions (no jump register st ructions or branch instructions) are required to

get to the target address in the table above?
2.26.3 |10] <2.6, 2.10> In order to reduce the size of MIPS programs, MIPS
fesi have decided to cut the immediate field of I-type mstructions from

16 bits to 8 bits. If the PC is at address 0x0000000, how many branch instructions

'(" to the address in the table above?

TNCTS

Are needed to set the |

e MIPS

For the following problems, you w ill be using makine modifications to tl

ruction setl architecture.

2.26.4 |10] <2.6,2.10> If the instruction set of the MIPS processor is modified,
the mstru L'l:l\i-'I! format must \ll,.ﬁ(.' |_JL' Llﬂlll‘_:_’\'-‘l_. For &'.1L|_"| ol the *—llai:__’.L"-i'L‘Ll changes -
Je impact on the range of addresses in a beq instruction? Assume

at is the
| any changes made to the instruction

| L \
dDOVE, W

32 bits long anc

that all instructions remain

206

Chapter 2 Instructions: Language of the Computer

format of I-type instructions only increase/decrease the immediate field of the beg
imnstruction.

2.26.5 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified,
the instruction format must also be changed. For each of the suggested changes
above, what is the impact on the range of addresses a jump instruction? Assume tha
instructions remain 32 bits long and any changes made to the instruction formatof
J-type instructions only impact the address field of the jump instruction.

2.26.6 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified
the instruction format must also be changed. For each of the suggested changs
above, what is the impact on the range of addresses a jump register instruction,
assuming that each instruction must be 32 bits.

Exercise 2.27

[n the following problems, you will be using exploring different addressing modes
in the MIPS instruction set architecture. These different addressing modes ar
listed in the table below.

a. Register Addressing

b. | PC-relative Addressing

2.27.1 [5] <2.10>> In the table above are different addressing modes of the MIPS
(2] g

instruction set. Give an example MIPS instructions that shows the MIPS addressing

mode.

2.27.2 [5] <2.10> For the instructions in 2.27.1, what is the instruction forma

Iy

ve used for the given instruction?

2.27.3 (5] <2.10> List benefits and drawbacks of a particular MIPS addressing
mode. Write MIPS code that shows these benefits and drawbacks.

[n the following problems, you will be using the MIPS assembly code as listed below

to explore the tradeoffs of the immediate field in the MIPS I-type instructions.
a. | 0x00000000 Ui e
b. Ox000001 add %

4

2.27.4 |15] <2.10> For the MIPS statements above, show the bit-level instructios
representation of each of the instructions in hexadecimal.

2.27
and]
instri
1M Ime¢

reflec
2.27
in 2.2
Exe

The fi

2.28.

instru

2.28.
this c¢

2.28.
Be sui

Each
regists
to by

on pa

a.

the beq

adified,
‘hanges
me that
rmat of

odified,
changes
ruction,

g modes
odes are

‘he MIPS
ldressing

n format
ddressing

ted below
ctions.

nstruction

2.21 Exercises

9.21.5 [10] <2.10> By reducing the size of the immediate fields of the I-type
nd J-type instructions, we can save on the number of bits needed to represent
nstructions. If the immediate field of I-type instructions were 8 bits and the
mmediate field of |-type instructions were 18 bits, rewrite the MIPS code above to

reflect this change. Avoid using the Tui instruction.

9.27.6 [5] <2.10> How many extra instructions arc needed to execute your code

1975 MIPS statements in the tab

in2.2 le versus the code shown in the table above?

Exercise 2.28

The following table contains MIPS assembly code for a lock

228.1 [5] <2.11> For each test and fail of the store conditional, how many
mstructions nee d to be executed?
11> lor the load locked/store conditional code above, explain why

I

2.28.2 [5]

code may fail

9.28.3 |15] <2.11> Rewrite the code above so that the code may operate correct
Be sure to avoid any race conditions

Fach entry in the following table has code and also shows the contents of various
(5<1)" shows the contents of a memory location pointed

reeisters. The notation,
code in each table is executed in the cycle shown

14
L. The assembly

with a shared memory space.

to by register

on parallel processors

208

Chapter 2 Instructions: Language of the Computer

) 2) v |10 | 20 | 3
EI

2.28.4 [5] <2.11> Fill out the table with the value of the registers for each given
e

Exercise 2.29

Ihe first three problems in this exercise refer to a critical section of the form

where the “operation” updates the shared variable shvar using the local (nonshared

variable x as follows:

2.29.1 [10] <2.11> Write the MIPS assembler code for this critical section,
assuming that the address of the 1k variable is in $20, the address of the

variable is in $a1, and the value of variable x is in $a2. Your critical section should
not contain any function calls, i.e., you should include the MIPS instructions
for (), unlock(), max(), and min() operations. Use 11/5¢C mstructions
to implement the Tack() operation, and the ocl operation is simply an

ordimary store instruction.

2.29.2 [10] <2.11> Repeat problem 2.29.1, but this time use 1/s¢ to performan

atomic update of the shvar variable directly, without using ' # and

Note that in this problem there is no variable 11

2.29.

2.29.1
best-c
to |

with |

2.29.
I'ILIPPK'
time, :

2.29.
the ad

pdc CI

2.29.
sharec
this e:
lock o
do thi
both

togeth
B

Exel

Assen
appea
that ,v

b.

2.30.
minin
may n
numb
16 bit:

The ta
transl.

for each given

he form

al (nonshared)

ritical section,
sof the VAt
section should
'S instructions

mstructions
n is simply an

to perform an
| 1

mna

2.21 Exercises

2.29.3 [10] <2.11> Compare the best-case performance of your code from
229.1 and 2.29.2, assuming that each instruction takes one cycle to execute. Note:
best-case means that 11/sc always succeeds, the lock is always free when we want
tolock(), and if there is a branch we take the path that completes the operation

with fewer executed instructions.

2.29.4 10| <2.11> Using your code from 2.29.2 as an example, explain what

1€ Sdme

happens when two processors begin to execute this critical section at

time, assuming that each processor executes exactlv one instruction per cycle.

2.29.5 (10| <2.11> Explain why in your code from 2.29.2 register $al contains
sle, and why r

{dress of variable shy and not the value of that varia

gister

contains the value of variable x and not its address.

2,29.6 [10] <2.11> If we want to atomically perform the same operation on two

shared variables (e.e., shva and shva) in the same ¢ ritical section, we can do

this L-__|\||_., using the : pproa h from 2.29.1 I\impl'\ pul both |Ii‘d.]‘.c:~

|l'i | ()

etween the

peration and the corresponding unlock operation). Explain why we cannot

do this using the approach from 2.29.2,, i.e., why we cannot use |1/ L0 access

both shared variables in a wayv that guarantees that both updates are executed

ther as a single atomic operation.

Exercise 2.30

Assembler pseudoinstructions are not a part of the MIPS instruction set, but often

appear in MIPS programs. The table below contains some MIPS pseudoinstruct ions

that ,when assembled, are translated to other MIPS assembly instructions.

230.1 |5| <2.12> For each pseudo instruction in the table above, produce a
}

minimal sequence of actual MIPS instructions to accomplish the same thi

12. You

may need to use temporary registers in some cases. In the table Ta refers to a
number that requires 32 bits to represent and small to a number that can hit into
1D |‘|l“

he table below contains some MIPS pseudoinstructions, that when assembled, are

ted to other MIPS assembly instructions

209

210

A e
2 EMENT

Symbo

Table

Yat
Segr
Relo
Symbuol

Chapter 2 Instructions: Language of the Computer

2.12> Does the instruction in the table above need to be edited

2.30.2 |5]

during the link phase? W

Exercise 2.31
;

exercise, you will be taking the place of the linker

Je table below contains the link-level details of two different procedures. [n this

Instructio

Instructior Address

Segment

\ddress Instruction Type Depe

cy | Relocation

Instruction Type

Address

nfo

vl S Symbaol Address Symbol
dress Instru Text Address Instruction

Segment

Address Instruction Type

Dependency

uction Type

Address Symbol

Symbol

\ddress | Symbol

Tahie

2.31.1
Assum
has a t¢

strateg
2.31.2
2.31.2

jump i
brancl

Exer

The fir

code 11

2.32.
2.32.

2.32.

yvour |

For th
from |

a.

b.

2.32

regist

2.21 Exercises 211

¢ to form the executable file header.

e edited 931.1 |5] <2.1 Link the object files aboy

\ has a text size of Dx1¢

ume that Procedure A i 10. data size of Ox40 and Procedure B

2 text size of 0x300 and data size of 0x50. Also assume the memory allocation

grateey as “l_'!l\.‘. N g | 3.

are there on the size of an executable?

5. In this 931.2 |5] <2.12> What limitations, it any,

i

231.3 5] <2.12> Given you understanding of the limitations of branch and
' icht an assembler have problems directly implementing

instructions, winy 11

'
branch and jump insti ictions in an object file?

| Exercise 2.32

The first three problems i this exercise assume that function instead of the
code in Figure 2.24, is defined m G as tollows:

zndency

13> 1 this function into MIPS assembler code

2.32.1 [10] <2.13> Translate

ange in the 5011 function?

2.32.2 -\i 228 yvwhat nec \l,‘- [0 C

' d

s_bit bytes. not 32-bit words, how wou

| 2323 [5] <2.13> If we were sorting 8-1

32.1 changes?

vour MIPS codce tor n.

|

|) ’ . \

| For the remaining three pre blems in this exercise, we assuime that the i funchion
from Figure 2.27 1s chang d in the following way:

o of adicters

than zero) instruction instead ol -1t and bne at the t=1 label

affect the code for saving and restoring

232.4 (5] <2.13> Doe this change

registers in Figure 2.2

Chapter 2 Instructions: Language of the Computer

2.32.5 [10]

how many more (or fewer) instructions are executed as a result of this change?
2.32.6 [10]<2.13>Whensortinga 10-elementarray that was sorted in descending

order (opposite of the order that sort () creates), how many more (or fewer
instructions are executed as a result of this change?

Exercise 2.33

The problems in this exercise refer to the following function, given as array code:

2.33.1 [10] <2.14> Translate this function into MIPS assembly.

2.33.2 [10] <2.14> Convert this function into pointer-based code (in C).

2.33.3 [10] <2.14> Translate vour pointer-based C code from 2.33.2 into MIF
assembly.

2.33.4 [5] <2.14> Compare the worst-case number of executed instructions pa
nonlast loop iteration in your array-based code from 2.33.1 and your pointer-bas

code from 2.33.3. Note: the worst-case occurs when branch conditions are suc
that the longest path through the code is taken, i.e., if there is an if statement, th
result of the condition check is such that t

1e path with more instructions is takes
However, if the result of the condition check would cause the loop to exit, thenw
assume that the path that keeps us in the loop is taken.

2.33.5 (5] <2.14> Compare the number of temporary registers (t-registen
3 2 - i, : - 4
needed for your array-based code from 2.33.1 and for your poifter-based cod

from 2.33.3 |

2.33.€

like 3

Exer«

The tab
translat

b.

2.34.1
assembl

MIPS re

2.34.2

the bit fi

The tabls
translate

2.34.3

correspoi

2.34.4 |

Exerci:

The ARM
MIPS. Th

ly sorted,
1ange?

escending

or fewer)

ay code:

into MIPS

ictions per
nter-based
1s are such
ement, the
ns is taken.
¢t, then we

t-registers)
based code

2.21 Exercises

2.33.6 |5| <2.14>> What would change in your answer from 2.33.4 1f registers
$t0-3t/ and $a0 9 n the MIPS calling convention were all callee-saved, just

Exercise 2.34

The table below contains ARM assembly code. In the following problems, you will

translate ARM assembly code to MIPS.

2.34.1 |5] <2.16> For the table above, translate this ARM assembly code to MIPS
assembly code. Assume that ARM registers r0, rl1, and r2 hold the same values as
MIPS registers Cbs L, and $52, respectively. Use MIPS temporary registers

|
elc.) where necessuary.

934.2 15| <2.16> For the ARM assembly instructions in the table above, show

the bit fields that represent the ARM instructions.

The table below contains MIPS assembly code. In the following problems, you will

translate MIPS assembly code to ARM.

2.34.3 |5| 6 or the table above, find the ARM assembly code that

wrresponds to the sequence of MIPS assembly code.

2.34.4 (5| <2.16> Show the bit fields that represent the ARM assembly code.

Exercise 2.35

The ARM processor has a few different addressing modes that are not supported in

MIPS. The following |-I'-1'I'>|'L ms L‘,\Pii.\l‘L‘ these new ;1\[(|T'L‘H\'%]I'-‘IE'\ modes.

213

Chapter 2 Instructions: Language of the Computer

A

2.35.1 [5] <2.16> Identifv the type of addressing mode of the ARM assembl
_ | ¢

nstructions in the table above.

2.35.2 |5] <2.16> For the ARM assembly instructions above, write a sequenceof

MIIPS assembly instructions to accomplish the same data transfer.

n the following problems, you will compare code written using the ARM and A
nstruction sets. The following table shows code written in the ARM instruction

et

2.35.3 [10] <2.16> For the ARM assembly code above, write an equivalent MIPS

issembly code routine.

number of ARM assembly instruction

2.35.4 [5] <2.16> What is the tota
required to execute the code? What is the total number of MIPS assembi

mstructions required to execute the code?

2.35.5 [5] <2.16> Assuming that the average CPI of the MIPS assembly rou
the same as the average CPI of the ARM assembly routine, and the MIPS processor

has an operation frequency that is 1.5 times the ARM processor, how much faster

is the ARM processor than the MIPS processor?

Exercise 2.36

[he ARM processor has an interesting way of supporting immediate constant

his exercise investigates those differences. The following table contains AR

mstructions.

a.
b. :
-

2.36.1 [5] <2.16> Write the equivalent MIPS code for the ARM assembly code

.'_|')n‘\, e

(1S

2.36.2 [5]
MIPS codet

2.36.3 |5

your MIPS «
The follow1

b.

2.36.4 |5

assembly c

Exercis

Thi'-s 'C\'L‘I'L'i
The follow

2.37.1 [I
2.37.2 |1

The follow

2.37.3
bit fields

constant.

2.37.4 |

sembly

lence of

d MIPS

ruction

nt MIPS

tructions

assembly

rouline is
Processor

uch faster

constants.

1ins

l]]|'1§"\ C(!Lig‘

2.36.3 [5] <2.

vour MIPS code to minimize

The following table contal

2.36.4 |5/

Iy code

455¢

Exercise 2.37

This exercise explores th

The following table con

237.1 [10] <2.17> W

The following table c

237.3 |5] <2.17> For cach
bit fields that represent the
constant

2.37.4 |10] <2.17>W

162 If the registe

minimize the numbel

the ni imber of

2.16:> For the MIPS assembly code above,

s differences between the |

{ains x86 assembly code.

rie P_l_".'.-_l('r COC

2.37.2 [10] <2.17> What 15 the equy

v R1 had the constant value ol
of MIPS assembly inst ruction

162 If the register R had the constant v alue of 0x0¢
MIPS assembly instructions needed.

vins MIPS instructions.

write the

{e for the given routine.

Ve

-‘[||;_-|]['\IH‘\ |-‘..\|' ll|1t_'

yntains x86 assembly instructions

assembly instruction, show the

nstruction. reat the label 1

2.21 Exercises

8. rewrite your

S |1.l_‘\'k|1l tl

wc_';l'\][]f_]tj:”.‘ rewrite

equivalent ARM

MIPS and xB86 instruction sets.

routine?

size of _'.‘lt_l‘. Ol

| as d

ite equivalent MIPS assembly statements.

216

Chapter 2 Instructions: Language of the Computer

Exercise 2.38

he x86 instruction set includes the REP prefix that causes the instruction to bt
repeated a given number of times or until a condition is satisfied. The first thre

roblems in this exercise refer to the following x86 instruction

2.38.1 (5] <2.17> What would be a typical use for this instruction?

2.38.2 |5 <2.17> Write MIPS code that performs the same operation, assuming

that $a0 corresponds to ECX, $al to EDL $aZ to'l SI, and $a3 to EAX

2.38.3 |5| <2.17> If the x86 instruction takes one cycle to read memory, ont
cvcle to write memory, and one cycle for each register update, and if MIPS takes
one cycle per instruction, what is the speed-up of using this x86 instruction instead
of the equivalent MIPS code when ECX is very large? Assume that the clock cyce

time for x86 and MIPS is the same.

I'he remaining three problems in this exercise refer to the following function, gi

in both C and x86 assembly. For each x86 instruction, we also show its length in the
x86 variable-length instruction format and the interpretation (what the instruction

does). Note that the x86 architecture has very few registers compared to MIPS, and

as a result the x86 ca
return value of an x86 function is passed back to the caller in the EAX register.

R |

ling convention is to push all arguments onto the stack

2.38
(how

MIPS

2.38
at lea

wolul]

2.38
instr
perfc
Cy C]L
shor
and

func

EXx

The

2.3

exa

\

2.
ad
ari

ne
tir

ruction to be
he first three

n, assuming
X

nemory, one
f MIPS takes
ction instead
e clock cycle

nction, given
length in the
e instruction
o MIPS, and
1e stack. The

register.

2.21 Exercises

<2.17= Translate this function into MIPS assembly. (ompare the size

2384 |5

{how many bytes of instruction memory are needed) for this x86 code and for vour
MIPS code

2.38.5 [5] <2.17> If the processor can execute two instructions per cycle, it must
f

at least be able to read two consecutive instructions in each cycle. Explain how
would be done in MIPS and how it would be done in x86

2.38.6 |5] <2.17> If each MIPS instruction takes one cycle, and if each x86
instruction takes one cycle plus a cycle for each memory read or write it has to
perform, w

cycle time is the same in both x86 and MIPS, and that the execution takes the

1at is the speed-up of using x86 instead of MIPS? Assume that the clock
shortest possible path through the function (i.e., every loop is exited immediately

and every if statement takes the direction that leads toward the return from the
function). Note that x86 ret instruction reads the return address from the stack.

Exercise 2.39

The CPl of the different instruction types is given in the following table.

| pomete

10 3
b. 1 10 4
239.1 [5] <2.18> Assume the following instruction breakdown given for

l‘\i‘.L'I![I[]::'\ i E_li‘\ €n program

What is the execution time for the processor if the operation frequency is 5 GHz?

2.39.2 [5] <2.18> Suppose that new, more powerful arithmetic instructions are
added to the instruction set. On average, through the use of these more powerful
arithmetic instructions, we can reduce the number of arithmetic instructions

needed to execute a program by 25%, and the cost of increasing the clock cycle

time by only 10%. s this a good design choice? Why?

217

218

Chapter 2 Instructions: Language of the Computer

2.39.3 [5] <2.18> Suppose that we find a way to double the performance of
arithmetic instructions? What is the overall speed-up of our machine? What

find a way to improve the performance of arithmetic instructions by 10 times!?

The following table shows the proportions of instruction execution for the different

nstruction types.

2.39.4 [5] <2.18> Given the instruction mix above and the assumption tha
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cvcles, and

1 branch instruction takes 3 cycles, find the average CPI

2.39.5 [5] <2.18> Fora 25% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions

are not improved at all?

2.39.6 |5 <2.18> For a 50% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions

are not improved at all?

Exercise 2.40

[he first three problems in this exercise refer to the follow ing function, ¢

MIPS assembly. Unfortunately, the programmer of this function has fallen preyt

the pitfall of assuming that MIPS is a word-addressed machine, but in fact MIPS

is byte addressed.

2.21 Exercises

mance of
Vhat if we

Aimes!?

*different

Note that in MIPS assembly the “;” character denotes that the remainder of the line

1 that an I§a comment.
cles, and 240.1 |5 he MIPS"architecture requires word-sized accesses (lw and
W) to be word-aligned, i.e. the lowermost 2 bits of the address must both be zero. If

anaddress is not word-aligned, the processor raises a “bus error” exception. Explain
ycles, on how this alignment requirement affects the execution of this function.
ructions

240.2 [5] <2.18> If“a” w

dements, and if we replaced Iw and sw with 1b (load byte) and sb (store byte),

» a pointer to the beginning of an array of one-byte

-'L']l"\', on

respecti

, would this function be correct? Note: b reads a byte from memoryv.

“uctions sign-extends it, and places it into the destination register, while sb stores the least-

significant byte of the register into memory.
2.40.3 [5] <2.18> Change this code to make it correct for 32-bit integers.

iven in The remaining three problems in this exercise refer to a program that allocates

Is the sort function
t MIPS from Figure 2.27, and then prints out the array. The main function of the program

prey to memory for an array, hlls the array with some numbers, ca

isas follows (given as both C and MIPS code):

TS

Chapter 2 Instructions: Language of the Computer

The my_alloc function is defined as follows (given as both C and MIPS

Note that the progr
e}
pointer to an automatic variable

MIPS c

function is defined as follows (MIPS code):

llh"' Yy

code

ammer of this function has fallen prey to the p tfall of usinga
- outside the function in which it is defined.

ode formy_a110c _

2.40.4 |5| <2.18> What are the contents (values of all five elements) of ar

right before the“Jja 7 instruction in the main code is executed?

2.40.5 |15] <2.18,2.13> What are the contents ob array
function enters its outer loop for the first time? Assume that registers 3
1 have values of 0x1000, 20, 40, 7, and 1,

$52,and §
17 %$sU, ..ih-‘\L'_'-_'::.L'(li-

of the main code (right betore
o

2.18,2.13> What are the contents of the 5-element

2.40.6 [10]-

v right after “jal sor

£ returns to the main code?

right before the

respectively, at the beg

array pointed!

§2.6, p
the des
the fiel
bits of
where
of the
§2.7,p
$2.8,p
§2.9,p
§2.10,
§2.11,
§2.12,

2.21 Exercises 221

PS code). §2.2, page 80: MIPS, C, Java
f using a §2.3, page 87: 2) Very slow
lefined §2.4, page 93:3) -8. .,
§2.5,page 101: 4) sub $s2, $s0, $sl
“m §2.6, page 104: Both. AND with a mask pattern of 1s will leaves Os everywhere but

the desired field. Shifting left by the right amount removes the bits from the left of
the field. Shifting right by the appropriate amount puts the field into the rightmost
bits of the word, with Os in the rest of the word. Note that AND leaves the field
where it was originally, and the shift pair moves the field into the rightmost part
of the word.

§2.7, page 111: 1. All are true. H. 1).

§2.8, page 122: Both are true.

§2.9, page 127: 1 [.3)

4) +-128K. 1. 6) a block of 256M. 1. 4) 511

11, page 139: Both are true.

§2.10, page 136: 1.

§
§2.12, page 148: 4) Machine independence.

f array v

the sort
} $

Uy 3515

reginning

ointed by

