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Distance Optimization Algorithm

• Basic Idea: Similarity of Ranked lists• Basic Idea: Similarity of Ranked lists

– If two images are similar, their ranked lists should be 
similar too.

• Distance Optimization Algorithm

– Create clusters:

• by exploring information of ranked lists

– Update distances: 

• distances among images of a same cluster are decreased



Distance Optimization Algorithm

• Convergence• Convergence

– Process (make clusters and update distances) is 
repeated until the quality of clusters does not 
improve.

• Cohesion for measuring quality of ranked lists

– Quantity of references among ranked lists of images on – Quantity of references among ranked lists of images on 
the same cluster (references in first positions of 
ranked lists have greater weights)



Distance Optimization Algorithm



Clustering Approach
• Graph-based clustering using ranked lists

Two images are assigned to the same cluster if they – Two images are assigned to the same cluster if they 
are cluster-similar

– Basically, two images are cluster-similar if they refer 
to each other at the first positions of their ranked lists



Distances Updating

• Considering only clusters information:• Considering only clusters information:

– If two images were assigned to the same cluster, the 
distance between them is decreased 

• Multiplied by a constant λ < 1

• Ignoring other information encoded in the 
relations among imagesrelations among images

• A new approach to update distances in an 
adaptative way

– Distances Correlation



Distances Correlation

• Bidimensional Space• Bidimensional Space

– Image space R2 defined by the image collection 

C={img1, img2, …,  imgn} and a distance function 

ρ : C x C → R, where R denotes real numbers. 

– Given two reference images imgi and imgj: 

• X axis represents the distances of collection images with 
regard to imgi.

• Y axis represents the distances of collection images with 
regard to imgj.



Distances Correlation



Distances Correlation



Distances Correlation

• Statistical measures to characterize the images • Statistical measures to characterize the images 
distribution:

– Magnitude of a relationship among variables

– Pearson’s Correlation Coefficient:

– KNNs of imgi and imgj for composition of X and Y



Distances Correlation

– Pearson’s Correlation Coefficient:

• r in the interval [-1,1];       

• in the interval [0,1];

– Pearson’s Correlation Coefficient:

1: Perfect correlation

– Central Idea:– Central Idea:

• Using cluster and correlation information for distances 
updating



Distances Updating

New Distances Computation: New Distances Computation: 



Experimental Analysis

• Impact of algorithm on Distances • Impact of algorithm on Distances 

– (considering non-similar reference images)



Evaluation
• Shape

Shape Descriptors:– Shape Descriptors:

• CFD[7], IDSC[14], BAS[16], SS[15]

– MPEG-7 Dataset (70 shapes, 20 each class)

– First row: retrieval results for the CFD Shape Descriptor[7] 
(first image as a query). 

– Second row: retrieval results for the same shape descriptor 
after distance optimization.



Evaluation

• Color• Color

– Color Descriptors:

• ACC[17] , BIC[18],  

– Soccer Dataset [22]

• 7 soccer teams, containing 40 images per class



Evaluation

• Texture• Texture

– Texture Descriptors

• CCOM[19], LAS[20]

– Brodatz Dataset [21]

• 111 different texture classes



Experimental Results

• Example of Precision x Recall for Texture Descriptors:• Example of Precision x Recall for Texture Descriptors:



Experimental Results

• General CBIR tasks:



Experimental Results

• Post-processing methods comparison on MPEG-7 • Post-processing methods comparison on MPEG-7 
(Recall@40)



Conclusions

• New concept of ‘Distances Correlation’• New concept of ‘Distances Correlation’

• New approach for a Re-Ranking method using this 
concept

• Experimental Evaluation

– Shape, Color, Texture

– Comparison to other post-processing methods– Comparison to other post-processing methods

• Future Work

– Application of method to other information retrieval tasks
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Cohesion Computation

• Let C = {img1, img2, …, imgn} be a collection (or a • Let C = {img1, img2, …, imgn} be a collection (or a 
cluster) of images, cohesion is defined as follows:

where S is a function S: i → {0,1}, that assumes value 1 if 
C contains the image at position i of ranked list and 
assumes value 0, otherwise.


