

Distances Correlation for Re-Ranking in Content-Based Image Retrieval

Daniel Carlos Guimarães Pedronette and Ricardo da S. Torres

RECOD Lab - Institute of Computing (IC) University of Campinas (UNICAMP) dcarlos@ic.unicamp.br, rtorres@ic.unicamp.br

Outline

- Distance Optimization Algorithm
 - The Algorithm
 - Clustering Approach
- Distances Correlation
 - Bidimensional Space
 - Distances Updating
- Evaluation
 - Shape, Color, Texture
- Conclusions

Distance Optimization Algorithm

- Basic Idea: Similarity of Ranked lists
 - If two images are similar, their ranked lists should be similar too.
- Distance Optimization Algorithm
 - Create clusters:
 - by exploring information of ranked lists
 - Update distances:
 - distances among images of a same cluster are decreased

Distance Optimization Algorithm

- Convergence
 - Process (make clusters and update distances) is repeated until the quality of clusters does not improve.
- Cohesion for measuring quality of ranked lists
 - Quantity of references among ranked lists of images on the same cluster (references in first positions of ranked lists have greater weights)

Distance Optimization Algorithm

Algorithm 1 Distance Optimization Algorithm [7]

Require: Distance matrix W

Ensure: Optimized distance matrix W_o

- 1: $lastCohesion \leftarrow 0$
- 2: $currentCohesion \leftarrow computeCohesion(W)$
- 3: while curCohesion > lastCohesion do
- 4: $Cls \leftarrow createClusters(W)$
- 5: $W \leftarrow updateDistances(W, Cls)$
- 6: $lastCohesion \leftarrow currentCohesion$
- 7: $currentCohesion \leftarrow computeCohesion(W)$
- 8: end while
- 9: $W_o \leftarrow W$

Clustering Approach

- Graph-based clustering using ranked lists
 - Two images are assigned to the same cluster if they are cluster-similar
 - Basically, two images are cluster-similar if they refer to each other at the first positions of their ranked lists

Distances Updating

- Considering only clusters information:
 - If two images were assigned to the same cluster, the distance between them is decreased
 - Multiplied by a constant $\lambda < 1$
- Ignoring other information encoded in the relations among images
- A new approach to update distances in an adaptative way
 - Distances Correlation

Distances Correlation

- Bidimensional Space
 - Image space R^2 defined by the image collection
 - $C = \{img_1, img_2, ..., img_n\}$ and a distance function
 - $\rho: C \times C \to R$, where R denotes real numbers.
 - Given two reference images img_i and img_j:
 - X axis represents the distances of collection images with regard to img_{i.}
 - Y axis represents the distances of collection images with regard to $\text{img}_{\text{j}_{\text{-}}}$

SEGRAPIZO10 GRAMADO.RS.BRAZIL

Distances Correlation

Distances Correlation

Distances Correlation

- Statistical measures to characterize the images distribution:
 - Magnitude of a relationship among variables
 - Pearson's Correlation Coefficient:

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

– KNNs of img_i and img_j for composition of X and Y

Distances Correlation

- Pearson's Correlation Coefficient:
 - γ in the interval [-1,1];
 - \overline{r} in the interval [0,1];

1: Perfect correlation

- Central Idea:
 - Using cluster and correlation information for distances updating

c . *K*

 $N >> (c \cdot K)$

Distances Updating

Ranked list of Image i

1) Seg₁: Same Cluster
2) Seg₂: Correlation Update
3) Seg₃: Penalty Update

New Distances Computation: $\widehat{ ho}(i,j)$

- $Seg_1: \widehat{\rho}(i,j) = \rho(i,j) \cdot \lambda$
- Seg₂: $\widehat{\rho}(i,j) = \rho(i,j) \cdot (1 + [(1-\lambda) \cdot (1-\overline{r})])$

•
$$Seg_3: \hat{\rho}(i,j) = \rho(i,j) \cdot [1 + (1-\lambda)]$$

Experimental Analysis

- Impact of algorithm on Distances
 - (considering non-similar reference images)

Evaluation

• Shape

- Shape Descriptors:
 - CFD[7], IDSC[14], BAS[16], SS[15]
- MPEG-7 Dataset (70 shapes, 20 each class)

- <u>First row:</u> retrieval results for the CFD Shape Descriptor[7] (first image as a query).
- <u>Second row:</u> retrieval results for the same shape descriptor after **distance optimization**.

Evaluation

Color

- Color Descriptors:
 - ACC[17], BIC[18],
- Soccer Dataset [22]
 - 7 soccer teams, containing 40 images per class

Evaluation

Texture

- Texture Descriptors
 - CCOM[19], LAS[20]
- Brodatz Dataset [21]
 - 111 different texture classes

Experimental Results

• Example of *Precision x Recall* for Texture Descriptors:

Experimental Results

• General CBIR tasks:

Image Descriptor	Туре	Dataset	Score [%] (MAP)	Distance Optimization + Update Correlation	Gain
SS [15]	Shape Descriptor	MPEG-7	37.67%	46.53%	+23.52%
BAS [16]	Shape Descriptor	MPEG-7	71.52%	81.05%	+13.32%
IDSC+DP [14]	Shape Descriptor	MPEG-7	81.70%	86.94%	+6.41%
CFD [7]	Shape Descriptor	MPEG-7	80.71%	91.79%	+13.73%
ACC [17]	Color Descriptor	Soccer Dataset	37.23%	42.46%	+14.05%
BIC [18]	Color Descriptor	Soccer Dataset	39.26 %	38.16%	-2.80%
ССОМ [19]	Texture Descriptor	Brodatz	57.57%	59.27%	+2.95%
LAS [20]	Texture Descriptor	Brodatz	75.15%	80.36%	+6.93%

Experimental Results

 Post-processing methods comparison on MPEG-7 (Recall@40)

Algorithm	Descriptor	Score	Gain
CFD [7]	-	84.43%	-
IDSC+DP [14]	-	85.40%	-
Graph Transduction [6]	IDSC+DP	91.00%	+6.56%
Distance Optmization [7]	CFD	92.56%	+9.63%
Constrained Diffusion Process [5]	IDSC+DP	93.32%	+9.27%
Mutual kNN Graph [4]	IDSC+DP	93.40%	+9.37%
DistOpt+UpCor	CFD	93.62%	+10.88%

Conclusions

- New concept of 'Distances Correlation'
- New approach for a Re-Ranking method using this concept
- Experimental Evaluation
 - Shape, Color, Texture
 - Comparison to other post-processing methods
- Future Work
 - Application of method to other information retrieval tasks

Distances Correlation for Re-Ranking in Content-Based Image Retrieval

Daniel Carlos Guimarães Pedronette and Ricardo da S. Torres

RECOD Lab - Institute of Computing (IC) University of Campinas (UNICAMP) dcarlos@ic.unicamp.br, rtorres@ic.unicamp.br

References

- [1] R. da S. Torres and A. X. Falcao, "Content-Based Image Retrieval: Theory and Applications," Revista de Informática Teórica e Aplicada, vol. 13, no. 2, pp. 161-185, 2006.
- [2] P. F. Felzenszwalb and J. D. Schwartz, "Hierarchical matching of deformable shapes," Computer Vision and Pattern Recognition(CVPR), pp. 1-8, 2007.
- [3] L. Lin, X. Liu, and S.-C. Zhu, "Layered graph matching with composite cluster sampling," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 99, pp. 1426-1442, 2009.
- [4] H. B. Peter Kontschieder, Michael Donoser, "Beyond pairwise shape similarity analysis," Asian Conference on Computer Vision (ACCV), pp. 655-666, 2009.
- [5] X. Yang, S. Koknar-Tezel, and L. J. Latecki, "Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval." in Computer Vision and Pattern Recognition (CVPR). IEEE, 2009, pp. 357-364.
- [6] X. Yang, X. Bai, L. J. Latecki, and Z. Tu, "Improving shape retrieval by learning graph transduction," European Conference on Computer Vision (ECCV), vol. 5305, pp. 788-801, 2008.
- [7] D. C. G. Pedronette and R. da S. Torres, "Shape retrieval using contour features and distance optmization," in International Conference on Computer Vision Theory and Applications (VISAPP), vol. 1, 2010, pp. 197 202.
- [8] G. Park, Y. Baek, and H.-K. Lee, "Re-ranking algorithm using post-retrieval clustering for content-based image retrieval," Information Processing and Management, vol. 41, no. 2, pp. 177 - 194, 2005.
- [9] L. Yang, D. Ji, G. Zhou, Y. Nie, and G. Xiao, "Document re-ranking using cluster validation and label propagation," in CIKM '06: Proceedings of the 15th ACM international conference on Information and knowledge management, 2006, pp. 690-697.
- [10] X. Liu and W. B. Croft, "Cluster-based retrieval using language models," in SIGIR '04: Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, 2004, pp. 186-193.

- [11] X. Zhu, "Semi-supervised learning with graphs," Ph.D. dissertation, Pittsburgh, PA, USA, 2005, chair-Lafferty, John and Chair-Rosenfeld, Ronald.
- [12] L. J. Latecki, R. Lakmper, and U. Eckhardt, "Shape descriptors for non-rigid shapes with a single closed contour," in Proc. IEEE Conference Computer Vision and Pattern Recognition, 2000, pp. 424-429.
- [13] H. Xiong, S. Shekhar, P.-N. Tan, and V. Kumar, "Exploiting a support-based upper bound of pearson's correlation coefficient
- for efficiently identifying strongly correlated pairs," in KDD '04: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004, pp. 334-343.
- [14] H. Ling and D. W. Jacobs, "Shape classification using the inner-distance," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 2, pp. 286-299, 2007.
- [15] R. da S. Torres and A. X. Falcao, "Contour Salience Descriptors for Effective Image Retrieval and Analysis," Image and

Vision Computing, vol. 25, no. 1, pp. 3-13, January 2007.

[16] N. Arica and F. T. Y. Vural, "Bas: a perceptual shape descriptor based on the beam angle statistics," Pattern Recogn. Lett.,

vol. 24, no. 9-10, pp. 1627-1639, 2003.

- [17] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, "Image indexing using color correlograms," in CVPR '97:
- Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR '97), 1997, p. 762.
- [18] R. O. Stehling, M. A. Nascimento, and A. X. Falcao, "A compact and efficient image retrieval approach based on border/interior pixel classification," in CIKM '02: Proceedings of the eleventh international conference on Information and knowledge management, 2002, pp. 102-109.
- [19] V. Kovalev and S. Volmer, "Color co-occurence descriptors for querying-by-example," in MMM '98: Proceedings of the 1998 Conference on MultiMedia Modeling, 1998, p. 32.
- [20] B. Tao and B. W. Dickinson, "Texture recognition and image retrieval using gradient indexing," Journal of Visual Communication

and Image Representation, vol. 11, no. 3, pp. 327 - 342, 2000.

- [21] P. Brodatz, Textures: A Photographic Album for Artists and Designers. Dover, 1966.
- [22] J. van de Weijer and C. Schmid, "Coloring local feature extraction," in European Conference on Computer Vision, vol. Part II. Springer, 2006, pp. 334-348

Cohesion Computation

Let C = {img₁, img₂, ..., img_n} be a collection (or a cluster) of images, cohesion is defined as follows:

$$cohesion(C) = \frac{\sum_{j=0}^{size} \sum_{i=0}^{top_n} (top_n - i) \times (top_n/c) \times S(i)}{size^2}$$

where S is a function S: $i \rightarrow \{0,1\}$, that assumes value 1 if C contains the image at position i of ranked list and assumes value 0, otherwise.