MC542

Organização de Computadores Teoria e Prática

2006

Prof. Paulo Cesar Centoducatte

ducatte@ic.unicamp.br

www.ic.unicamp.br/~ducatte

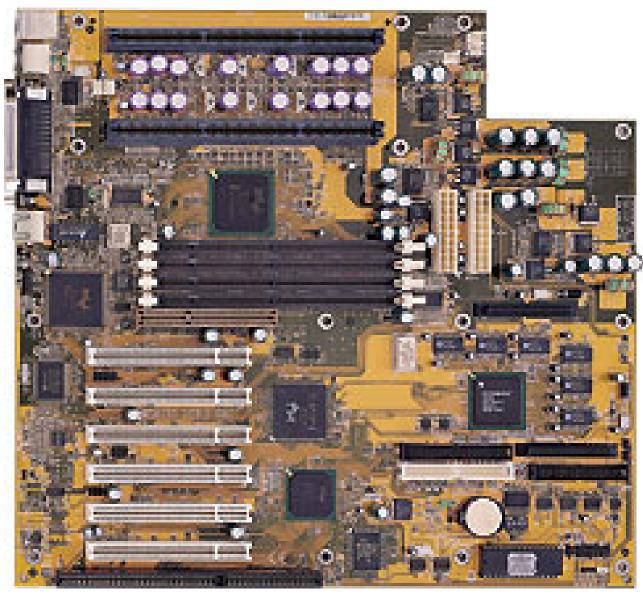
MC542

Arquitetura de Computadores

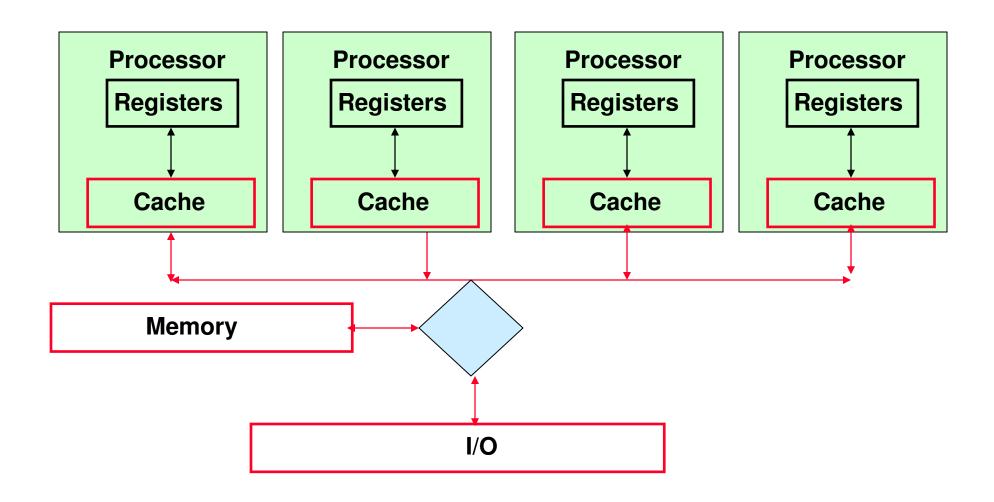
Sistemas de Armazenagem (IO)

"Computer Organization and Design: The Hardware/Software Interface" (Capítulo 8)

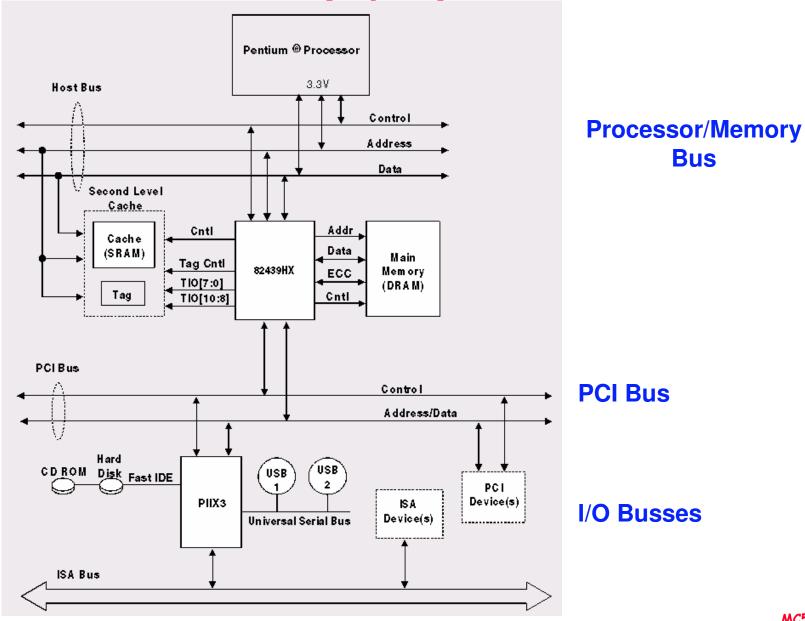
Sistema de Armazenagem Sumário

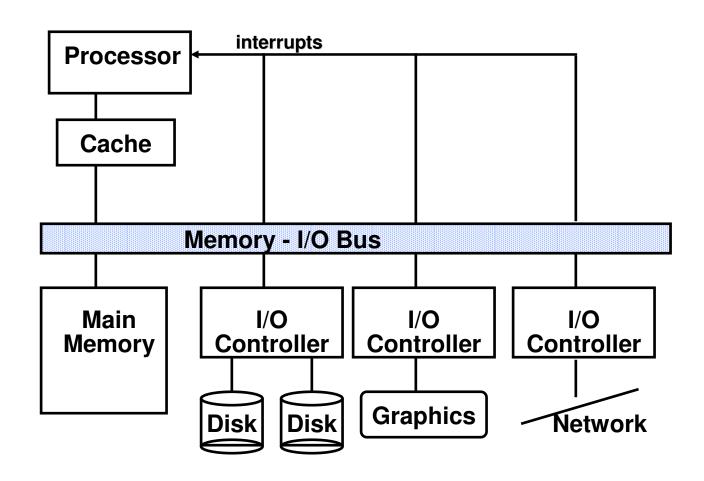

- Motivação
- · Introdução
- · Tipos de Dispositivos de Armazenagem
- · Discos, Desempenho, Histórico
- Barramentos (busses): Conectando Dispositivos de IO à CPU e Memória
 - Sistemas de Barramentos
 - Arbitragem em Barramentos
- Interface: Processador & I/O
 - Poolling e Interrupção
- · RAID, Disponibilidade e Confiabilidade

Motivação


- · Desempenho de CPU: 60% por ano
- Desempenho de sistemas de I/O: limitado por delays mecânicos (disco I/O)
 - 10% por ano (IO por seg)
- Lei de Amdahl: speed-up limitado pelo sub-sistema mais lento!
 - Se IO é 10% do tempo e melhorarmos 10x a CPU
 - » Desempenho do sistema será ~5x maior (perda de ~50%)
 - Se IO 10% do tempo e melhorarmos 100x CPU
 - » O desempenho do sistema será ~10x maior (perda de ~90%)
- · I/O bottleneck:

Reduz a fração do tempo na CPU Reduz o valor de CPUs mais rápidas

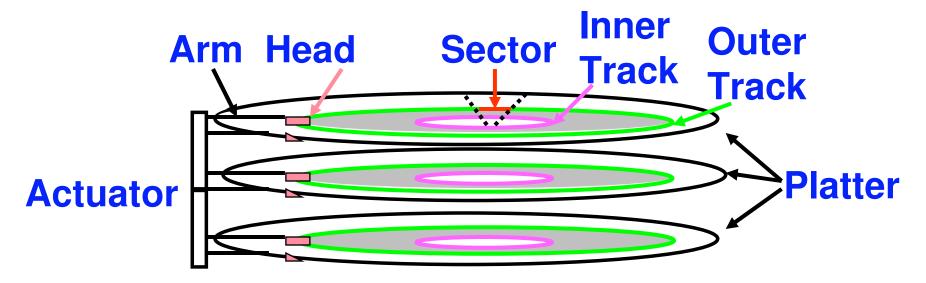

Sistema Computacional


Organização de Sistemas Computacionais (Típico)

Organização de Sistemas Computacionais (Típico)

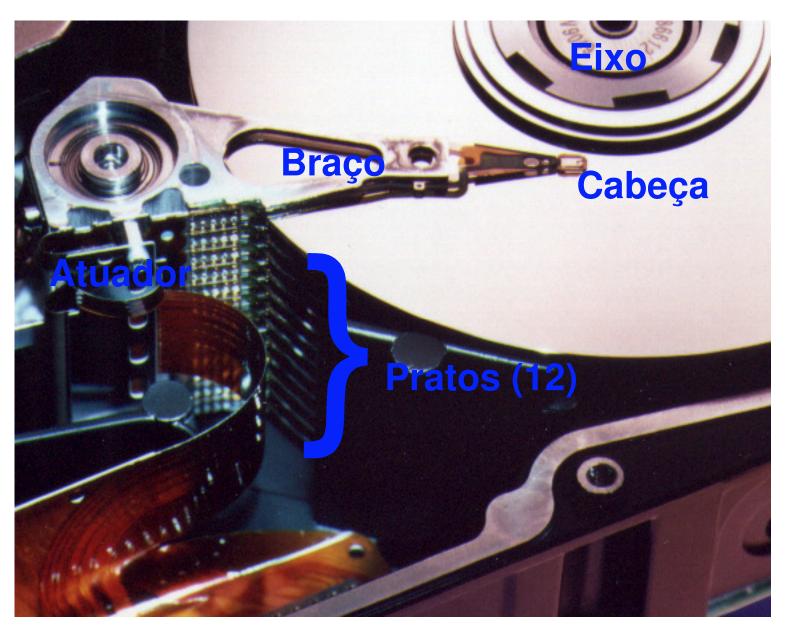
Sistema de IO

Tecnologia dos Dispositivos


- · Dirigidos pelo paradigma de computação vigente
 - 1950s: migração de batch para processamento on-line
 - 1990s: migração para computação ubíquoa (unipresente)
 - » Computação em telefones, livros, carros, vídeo, câmeras, ...
 - » Rede de fibra opticana internacionais
 - » wireless
- · Efeitos na Indústria de Dispositivos de Armazenagem:
 - Embedded storage
 - » pequeno, barato, mais confiável, baixo consumo
 - Dados
 - » Alta capacidade, gerenciamento hierarquico do armazenamento

Tipos de Dispositivos de Armazenamento

· Finalidade:


- Longa duração, armazenamento não volátil
- Grande, barato, usado nos níveis mais baixo da hierarquia
- · Bus Interface:
 - IDE
 - SCSI Small Computer System Interface
 - Fibre Channel
- · Taxa de Transfêrrencia
 - Cerca de 120 Mbyte/second através da interface de barramento.
 - Cerca de 5 Mbyte/second por heads.
 - Dados são movidos em Blocos
- · Capacidade
 - Mais de 100 Gigabytes
 - Quadruplica a cada 3 anos
 - Podem ser agrupados para armazenarem terabytes de dados.

Disk Drivers: Terminologia

- Vários <u>pratos</u>, com a informação armazenada magneticamente em ambas superfícies (usual)
- Bits armazenados em <u>trilhas</u>, que por sua vez são divididas em <u>setores</u> (e.g., 512 Bytes)
- O <u>Atuador</u> move a <u>cabeça</u> (fim do braço, 1/superfície) sobre a trilha (<u>"seek"</u>), seleciona a <u>superfície</u>, espera pelo <u>setor</u> passar sob a <u>cabeça</u>, então lê ou escreve
 - "Cilindro": todas as trilhas sob as cabeças

Foto: Braço, Cabeça, Atuador e Pratos

Discos: Exemplos

Seagate Cheetah ST3146807FC

147 Gigabytes

10,000 RPM

4.7 ms avg seek time.

Fibre Channel

\$499.00

4 disks, 8 heads

290,000,000 Total Sectors

50,000 cylinders

Average of 6,000 sectors/cylinder or 800 sectors / track (but different amounts on each track.)

MTBF = 1,200,000 hours

http://www.seagate.com/cda/products/discsales/marketing/detail/0,1121,355,00.html

Discos: Exemplos

Barracuda Cheetah ST320822A

200 Gigabytes

7,200 RPM

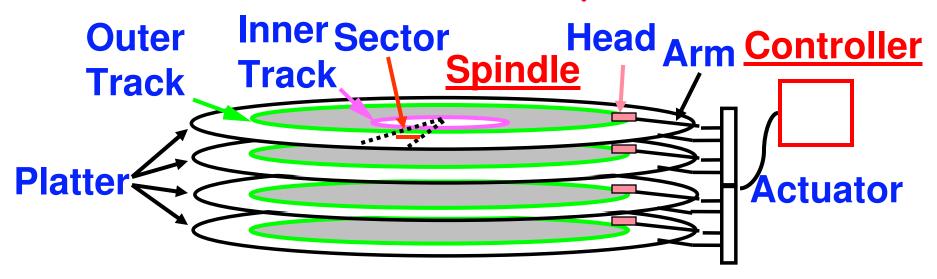
8.5 ms avg seek time.

ATA

\$299.00

2 disks, 4 heads

390,000,000 Total Sectors


24,000 cylinders

Average of 16,000 sectors/cylinder or 400 sectors / track (but different amounts on each track.)

MTBF = ????????? hours

http://www.seagate.com/support/disc/manuals/fc/100195490b.pdf

Disk Device: Desempenho

- Disk Latency = Seek Time + Rotation Time + Transfer Time + Controller Overhead
- Seek Time? Depende do no. de trilhas e velocidade de seek do disco
- Rotation Time? depende da velocidade de rotação do disco
- Transfer Time? depende do data rate (bandwidth) do disco (densidade dos bits), tamanho da requisição

Disk Device: Desempenho

- · Distância Média do setor à Cabeça?
- · 1/2 tempo de uma Rotação
 - 10000 Revoluções Por Minuto ⇒ 166.67 Rev/sec
 - 1 revolução = 1/166.67 seg $\Rightarrow 6.00$ millisegundos
 - 1/2 rotação (revolução) ⇒ 3.00 ms
- Nº Médio de Trilhas Saltadas pelo Braço?
 - Soma das distâncias de todos seeke possíveis a partir de todas as trilhas possíveis / # possibilidades
 - » Assume-se distribuição randômica
 - Indústria usa benchmark padrão

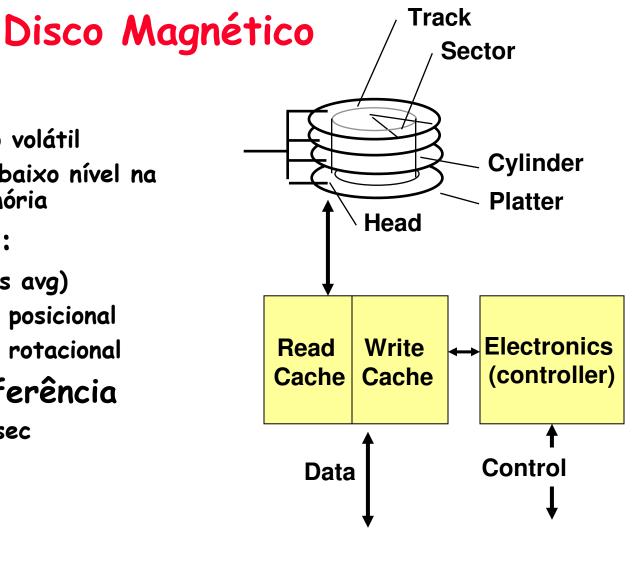
Data Rate: Trilha Interna vs. Externa

- Por questões de simplicidade, originalmente tem-se o mesmo número de setores por trilha
 - Como as trilhas externas são maiores elas possuem menos bits por polegada
- Competição ⇒ decição de se ter o mesmo BPI (bit per inch) para todas as trilhas ("densidade de bits constante")
 - ⇒ Maior capacidade por disco
 - ⇒ Mais setores por trilha nas bordas
 - ⇒ Uma vez que a velocidade rotacional é constante, trilhas externas possuem data rate maior (maior velocidade linear)
- Bandwidth da trilha externa é 1.7X a da trilha interna!
 - Trilha interna possui densidade maior, trilha externa possui densidade menor, a densidade não é constante
 - (2.1X length of track outer / inner; 1.7X bits outer / inner)

· Propósito:

- Longo tempo, não volátil
- Grande, barato, baixo nível na hierarquia de memória

· Characterísticas:

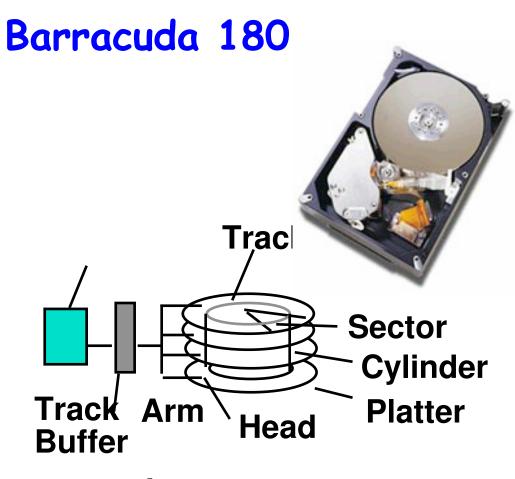

- Seek Time (~8 ms avg)
 - » latência posicional
 - » latência rotacional

Taxa de Transferência

- 10-40 MByte/sec
- Blocos

Capacidade

- Gigabytes
- 4X a cada 3 anos



Tempo de Resposta (Response time)
= Queue + Controller + Seek + Rot + Xfer

Service time

Disco: Modelo de Desempenho

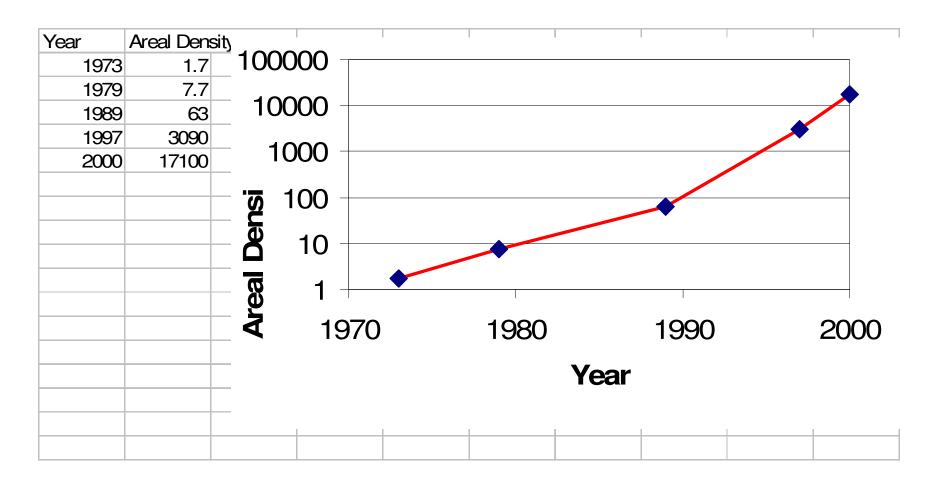
- Capacidade
 - + 100%/ano (2X / 1.0 ano)
- Transfer rate (BW)
 - + 40%/ano (2X / 2.0 anos)
- · Tempo de Rotação + Seek
 - 8%/ ano (1/2 em 10 anos)
- · MB/\$
 - > 100%/ano (2X / 1.0 ano)

Latency =
Queuing Time +
Controller time +
Seek Time +
Rotation Time +
Size / Bandwidth

- 181.6 GB, 3.5 inch disk
- 12 platters, 24 surfaces
- 24,247 cylinders
- 7,200 RPM; (4.2 ms avg. latency)
- 7.4/8.2 ms avg. seek (r/w)
- -64 to 35 MB/s (internal)
- -0.1 ms controller time
- 10.3 watts (idle)

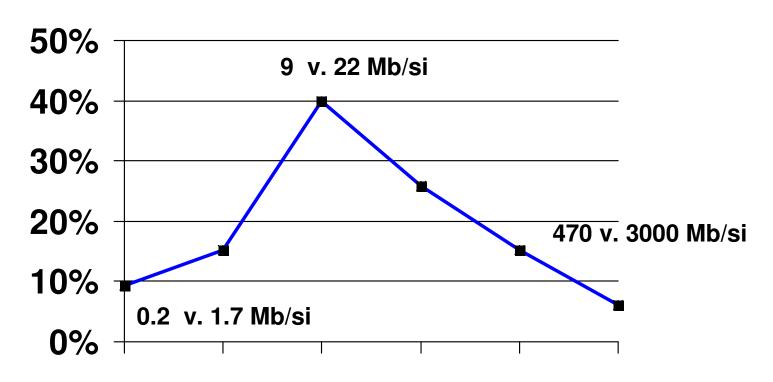
fonte: www.seagate.com

Desempenho de Disco: Exemplo


 Tempo calculado para ler 64 KB (128 setores) no "Barracuda 180" usando os dados de desempenho informados (os setores estão na trilha externa)

$$= 7.4 + 4.2 + 1.0 + 0.1 \text{ ms} = 12.7 \text{ ms}$$

Densidade em Área


- · Os Bits estão armazenados ao longo da trilha
 - Métrica: Bits Per Inch (BPI)
- · Número de trilhas por superfície
 - Métrica: Tracks Per Inch (TPI)
- Projetistas de Discos falam em densidade de bits por área
 - Métrica: Bits Per Square Inch
 - Denominado: Areal Density
 - Areal Density = BPI x TPI

Densidade por Área

Areal Density = BPI x TPI

MBits per square inch: DRAM como % de Disco ao longo do tempo

1974 1980 1986 1992 1998 2000

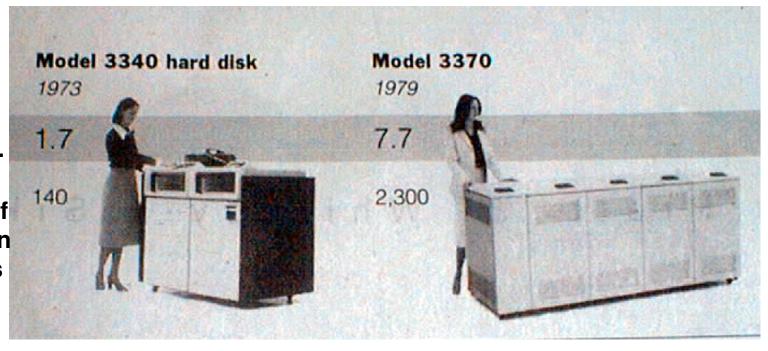
fonte: New York Times, 2/23/98, page C3,

"Makers of disk drives crowd even more data into even smaller spaces"
Paulo C. Centoducatte - IC/Unicamp- 2002s1

©1998 Morgan Kaufmann Publishers

Histórico

- · 1956 IBM Ramac início 1970s Winchester
 - Desenvolvido para computadores mainframe, interface proprietária
 - 27 inch a 14 inch
- · Forma e capacidade orientaram o mercado mais que desempenho
- 1970s: Mainframes ⇒ discos de 14 inch de diâmetro
- 1980s: Minicomputadores, Servidores \Rightarrow 8",5 1/4" de diâmetro
- Fim 1980s/Inicio 1990s: PCs, workstations
 - Começou a se tornar realidade o mercado de discos de alta capacidade
 - » Padrões da industria: SCSI, IPI, IDE
 - Pizzabox PCs ⇒ discos de 3.5 inch de diâmetro
 - Laptops, notebooks \Rightarrow discos de 2.5 inch
 - Palmtops não usam discos

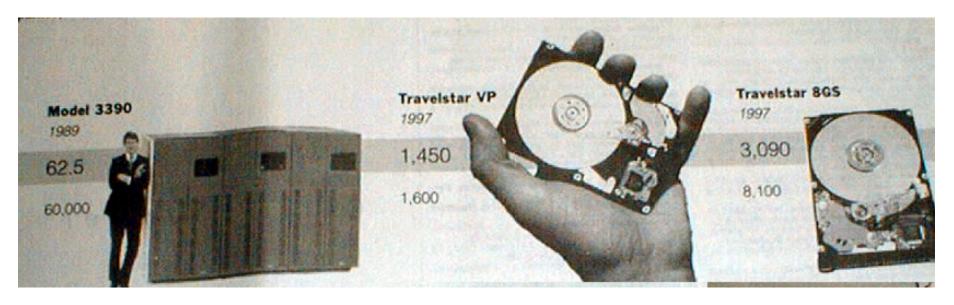

· 2000s:

- 1 inch para mobile devices (câmeras, telefone celular)?
- Seagate: 12GB, 1inch hard drive disk (fev/2006)

História

Data density Mbit/sq. in.

Capacity of Unit Shown Megabytes



1973: 1. 7 Mbit/sq. in 140 MBytes

1979: 7. 7 Mbit/sq. in 2,300 MBytes

fonte: New York Times, 2/23/98, page C3, "Makers of disk drives crowd even mree data into even small

História

1989: 63 Mbit/sq. in **60,000 MBytes** 1997: 1450 Mbit/sq. in 2300 MBytes

1997: 3090 Mbit/sq. in 8100 MBytes

História

disk drive de 1 inch

- · 2000 IBM MicroDrive:
 - $-1.7" \times 1.4" \times 0.2"$
 - 1 GB, 3600 RPM, 5 MB/s, 15 ms seek
 - Digital camera, PalmPC?
- 2006 MicroDrive?
- · 9 GB, 50 MB/s!
 - Assumindo que tenham encontrado um nicho e o produto é um sucesso
 - Assumindo que as tendências de 2000 continuem

	Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdrive DSCM-11000
Disk diameter (inches)	3.5	2.5	1.0
Formatted data capacity (GB)	73.4	32.0	1.0
Cylinders	14,100	21,664	7,167
Disks	12	4	1
Recording Surfaces (Heads)	24	8	2
Bytes per sector	512 to 4096	512	512
Avg Sectors per track (512 byte)	~ 424	~ 360	~ 140
Max. areal density(Gbit/sq.in.)	6.0	14.0	15.2
Paulo C. Centoducatte - IC/Uni	\$828 camp- 2002s1	\$447 ©1998 Morgan Kaufmann Publis	\$435

	Seagate Cheetah	IBM Travelstar	IBM 1GB Microdrive
Rotation speed	ST173404LC Ultra160 SCSI 10033	32GH DJSA - 232 ATA-4 5411	DSCM-11000 3600
(RPM) Avg. seek ms (read/write) Minimum seek ms (read/write) Max. seek ms	5.6/6.2	12.0	12.0
	0.6/0.9	2.5	1.0
	14.0/15.0	23.0	19.0
Data transfer rate MB/second	27 to 40	11 to 21	2.6 to 4.2
Link speed to buffer MB/s	160	67	13
Power idle/operating Watts	16.4 / 23.5	2.0 / 2.6	0.5 / 0.8

Buffer size in MB	Seagate Cheetah ST173404LC Ultra160 SCSI 4.0	IBM Travelstar 32GH DJSA - 232 ATA-4 2.0	IBM 1GB Microdrive DSCM-11000
Size: height x width x depth inches Weight pounds	1.6 x 4.0 x 5.8 2.00		0.123 0.2 x 1.4 x 1.7 0.035
Rated MTTF in powered-on hours % of POH per month	1,200,000 100%	(300,000?) 45%	(20K/5 yr life?) 20%
% of POH seeking, reading, writing	90%	20%	20%

	Seagate Cheetah ST173404LC Ultra160 SCSI	IBM Travelstar 32GH DJSA - 232 ATA-4	IBM 1GB Microdri DSCM-11000
Load/Unload cycles (disk	250 per year	300,000	300,000
powered on/off) Nonrecoverable read errors per bits read	<1 per 10 ¹⁵	$< 1 \text{ per } 10^{13}$	$< 1 \text{ per } 10^{13}$
Seek errors	$<1 \text{ per } 10^7$	not available	not available
Shock tolerance: Operating, Not operating	10 G, 175 G	150 G, 700 G	175 G, 1500 G
Vibration	5-400 Hz @	5-500 Hz @	5-500 Hz @ 1G,
tolerance: Operating, Not	0.5G, 22-400	1.0G, 2.5-500	500 Hz @ 5G
operating (sine swept, 0 to peak)	Hz @ 2.0G	Hz @ 5.0G	

Falácia: Use o Tempo "Average Seek" do Fabricante

- Os Fabricantes necessitam de padrões para comparações ("benchmark")
 - Calculam todos os seeks a partir de todas as trilhas, dividem pelo número de seeks => "average"
- A Média Real deve ser baseada em como os dados são armazenados no disco (definindo os seeks em aplicações reais)
 - Usualmente, a tendência é as trilhas acessadas serem próximas e não randômicas

©1998 Morgan Kaufmann Publishers

- Rule of Thumb: "average seek time" observado na prática é tipicamente cerca de 1/4 a 1/3 do "average seek time" cotado pelo fabricante (i.é., 3X-4X mais rápido)
 - Barracuda 180 X avg. seek: 7.4 ms \Rightarrow 2.5 ms

Falácia: Use o "Transfer Rate" do Fabricante

- Os Fabricantes cotam a velocidade dos dados na superfície do disco ("internal media rate")
- Setores contém campos para deteção e correção de erros (pode ser até 20% do tamanho do setor); número do setor e os dados
- · Existem gaps entre os setores em uma trilha
- Rule of Thumb: Os discos utilizam cerca de 3/4 da "internal media rate" (1.3X mais lento) para dados
- · Por exemplo, Barracuda 180X:

64 a 35 MB/sec para a "internal media rate"

⇒ 47 a 26 MB/sec "external data rate" (74%)

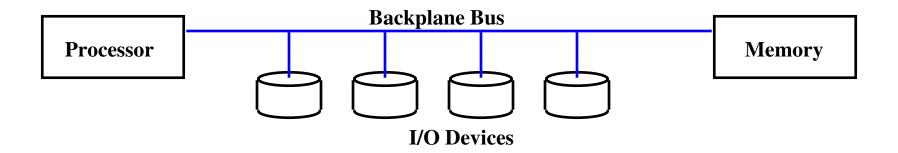
Desempenho de Discos: Exemplo

 Calcular o tempo para ler 64 KB do "Barracuda 180" outra vez, agora use 1/3 do seek time cotado e 3/4 do "internal outer track bandwidth; (Anterior: 12.7 ms)

```
Latência = average seek time + average rotational delay + transfer time + controller overhead
```

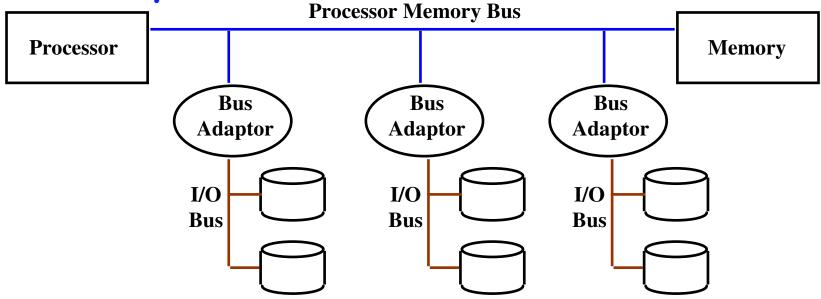
$$= 2.5 + 4.2 + 1.33 + 0.1 \text{ ms} = 8.13 \text{ ms} (64\% \text{ of } 12.7)$$

Barramentos (busses): Conectando Dispositivos de IO à CPU e Memória

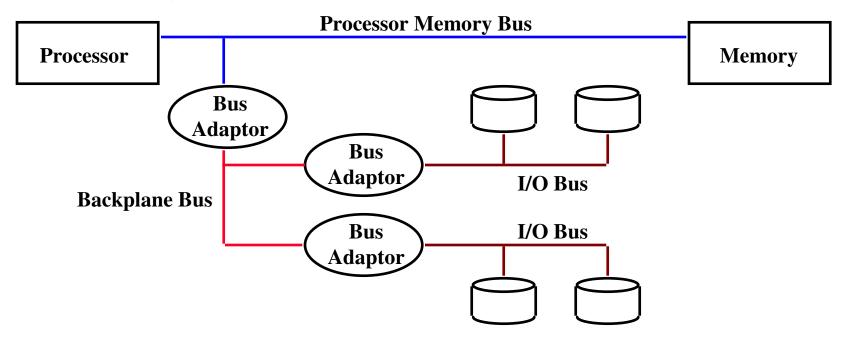

- De uma forma simples, um barramento (bus) é a conexão entre vários chips/componentes em um computador.
- O barramento é responsável por enviar dados/controle entre esses vários componentes.

Barramentos

- · Interconexão = liga as interfaces dos componentes do sistema
- · Interfaces de hw de alta velocidade + protocolo lógico
- · Networks, channels, backplanes

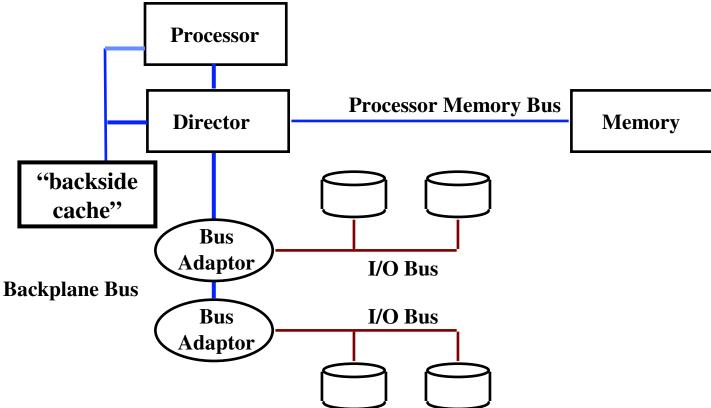

	Network	Channel	Backplane
Conexão	Máquinas	Devices	Chips
Distância	>1000 m	10 - 100 m	0.1 m
Bandwidth	10 - 1000 Mb/s	40 - 1000 Mb/s	320 - 2000+ Mb/s
Latência	alta (1ms)	média	baixa (Nanosecs.)
Confiabilidade	baixa Extensive CRC	média Byte Parity	alta Byte Parity
r	' nessage-based arrow pathways listributed arbitration	•	memory-mapped → wide pathways centralized arbitration

Barramentos Systemas com Um Barramento - Backplane Bus


- Single bus (backplane bus) é usado para:
 - Comunicação entre o Processador e a Memória
 - Comunicação entre dispositivos de I/O e memória
- · Vantagens: Simples e baixo custo
- Desavantagens: lento e o barramento, em geral, torna-se o maior gargalo
- · Exemplo: IBM PC AT

Barramentos Systemas com Dois Barramentos

- I/O buses ligados ao barramento processador-memória via adaptadors:
 - Processor-memory Bus: proritáriamente para o tráfego processadormemória
 - I/O buses: provê slots para expansão para I/O devices
- · Apple Macintosh-II
 - NuBus: Processador, memória, e uns poucos (selecionados) dispositivos de I/O
 - SCCI Bus: para os outros dispositivos de I/O


Barramentos Systemas com Três Barramentos

- Um pequeno backplane bus é ligado ao processor-memory bus
 - Processor-memory bus é dedicado ao tráfego processador-memória
 - I/O buses são conectados ao backplane bus
- · Vantagem: A carga no processor-memory bus é reduzida

Barramentos

North/South Bridge Architectures: Busses Separados

- · Conjunto Separado de pinos para diferentes funções
 - Memory bus; Caches; Graphics bus (para fast frame buffer)
 - I/O busses são conectados ao backplane bus
- · Vantagens:
 - Os barrementos podem operar em diferentes velocidades

Barramentos O que define um Barramento?

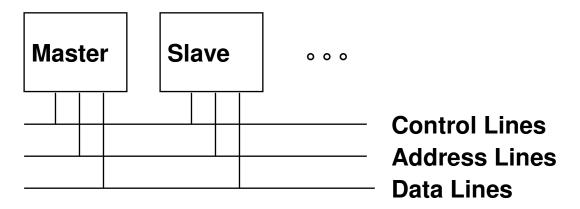
Transaction Protocol

Timing and Signaling Specification

Bunch of Wires

Electrical Specification

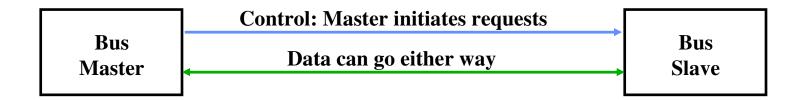
Physical / Mechanical Characteristics
- the connectors


Barramentos Síncronos e Assíncronos

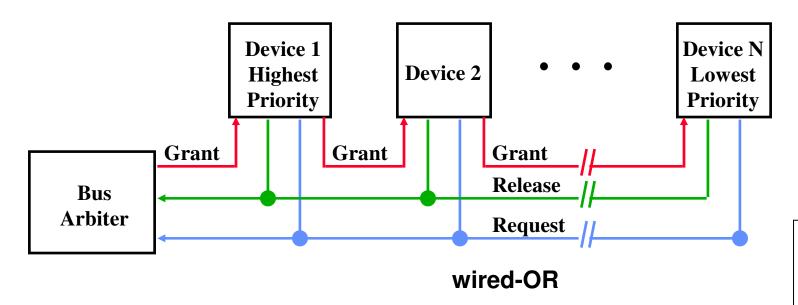
Synchronous Bus:

- Inclui um clock nas linhas de controle
- Protocolo de comunicação fixo baseado no clock
- Vantagens: involve muito menos lógica e pode operar em altas velocidaddes
- Desvantagens:
 - » Todo dispositivo no barramento deveoperar no mesmo clock rate
 - » Para evitar clock skew, os barramentos não podem ser longos se são rápidos

Asynchronous Bus:


- Não usam sinal de clock
- Podem acomodar uma grande variedadde de dispositivos
- Podem serem longos sem se preocupar com clock skew
- Requer um protocolo de handshaking

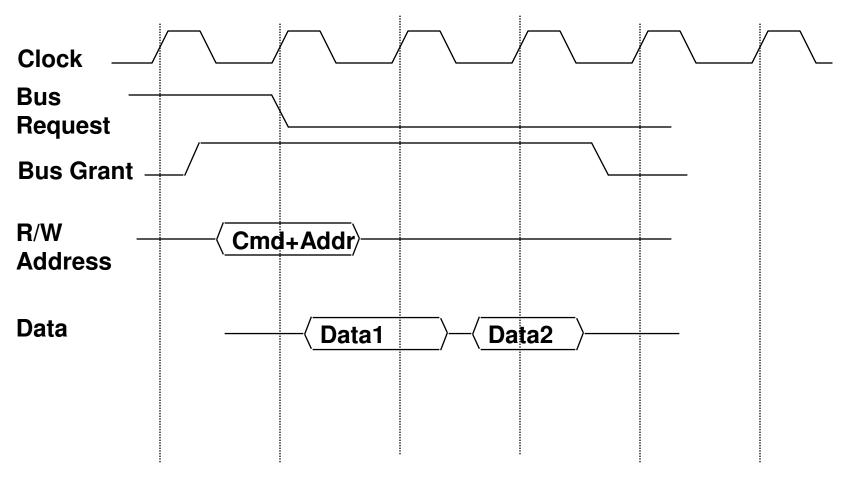
- Bus Master: tem abilidade de controlar o barramento, inicia as transações
- Bus Slave: módulo ativado por uma transação
- Bus Communication Protocol: especificação de uma seqüência de eventos e timing requeridos em uma transferência de informação.
- Asynchronous Bus Transfers: linhas de controle (req, ack) servem para realizar o seqüenciamento.
- Synchronous Bus Transfers: a sequência é relativa a um clock comum.


Barramentos

Barramentos Arbitragem: Obtenção de Acesso

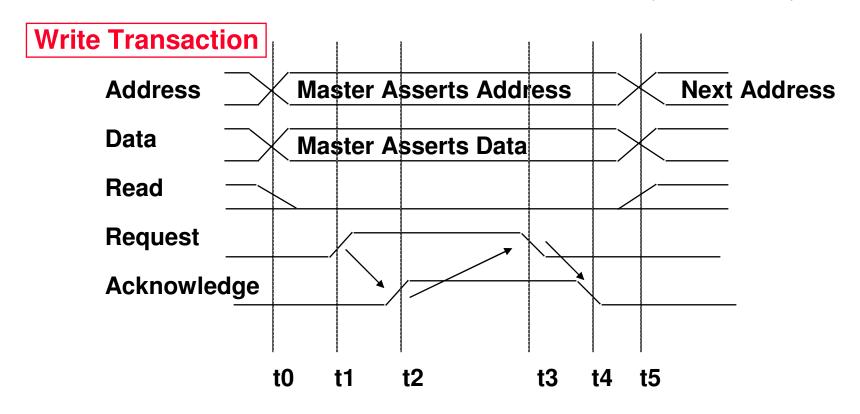
- · Uma das questões mais importantes em bus design:
 - Como o barramento é reservado por um dispositivo que o quer usar?
- O Caos é evitado pelo arranjo master-slave :
 - Somente o bus master pode controlar o acesso ao barramento:
 - » Ele inicia e controla todass as requisições do barramento
 - Um bus slave responde a requisições de leitura e/ou escrita
- Sistema mais simples:
 - O Processador é o único bus master
 - Toda bus requests deve ser controlada pelo processador
 - Maior desvantagem: o processador participa em todass ass transações

Barramentos Arbitragem: Daisy Chain


Ordem:

- 1. Request
- 2. Grant
- 3. Release.

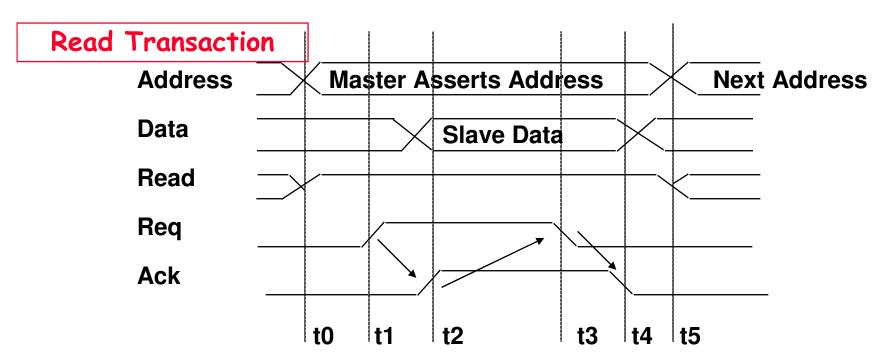
- · Vantagem: simples
- Desvantagens:
 - Não pode garantir justiça:
 Um dispositivo de baixa prioridade pode ficar bloqueado indefinidamente
 - O uso do sinal daisy chain grant também limita a velocidade do barramento


©1998 Morgan Kaufmann Publishers

Barramentos Um Protocolo Sícrono Simples

- · Os memory busses são mais complexos que isso
 - memória (slave) pode levar um certo tempo para responder
 - Pode necessitar controlar o data rate

Barramentos Protocolo Handshake Assícrono (4-fases)


t0: Master tem o controle e asserts o endereço, direção (not read), dado. Espera uma quantidade pré-definida de tempo para o Slave decodificar o alvo

t1: Master asserts a request line

t2: Slave asserts o ack, indicando que recebeu o dado

t3: Master libera o request

Barramentos Protocolo Handshake Assícrono (4-fases)

t0: Master obtém o controle e asserts o endereço e a direção. Espera uma quantidade pré-definida de tempo para o Slave decodificar o alvo

t1: Master asserts a request line

t2: Slave asserts o ack, indicando que está pronto para transmitir o dado

t3: Master libera o req, o dado é recebido

t4: Slave libera o ack

Barramentos Exemplo: PCI Read/Write Transaction

- Todos os Sinais são amostrados na borda de subida (rising edge)
- · Arbitragem Centralizada e Paralela
 - Sobreposição com transações prévias
- · Todas as transferências são Burst (ilimitada)
- Address phase tem início pelo asserting FRAME#
- Próximo ciclo asserts cmd e address
- · A transferência de Dados ocorre quando
 - IRDY# asserted pelo master quando pronto para transferir dados
 - TRDY# asserted pelo target quando pronto para transferir dados
 - Transfere quando ambos asserted e rising edge

Barramentos Exemplo: PCI Read Transaction

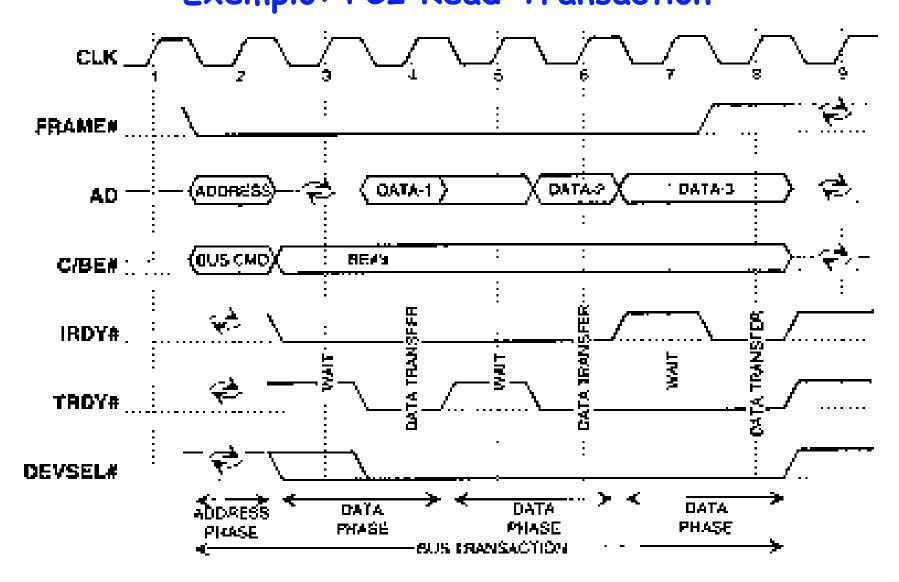
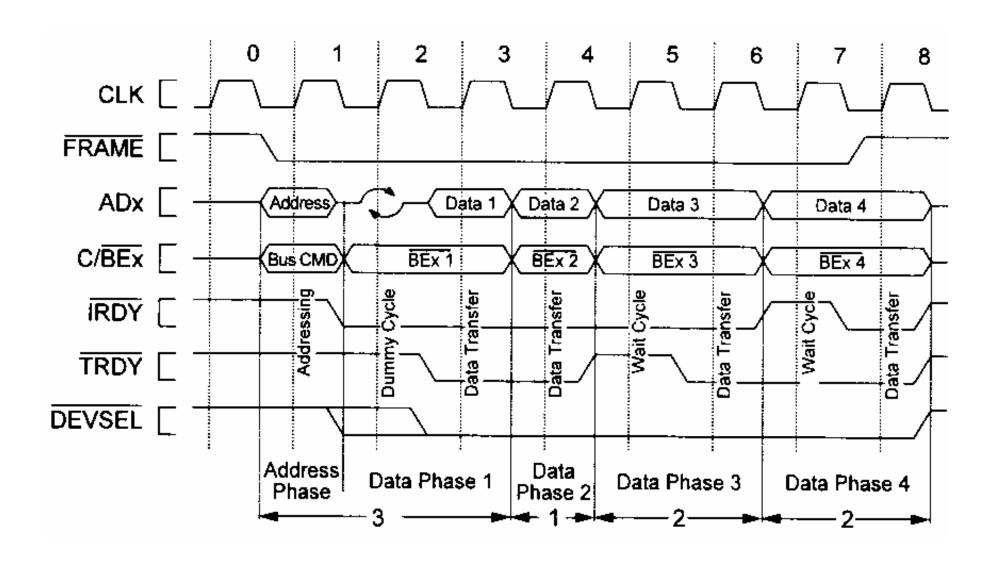



Figure 3-1: Basic Read Operation

©1998 Morgan Kaufmann Publishers

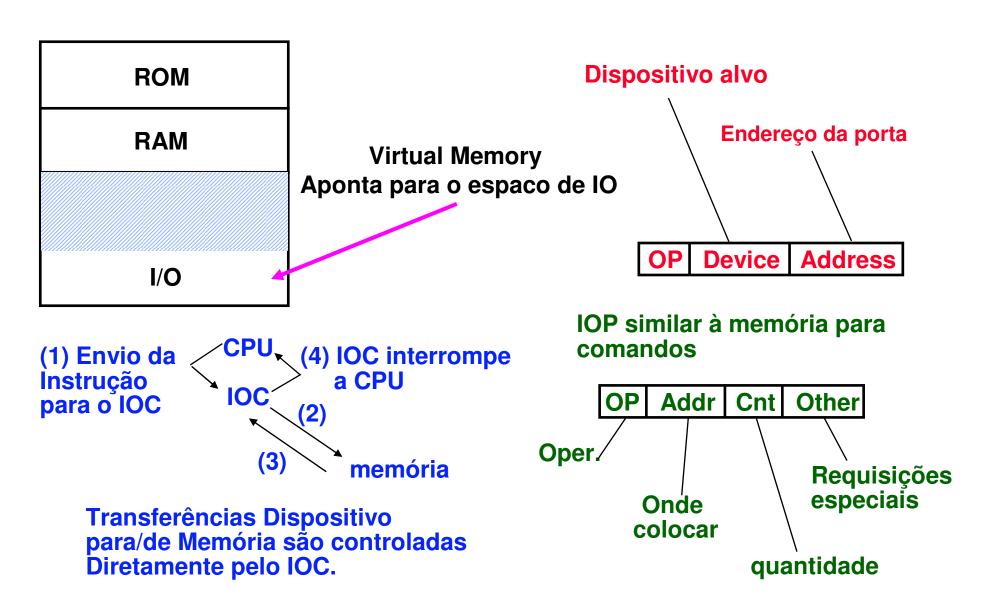
The PCI read transfer burst

Interface: Processador & I/O

- A interface consiste em informar ao dispositivo como e qual operação será realizada:
 - Read ou Write
 - Tamanho da transferência
 - Localização no dispositivo
 - Localização na memória
- Acionar (triggering) o dispositivo para iniciar a operação
- Quando terminar a operação, o dispositivo interrompe o processador.

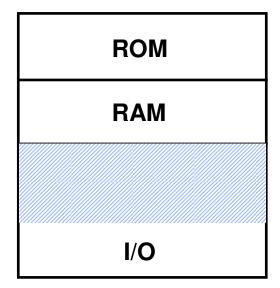
Interface: Processador & I/O

Dois tipos de mapeamento:

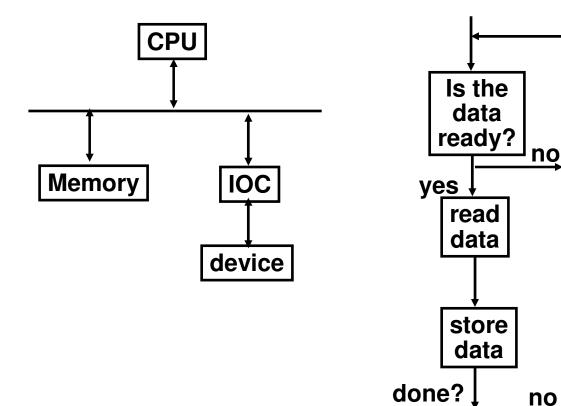

Mapeamento em I/O

- Instruções de I/O especificas
- Ex.1: LDD RO,D,P <-- Load RO com o conteúdo do dispositivo D, porta P
- Ex.2: IN AX,0f1
 OUT AX,0f2

· Mapeamento em Memória


- Não existem instruções especiais de I/O
- Ex.1: LD RO, Mem1 <-- Load RO com o conteúdo do dispositivo D, porta P.

Interface: Processador & I/O

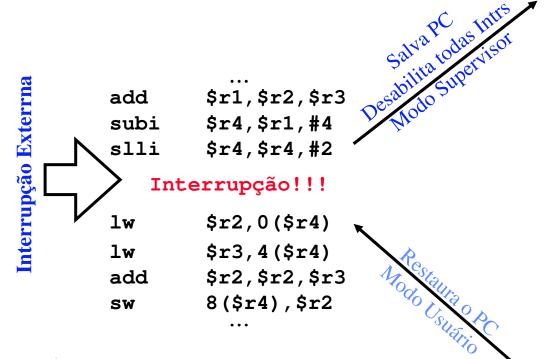

Memory Mapped I/O

Alguns endereços físicos são usados aparte. Não existe memória real nesses endereços. No lugar da memória, quando o processador acessa esses endereços, ele envia comandos ao processador de IO.

Métodos de Transferências:

Programmed I/O (Polling)

busy wait loop (Não é eficiente)


yes

Métodos de Transferências: Interrupção

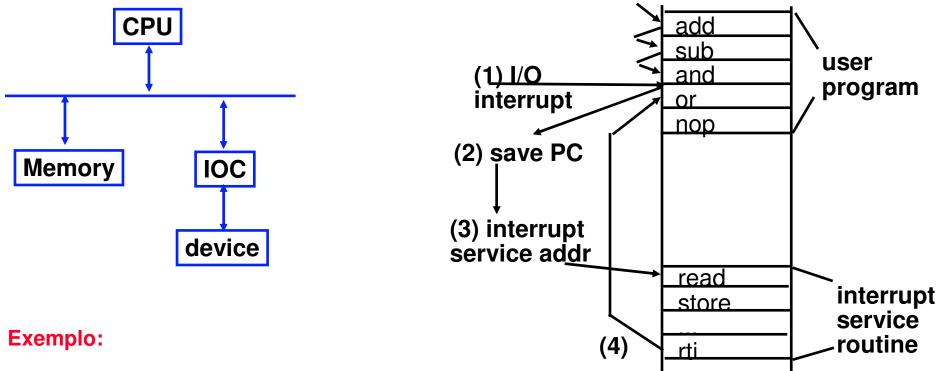
- Uma interrupção de I/O é similar à uma exceção a menos de:
 - Uma interrupção de I/O é assíncrona
- Uma interrupção de I/O é assíncrona com respeito à execução das instruções:
 - Interrupção de I/O não é associada a alguma instrução
 - Interrupção de I/O não impede que qualquer instrução seja completada
 - » Deve haver um ponto conveniente para aceitar uma interrupção
- · Interrupção de I/O é mais complexa que exceção:
 - Necessita identificar o dispositivo que gerou o pedido
 - Pedidos diferentes de interrupções podem ter diferentes prioridades :
 - » Pedidos de Interrupções precisam serem priorizados

Métodos de Transferências:

Interrupção

Habilita as Intrps de maior prioridadde Sava os registradores

lw \$r1,20(\$r0)
lw \$r2,0(\$r1)
addi \$r3,\$r0,#5
sw \$r3,0(\$r1)


Restaura os registradores Desabilita as Intrps RTI

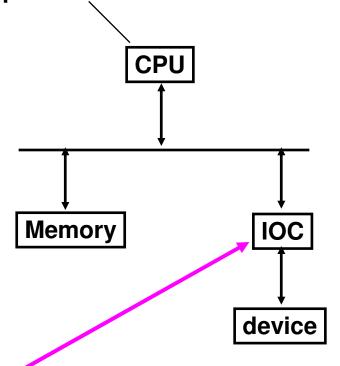
Vantagem:

- O programa do usuário em progresso é o único a ser parado
- · Desvantagem, é necessário hw especial para:
 - Causar uma interrupção (I/O device)
 - Detetar uma interrupção (processador)
 - Savar o estado para reassumir a execução após a interrupção

Métodos de Transferências:

Interrupt Driven Data Transfer

1000 transfrs de 1000 bytes cada:

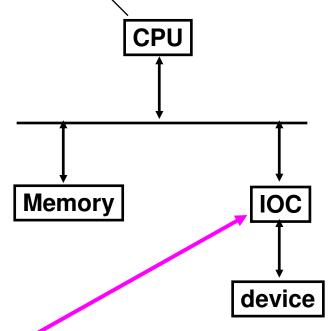

1000 interrupções @ 2 μseg por interrupções 1000 transfrs por interp @ 98 μseg cada = 0.1 CPU seg

Taxa Transf. = 10 MBytes/sec => 0.1 x 10⁻⁶ seg/byte => 0.1 μ seg/byte => 1000 bytes = 100 μ seg 1000 transfrs x 100 μ secs = 100 ms = 0.1 CPU segs

memory

Métodos de Transferências: DMA - Direct Memory Access

CPU envia Endereço de início, Direção e Tamanho da transferência para o IOC. Então envia o "start".


IOC provê sinais de Handshake para o Controlador do Periférico e Endereços e sinais de Handshake para a Memória.

Direct Memory Access (DMA):

- Externo à CPU
- Age como um Master no barramento
- Transfere blocos de dados para(da) a memória sem intervenção da CPU

Métodos de Transferências: DMA - Direct Memory Access

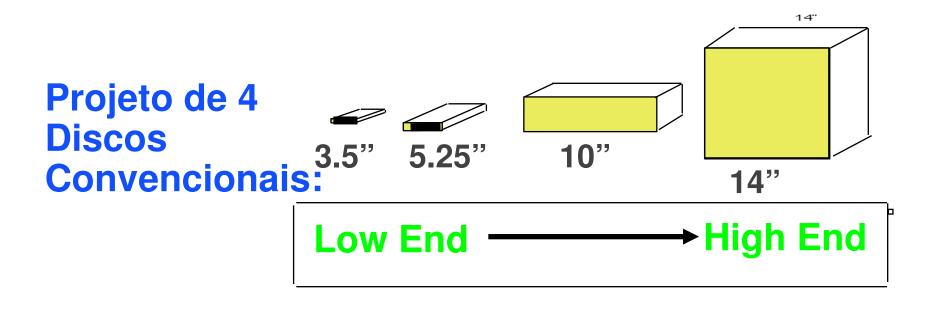
CPU envia Endereço de início, Direção e Tamanho da Transferência para o IOC. Então envia o "start".

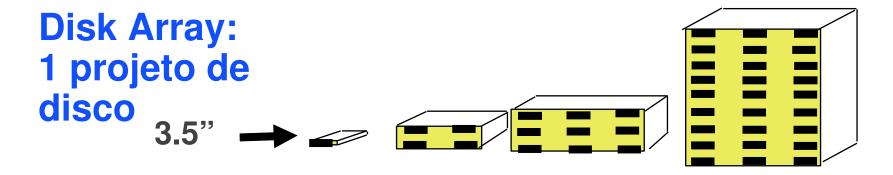
IOC provê sinais de Handshake para o Controlador do Periférico e Endereços e sinais de Handshake para a Memória. Tempo para transfr. 1000 de 1000 bytes cada:

1 DMA següência de controle @ 50 µsec

1 interrupção @ 2 μsec

1 seq. do serviço de interrupção @ 48 µsec


.0001 segundos => tempo de CPU **ROM** Memory Mapped I/O RAM **Peripherals IO Buffers** n


Paulo C. Centoducatte - IC/Unicamp- 2002s1

©1998 Morgan Kaufmann Publishers

MC542 62

Uso de Arrays de Pequenos Discos?

Uso de um pequeno no. de discos grandes vs uso de um no. grande de pequenos discos

	IBM 3390K	IBM 3.5" 0061	x70
Capacidade	20 GBytes	320 MBytes	23 GBytes
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft. 9x
Power	3 KW	11 W	1 KW 3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s 8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s 6X
MTTF	250 KHrs	50 KHrs	??? Hrs
Custo	\$250K	\$2K	\$150K

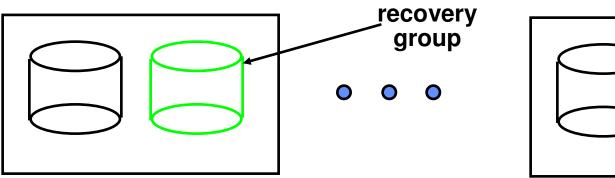
Disk Arrays tem potencial para grandes quantidades de dados e I/O rates, alto MB por volume, alto MB por KW, e confiabilidade?

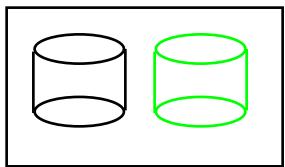
Array: Confiabilidade

"Reliability" de N discos = "Reliability" de 1 Disco ÷ N


 $50,000 \text{ Horas} \div 70 \text{ discos} = 700 \text{ horas}$

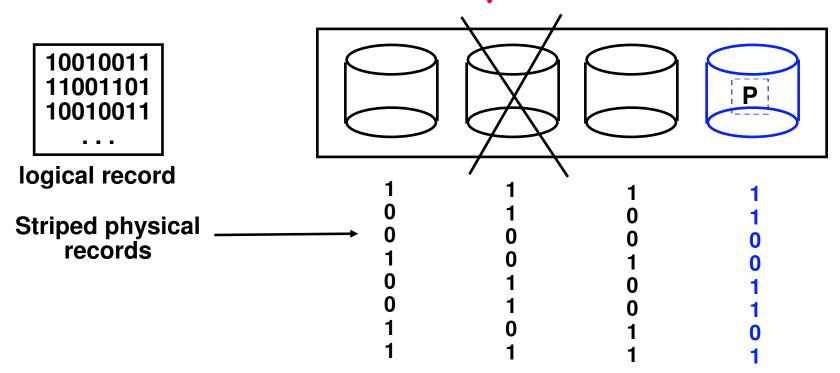
Disk system MTTF: cai de 6 anos para 1 mês!


Arrays (sem redundâncias) são pouco confiáveis!


Redundant Arrays com Discos Baratos

- Os Arquivos divididos e armazenados em múltiplos discos
- · Redundância provê alta disponibilidade de dados
 - <u>Disponibilidade</u>: o serviço continua sendo provido mesmo que algum componente falha
- · Discos ainda podem falhar
- O Conteúdo pode ser reconstruído a partir dos dados armazenados de forma redundante no array
 - ⇒ Penalidade na capacidade para armazenamento redundante
 - ⇒ Penalidadde no Bandwidth para atualizar dados redundantes

Redundant Arrays of Disks RAID 1: Disk Mirroring/Shadowing



- Cada disco é totalmente duplicado em seu "shadow" Proporciona alta disponibilidade
- Bandwidth é sacrificado na escrita: Escrita lógica = duas escritas físicas
- Leituras podem ser otimizadas
- Solução mais cara: 100% de overhead na capacidade

High I/O rate , ambientes com alta disponibilidade

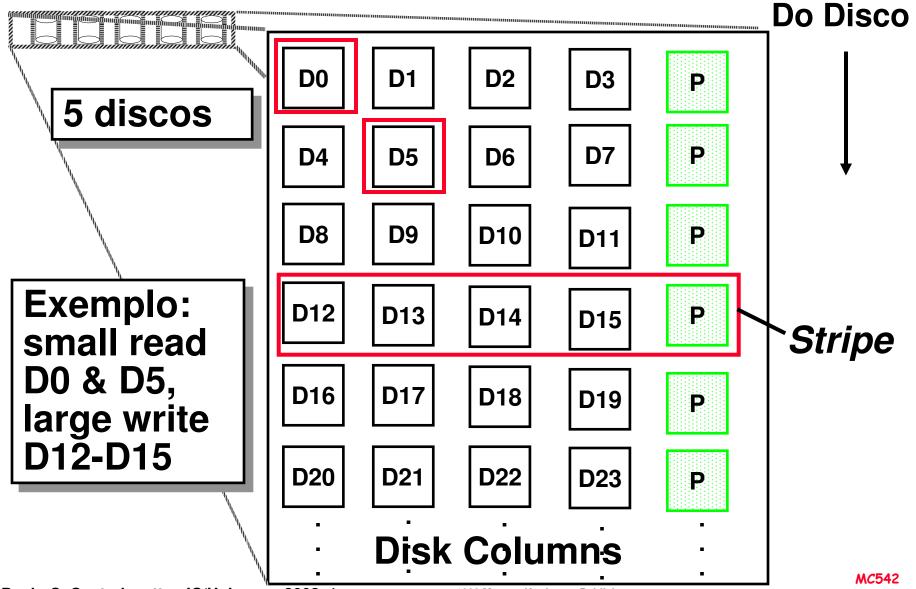
Redundant Array of Inexpensive Disks

Redundant Arrays of Disks RAID 3: Parity Disk

 Paridade calculada para o grupo de recuperação, protegendo contra falhas nos discos

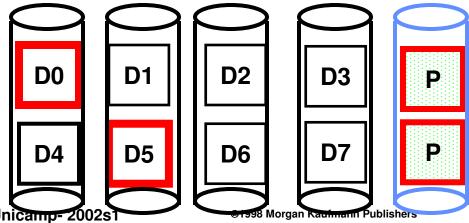
33% de custo de capacidade para a paridade nesta configuração arrays maiores reduzem o custo de capacidade, decresce a disponibilidade esperada, aumenta o tempo de reconstrução

Eixos sincronizados

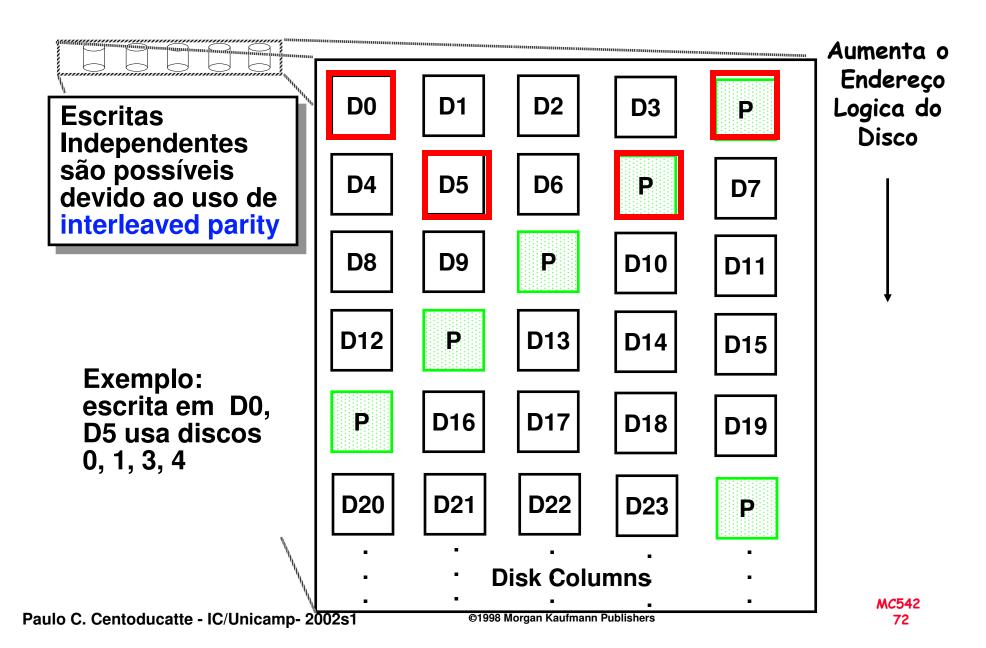

Aplicações de alto bandwidth: Científicas, Processamento de Imagem

RAID 4 Inspiração:

- · RAID 3 utiliza (confia no) o disco de paridade para recuperar erros na leitura
- Porém, todos setores já possuem um campo para deteção de erros
- Utilizar o campo de deteção de erros para capturar erros na leitura, não o disco de paridade
- Permitir leituras independentes simultâneas em discos diferentes

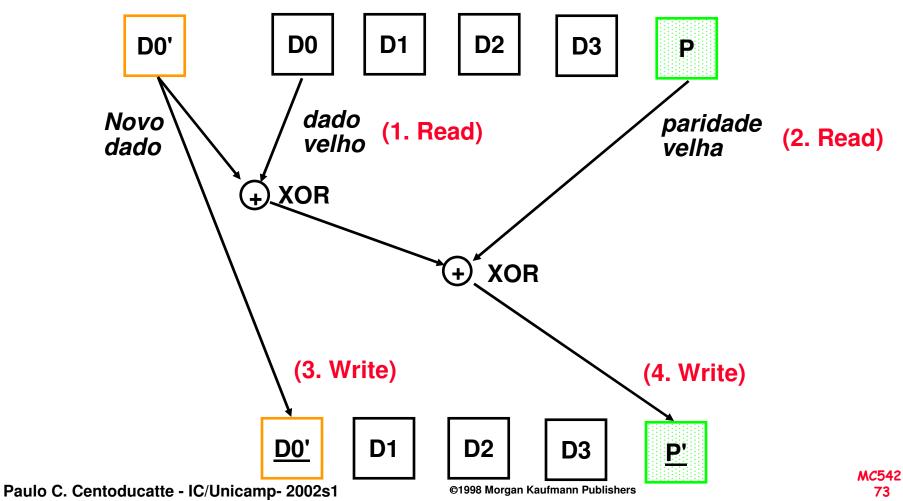

Redundant Arrays of Disks RAID 4: High I/O Rate Parity

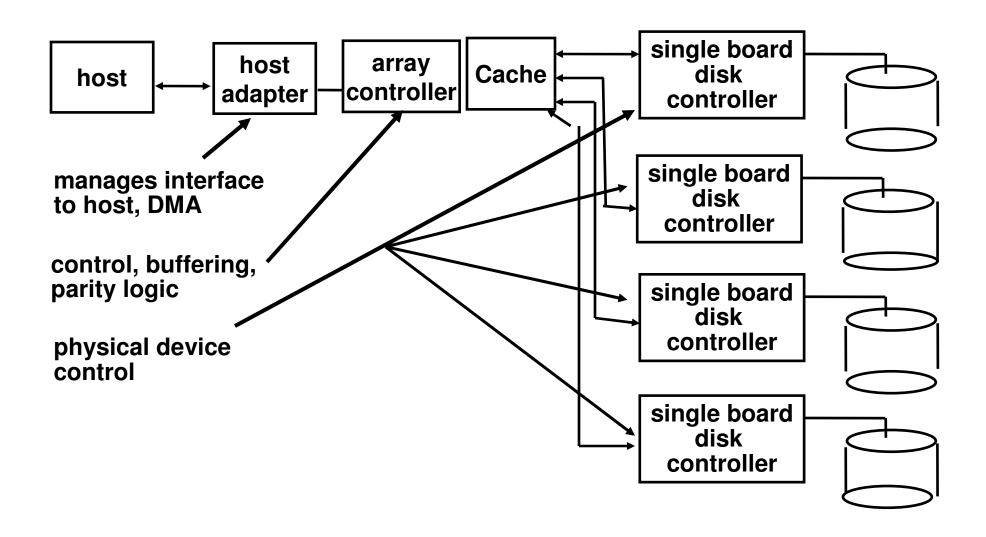
Aumenta o
Endereço
Logical



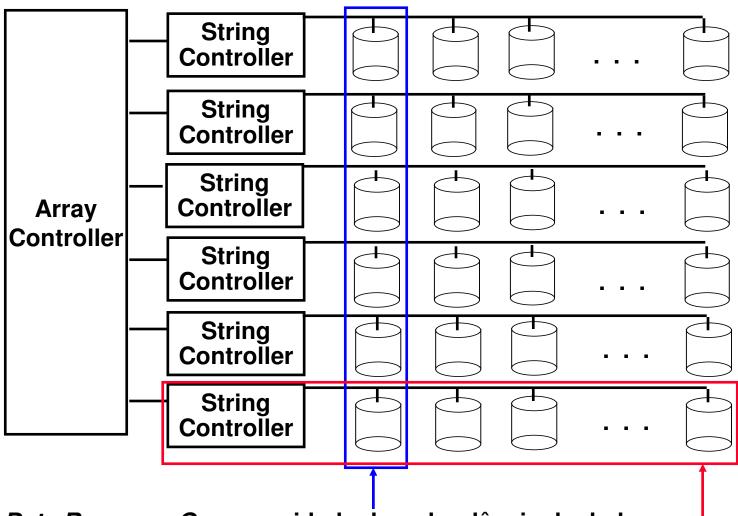
RAID 5: Inspiração

- · RAID 4 trabalha bem para leituras pequenas
- · Pequenas escritas (escritas em um disco):
 - Opção 1: lêr outro disco de dados, criar nova soma e escrever no Disco de Paridade
 - Opção 2: uma vez que P tem uma soma antiga, compar dado velho com daddo novo, adicionar somente a diferrença em P
- Pequenas escritas são limitadas pelo Disco de Paridade: escrever em DO, D5 em ambos os casos também se escreve no disco P

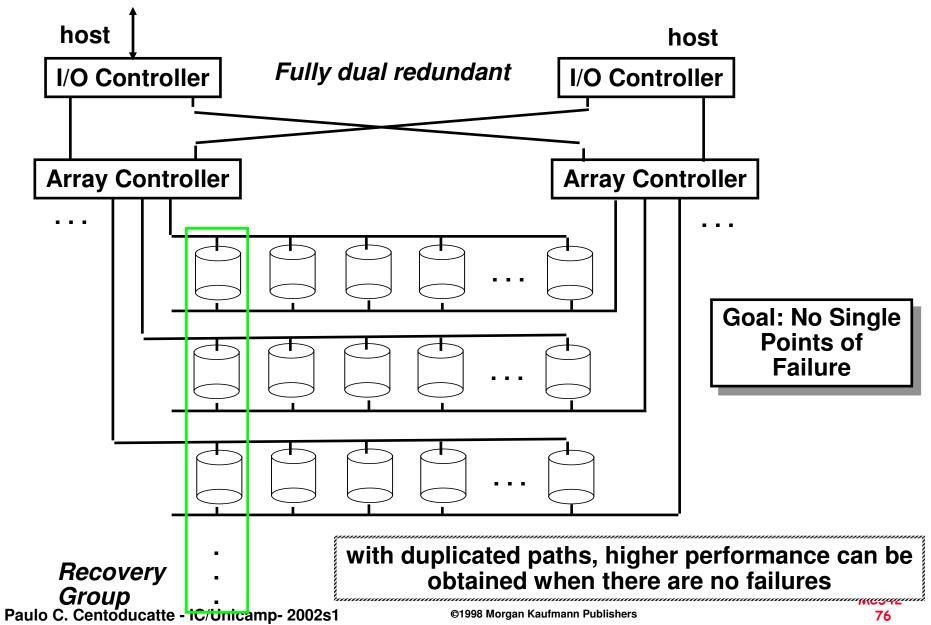

Redundant Arrays of Inexpensive Disks RAID 5: High I/O Rate Interleaved Parity


Problemas com Disk Arrays: Esccritas Pequenas

RAID-5: Algoritmo para escritas Pequenas


1 Escrita Lógica = 2 Leituras Físicas + 2 Escritas Físicas

RAID Organização dos Subsistemas


Disponibilidade do Sistema RAIDs Ortogonais

Data Recovery Group: unidade de redundância de dados

Redundant Support Components: fans, power supplies, controller, cables

Disponibilidade do Sistema

