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Abstract

Despite the continuous development of features and mid-level representa-
tions, effectively and reliably measuring the similarity among images remains
a challenging problem in image retrieval tasks. Once traditional measures
consider only pairwise analysis, context-sensitive measures capable of exploit-
ing the intrinsic manifold structure became indispensable for improving the
retrieval performance. In this scenario, diffusion processes and rank-based
methods are the most representative approaches. This paper proposes a novel
hybrid method, named Rank Diffusion, which uses a diffusion process based
on ranking information. The proposed method consists in a diffusion-based
re-ranking approach, which propagates contextual information through a dif-
fusion process defined in terms of top-ranked objects, reducing the computa-
tional complexity of the proposed algorithm. Extensive experiments consid-
ering a rigorous experimental protocol were conducted on six public image
datasets and several different descriptors. Experimental results and compar-
ison with state-of-the-art methods demonstrate that high effectiveness gains
can be obtained, despite the low-complexity of the algorithm proposed.
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1. Introduction

Mainly due to significant changes in users’ behavior, which moved from
being mere consumers to active producers, the process of multimedia content
generation suffered profound transformations in last decades [1]. In this
scenario, the Content-Based Image Retrieval (CBIR) systems represent a
relevant solution, supporting searches capable of taking into account the
visual properties of digital image content.

The development of CBIR systems has been mainly supported by the
proposal of several visual features, based on different approaches. Many
global-, local-, and deep-learning-based features have been proposed, con-
sidering different visual properties (shape, color, and texture) and mid-level
representations. However, despite the continuous development of features,
effectively and reliably measuring the similarity among images remains a
challenging problem in image retrieval tasks.

More recently, research initiatives have focused on other stages of the
retrieval pipeline [2], which are not directly related to low-level feature ex-
traction or pairwise distance computation. Several initiatives based on super-
vised learning methods have been exploiting labeled data for improving the
retrieval accuracy. Relevance feedback approaches [3, 4], for example, obtain
supervised information through user interactions in order to learn distance
measures capable of encoding user preferences.

However, in several retrieval scenarios, the training data difficult or in-
feasible to obtain. In this way, various post-processing methods have been
proposed in order to improve the effectiveness of image retrieval on an un-
supervised way, without the need of any user intervention. Once traditional
measures consider only pairwise analysis, context-sensitive measures capable
of exploiting the intrinsic manifold structure became imperative for improv-
ing retrieval performance. In general, these post-processing methods aim
at replacing pairwise distances by more global affinity measures capable of
exploiting the dataset manifold [5].

An effective and widely used approach relies on diffusion processes con-
ducted on affinity graphs [6, 7, 8, 5, 9]. Despite the effectiveness gains, the
wide use of post-processing methods on large-scale real-world applications
also depends on efficiency and scalability aspects [10]. More recently, due
to the high computational costs associated with diffusion-based approaches,
other methods have emerged. Mainly based on rank analysis, such contextual
rank measures [11, 12, 13, 14] can be efficiently computed.
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Diffusion processes and rank-based methods are the most representative
categories of post-processing methods, sharing common assumptions that dis-
tance between two images should be influenced by the relation among their
neighbors on the distance manifold [14]. In this paper, a clear connection
between both categories of methods is established. A novel hybrid approach
named Rank Diffusion is proposed, using a diffusion process based on ranking
information. The diffusion-based approach propagates contextual informa-
tion defined in terms of top-ranked objects, taking into account the manifold
structure. The proposed method establishes a relationship between diffusion
approaches and contextual rank measures, since it spreads similarity based
on ranking information through a diffusion process.

The capacity of the Rank Diffusion method for considering the geometry
of the dataset manifold is illustrated in Figures 1 and 2. Figure 1 illustrates
the Two-Moon dataset considering the Euclidean distance. One point is se-
lected as a labeled point in each moon and all other data points are assigned
to the closest labeled point. Since the Euclidean distance does not consider
the geometry structure of the dataset, the extremities of the moons are mis-
classified. Figure 2 illustrates the same scenario considering the proposed
Rank Diffusion approach. As it can be observed, the ideal classification,
which respects the geometry of the whole dataset manifold, is produced.
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Figure 1: Euclidean distance.
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Figure 2: Rank Diffusion.

This work differs from a previously published conference paper [15] in
several aspects. A relevant contribution is given in terms of efficiency of the
proposed method. Despite the use of a diffusion strategy, a low-complexity re-

3



ranking algorithm is presented, once only rank information is required. While
a traditional diffusion process presents O(n3) complexity, the Rank Diffusion
can be computed in only O(n). Other significant contribution consists in the
estimation of an appropriate neighborhood size. Both diffusion [6, 7] and
rank-based [11, 14] methods require a k-neighborhood size definition, which
are commonly determined empirically. In this paper, a novel approach based
on an adaptive neighborhood is proposed, allowing the automatic definition
of the neighborhood size, completely independent of ad-hoc parameter set-
tings. In addition, the literature review was deepened and the experimental
analysis was significantly extended, including new experiments, descriptors
and datasets.

The proposed approach was evaluated through an extensive experimen-
tal evaluation, considering six public datasets and several image descriptors,
including global (shape, color, and texture), local, and convolution-neural-
network-based descriptors. Experiments were conducted on different retrieval
tasks, involving shape, color, and texture-based retrieval, object retrieval,
and natural image retrieval tasks. The proposed method achieved significant
effectiveness gains, yielding very high effectiveness performance in compari-
son with various state-of-the-art approaches.

The paper is organized as follows: Section 2 and 3 present related work
and a formal problem definition, respectively. Section 4 introduces the Rank
Diffusion method, while Section 5 discusses how to establish a relationship
between diffusion process and rank-based methods. An efficient algorithmic
formulation of the Rank Diffusion is discussed in Section 6. Section 7 presents
the adaptive neighborhood size selection and Section 8 discusses the rank
aggregation approach. Section 9 presents the experimental evaluation and,
finally, Section 10 presents the conclusions draws possible future work.

2. Related Work

The continuous growth of image collections made it imperative the de-
velopment of effective and efficient content-based methods for retrieving the
images based on their visual content. However, when dealing with large and
diverse collections, i.e., large datasets with diverse content, finding relevant
data may become a hard task. The traditional retrieval approaches based
only on low-level features, widely used for image and multimedia data appli-
cations, sometimes are not able to properly represent data concepts, which
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can affect the effectiveness results due to the semantic gap problem [16].
In this scenario, ranking approaches assume a crucial role, capable of in-

corporating additional information in the retrieval process. In fact, ranking
has been established as a relevant task in many diverse domains, including in-
formation retrieval, natural language processing, collaborative filtering, and
social sciences [17]. One alternative for effectiveness enhancement consists
in using learning-to-rank [18] and relevance-feedback [19] strategies, which
introduce information about the user perception into ranking models. In
learning to rank, groups of objects are given in the training phase, allowing
the creation of a ranking model. Next, the ranking model is used to pre-
dict the ranked list for a new group of objects [17]. In relevance-feedback
approaches, the retrieval results are successively re-computed based on rele-
vance judgments collected from the users.

Although very effective, both learning to rank and relevance feedback
strategies are mainly based on supervised learning algorithms, which require
user intervention or labeled data. However, in many situations the training
data is difficult or infeasible to obtain. In such scenarios, the use of unsu-
pervised learning techniques can represent a promising solution. In a sense,
unsupervised learning can be seen as finding patterns in the data what would
be considered pure unstructured noise [20]. Besides traditional unsupervised
tasks as clustering and dimensionality reduction, the scope of use of unsu-
pervised learning has been expanding from distance learning [21] to feature
selection approaches [22].

With the purpose of exploiting the advantages of unsupervised learning
methods, many post-processing approaches have been proposed [9, 7, 6, 23,
24, 25, 11, 26] to improve the effectiveness of image retrieval tasks. In gen-
eral, the objective consists in computing a new distance, which gives rise
to more effective ranking results. The main motivation consists in the way
of multimedia objects are often modeled and compared. The multimedia
content is commonly represented as high-dimensional points in an Euclidean
space and the distance between two objects is computed often considering
the Euclidean distance. However, once pairwise distance measures define re-
lationships only between pairs of images, the global structure of the dataset
and the context wherein the query is computed are ignored. Therefore, how
to capture and exploit the intrinsic manifold structure therefore becomes a
central problem in the vision and retrieval applications, among others [9].
In this way, such methods take into account the dataset manifold and the
global relationships among images for computing new rankings, without the
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need of any user intervention.
Some of the most important unsupervised diffusion- and rank-based meth-

ods are discussed in the following.

2.1. Diffusion Process Methods

Diffusion is one of the most widely spread processes in science, rang-
ing from motion of dust particles on fluid surfaces to spreading of malaria
by migration of mosquitoes [27]. Simply, random walks can be defined as
a stochastic process that consists of a sequence of discrete steps of fixed
length [28]. Generally speaking, the well-known PageRank algorithm, for ex-
ample, analyzes the connectivity through a random walk on the link structure
of the web.

In the retrieval domain, diffusion-based approaches [29] rely on the def-
inition of a global measure, which describes the relationship between pairs
of points in terms of their connectivity. In general, diffusion processes con-
sider as input a pairwise affinity matrix W , which can be interpreted as a
graph that encodes the relationships among objects [24]. Let G = (V,E)
be a graph, such as the nodes vi ∈ V are associated with dataset objects
and edges eij ∈ E indicate the existence of relationships among them. Edge
weights, in turn, are defined by the affinity values wij. The matrix W is often
computed by applying a Gaussian kernel to a distance matrix computed by
an image descriptor [9].

Giving the edge weights [24] defined by the matrix W , the diffusion pro-
cesses spread the affinities through the graph. In general, a walk in the
graph occurs more likely through the edges with larger weights. Formally,
a probabilistic transition matrix P is defined [9] as a row-wise normalized
matrix W . It is also possible to define the probability of being at a specific
node after t steps of random walks, considering the initial transition vector
and the matrix P t, where P t is the power of the matrix P raised to t [24].

Recently, several methods based on diffusion approaches have been pro-
posed. In [7], a metric is learned by collectively propagating the similarity
measures through a graph transduction. Graph Transduction (GT) treats
the semi-supervised label propagation approach in an unsupervised scenario.
In [6], a Locally Constrained Diffusion Process (LCDP) is proposed, consid-
ering a local neighborhood for more stability to noise. The Self-Smoothing
Operator (SSO) was introduced in [9]. This operator allows computing a new
similarity measure directly on the similarity matrix using the self-induced
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smoothing kernel. In [24], a generic framework for diffusion processes is pro-
posed in the scope of retrieval applications.

The diffusion-based algorithms have been achieving significant improve-
ments on retrieval performance and are mainly supported by a strong mathe-
matical background. However, such methods are very expensive to compute,
specially when the size of datasets becomes larger [12, 13]. The computa-
tion of successive steps involving multiplication of the probability matrix are
time-consuming operations, which limits the usage of these algorithms in
large scale real-world applications.

2.2. Rank-Based Methods

Recently, alternative unsupervised approaches have been proposed for
improving the effectiveness of retrieval results by exploiting rank informa-
tion [11, 12, 13, 14, 26, 30]. In [26], a reciprocal neighborhood analysis is
proposed. This method computes different similarity measures for differ-
ent parts of the ranked lists. The algorithm is mainly based on the ob-
servation that the reciprocal neighborhood is a much stronger indicator of
similarity than the unidirectional nearest neighborhood relationship. The
reciprocal neighborhood is also analyzed by unsupervised manifold learning
approaches [12]. The algorithm exploits the top positions of ranked lists
and propagates the similarity among neighbors by taking into account the
geometry of the dataset manifold.

In [30], a re-ranking method is proposed in which the top-k retrieved im-
ages are also used as queries to perform search. By considering those rank-
ings, a new score for each image is collaboratively determined. A ranking
consistency method is exploited in re-ranking tasks in [25], where a verifica-
tion approach refines an initial retrieved ranking list.

An iterative contextual distance measure is proposed in [11]. This method
analyzes the similarity among ranked lists. The use of context aims at updat-
ing image similarity measures by taking into account information encoded in
the top retrieved images. The updated distance can consider different rank
correlation measures.

Various contextual rank-based approaches [30, 14, 25, 11, 12, 13] have
yielded very significant gains on retrieval effectiveness. Additionally, since
the most relevant information of rankings is found at top positions, the rank-
based approaches can significantly reduce the computational efforts required
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by exploiting indexing structures [10]. Therefore, other important require-
ments, such as efficiency and scalability [10, 13], are met.

3. Image Ranking Model

Once the proposed method is defined in terms of ranking information, this
section presents a formal definition of the image ranking model considered
along the paper.

Let C={img1, img2, . . . , imgn} be an image collection, where n = |C|
denotes the size of the collection C. Let D be an image descriptor which can
be defined [31] as a tuple (ε, ρ), where:

• ε: Î → Rn is a function, which extracts a feature vector vÎ from an

image Î;

• ρ: Rn ×Rn → R is a distance function that computes the distance be-
tween two images according to the distance between their corresponding
feature vectors.

The distance between two images imgi and imgj is computed as ρ(ε(imgi),
ε(imgj)). The notation ρ(i, j) is used along the paper for readability pur-
poses.

Let imgq be a query image. A ranked list τq can be computed in response
to imgq based on the distance function ρ. The top positions of ranked lists
are expected to contain the most similar images to the query image. Ad-
ditionally, the full ranked list is expensive to compute, specially when n is
high. Therefore, the computed ranked lists can consider only a sub-set of the
top-L images.

Let τq be a ranked list that contains only the L most similar images to
imgq, where L � n. Formally, let CL be a sub-set of the collection C, such
that CL ⊂ C and |CL| = L. The ranked list τq can be defined as a bijection
from the set CL onto the set [N ] = {1, 2, . . . , L}.

Every image imgi ∈ C can be taken as a query image imgq. As a result,
a set of ranked lists T = {τ1, τ2, . . . , τn} can be obtained, with a ranked list
for each image in the collection C. The set T constitutes a rich source of
information about the dataset manifold. While the distance function estab-
lishes relationships only between pairs of images, the ranked lists encode the
most relevant similarity information about the dataset.
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The main purpose of the proposed method consists in exploiting the sim-
ilarity information encoded in the set T , with the aim of defining a more
effective distance function ρr. The distance ρr, in turn, can be used to
compute a new set of ranked lists Tr, which improves the effectiveness of
retrieval tasks. Additionally, the fusion problem is also considered, in which
various sets of ranked lists {T1, T2, . . . , Td} computed by different descriptors
are taken as input, in order to compute a more effective set Tr.

Notice that the input considered by the proposed method is given by
ranked lists composed of only a sub-set of with the L most similar images in
the collection. In this way, the rank diffusion is completely independent of the
initial distance measure ρ and allows that approximate and index-based [32]
methods can be used for efficient computation of the ranked lists.

4. Rank Diffusion Process

This section presents the proposed rank diffusion process, presenting each
step involved in the method, until the computation of the rank-diffusion
distance.

4.1. Rank Similarity Matrix

Many diffusion-based algorithms [24] use the distance information for
defining a similarity matrix W . A Gaussian kernel is often considered, such

that wij = exp(−ρ
2(i,j)
2σ2 ), where σ is a parameter to be defined. Therefore,

some strategies are required to define a suitable value for the parameter,
also considering that the distance distribution may vary among different
descriptors.

In this work, a rank similarity matrix W is proposed based only on rank
information. The rank modeling of similarity information allows an uniform
representation, independent of distance scores. The similarity score wij varies
linearly according to the position of imgj in the ranked list τi. Additionally,
the score considers only a neighborhood set, which is defined by the size of
ranked lists.

Let m denote the size of ranked lists and, therefore the neighborhood
considered. Let N (i,m) be the neighborhood set, which is formally defined
as follows:
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N (i,m) = {R ⊆ C, |R| = m ∧ ∀x ∈ R, y ∈ C −R :

ρ(i, x) 6 ρ(i, y)}.
(1)

The similarity rank matrix Wm is defined as:

wmij
=

{
m− τi(j) + 1 if imgj ∈ N (i,m)
0 otherwise.

(2)

The size of the ranked list can assume different values depending on the
desired analysis. In the proposed method, the matrix W is defined assuming
m ≤ k, for a local neighborhood analysis, and m = L for a more compre-
hensive collection sub-set. Notice that, since the matrix W has dimension of
n × n, both k and L values are much smaller than n, i.e, k, L � n. There-
fore, the matrix W is very sparse. This property is exploited for defining an
efficient algorithm (discussed in Section 6), which computes operations that
are equivalent to a matrix multiplication considering W .

4.2. Reciprocal Rank Normalization

While most of similarity pairwise measures are symmetric, the same does
not occur for rank measures. In other words, an image imgi well ranked for a
query imgj does not imply that imgj is well ranked for query imgi. However,
the benefits of improving the symmetry of the k-neighborhood relationship
are remarkable in image retrieval applications [23]. Thus, a simple rank
normalization procedure is conducted before the rank diffusion process. The
reciprocal references among all ranked lists at top-L positions are considered,
i.e., m = L. For this, the similarity matrix WL is used and its asymmetry
is exploited. The value of wij is defined considering the position of imgj in
the ranked list τi, while wji considers the position of imgi in τj. Therefore,
a normalized rank similarity matrix R̄L can be defined as the sum of the
original matrix W with its transposed:

R̄ = WL +W T
L . (3)

Based on the matrix R̄, a rank normalized distance ρ̄ is defined as:

ρ̄(i, j) =
1

1 + r̄ij
, (4)
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where r̄ij ∈ R̄.
In the following, all the ranked lists are updated according to the nor-

malized distance, using a stable sorting algorithm. In this way, all similarity
scores defined as 0 in the matrix R̄ have their distance changed to 1. In these
cases, after the execution of the stable sorting algorithm, the previous order
of ranked lists are maintained.

This update gives rise to a new set of ranked lists T̄ , used as input for
the next steps of the proposed algorithm.

4.3. Iterative Rank Diffusion

The proposed rank diffusion approach is defined by an iterative update
of similarity information encoded into a matrix P . The update at each it-
eration is computed according to a rank similarity matrix W of increasing
neighborhood size. The central idea consists in spreading the similarity in-
formation through P considering initially a small neighborhood, which is
gradually expanded over iterations. Therefore, the number of iterations is
defined proportionally to the neighborhood size.

Formally, let (t) denote the current iteration and let s be a constant value,
which defines the initial neighborhood size. The rank similarity matrix at a
given iteration t is defined as:

W (t) = Ws+t. (5)

where the size of ranked lists m = (s+ t). The value of s = 2 can be used as
a default starting value, or s can be manually defined. The initialization of
matrix P is defined considering t = 0, and therefore:

P (0) = Ws. (6)

Given the asymmetry rank relationships, a normalization similarity value
is computed proportionally to the accumulated rank similarity of each image.
The normalization is defined for matrices W and P , respectively as:

W̄ij
(t)

=
W

(t)
ij

n∑
c=1

W
(t)
jc

, (7)

and

11



P̄
(t)
ij =

P
(t)
ij

n∑
c=1

P
(t)
jc

. (8)

The iterative diffusion step is defined in terms of the multiplication of the
normalized matrices P̄ and W̄ . At each iteration, a larger neighborhood is
considered in W̄ and disseminated along P :

P (t+i) = P̄ (t)W̄ (t)
T
, (9)

where i indicates the increment (its default value is 1). The process is itera-
tively executed while t ≤ (k−s), where k is a parameter that defines the size
of the neighborhood considered. The definition of parameter k is discussed
in Section 7.

4.4. Reciprocal Rank Diffusion

The diffusion step defined in Equation 9 considers the transposed matrix

W̄ (t)
T

. In this way, the similarity of a given image imgi to other images
is updated according to the ranked list τi and is encoded in the similarity
matrix.

However, the reciprocal similarity information should also be considered.
With this purpose, after the iterative rank diffusion, a self-diffusion step is
defined as:

Pr = P̄ (k−s)P̄ (k−s), (10)

where P̄ (k−s) represents the last matrix computed by the iterative diffusion
after normalization.

4.5. Rank Diffused Distance

Finally, a new rank diffused distance ρd is computed inversely propor-
tional to the reciprocal similarity matrix Pr:

ρr(i, j) =
1

1 + Prij
(11)

Based on the distance ρr, the new and more effective set of ranked lists Tr
is computed using a stable sorting algorithm. As for the rank normalization
step, images, which present similarity values equal to 0, maintain the previous
order in the ranked lists.
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5. Diffusion Process and Contextual Rank Measures

In this section, we briefly discuss the relationship between diffusion pro-
cess and contextual rank measures, establishing a connection between them.
As previously discussed, the matrix W can be interpreted as the edge weights
of a graph, which is constrained to k-nearest neighbors in several approaches [24,
6]. The diffusion processes often spread the affinities through the graph com-
puting powers of W (or of a probability transition matrix P computed based
on W ).

On the other hand, contextual rank approaches compute rank correlation
measures exploiting overlap or reciprocal references at top-k positions of
ranked lists. In fact, both approaches, although apparently distinct, have
much in common.

Consider the example discussed in the following. Let Wk be a rank sim-
ilarity matrix, as defined in Section 4.1. In a simplified manner, the main
step of a diffusion process can be considered as the computation of pow-
ers of Wk. However, given the asymmetry of ranked lists, let’s consider the
multiplication by its transposed for computing a matrix C:

C = WkW
T
k . (12)

The matrix C, which represents the basis operations of a diffusion process,
can also be interpreted as a rank similarity matrix, where cij is defined as:

cij =
∑
r∈C

wkir × wkjr . (13)

The value of cij is different from 0 only if there are overlaps (represented
by imgr) between ranked lists τi and τj at top-k images. For those cases, a
larger weight is defined for top positions of ranked lists. This approach is very
close to the intersection metric [33] used by contextual rank measures [11].

6. Efficient Diffusion Algorithm

As previously discussed, the diffusion processes based on similarity scores
are computationally expensive, requiring the computation of successive ma-
trix multiplication operations. As defined in Section 4, the proposed rank
diffusion approach also employs matrix multiplication operations.

However, although defined in terms of matrix operations, the proposed
method is entirely based on ranking information. Since the most relevant

13



information of ranked lists is encoded in top positions, efficient algorithmic
solutions can be exploited for computing the rank diffusion process. While
the multiplication of similarity scores presents O(n3) complexity, the rank
diffusion can be computed in only O(n). To accomplish this objective, the
algorithms used in each step of the proposed method are constrained at
constant top positions of ranked lists, defined by constants k and L.

In the following, we present algorithms for efficiently computing the main
steps of the proposed method, discussing how the ranking information can
be used for reducing the computational efforts.

6.1. Efficient Reciprocal Rank Normalization

The first discussed step consists in the Reciprocal Rank Normalization
(Section 4.2), which is defined in terms of sums of matrix WL, whose com-
plexity is O(n2). Algorithms 1 and 2 outline an efficient solution for filling
the matrix WL and for computing the Reciprocal Rank Normalization, re-
spectively. Both algorithms consider each ranked list only until the L or 2×L
positions (for the reciprocal analysis) and present a complexity of O(n). The
same reasoning is valid for the sorting step.

Algorithm 1 Rank Similarity Matrix

Require: Set of ranked lists T , parameter L
Ensure: Matrix WL

1: for all imgi ∈ C do
2: for all imgj ∈ N (i, L) do
3: WLij

← m− τi(j)
4: end for
5: end for

Notice that the normalized distance ρ computed by the sum of matrices
is not strictly equal to the algorithmic value, once matrix elements after
top-L positions can be lost. However, in practice, we can observe that such
information is not relevant, as experimentally demonstrated in Section 9.2.

The efficient algorithmic solutions of other steps of the method follow
the same principle of bounding the processing to the top ranking positions.
The sparsity of matrix W (in which less than k positions for each image are
non-zero values) is also exploited for drastically reducing the computational
complexity.
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Algorithm 2 Reciprocal Rank Normalization

Require: Set of ranked lists T , matrix WL, parameter L
Ensure: Reciprocal normalized set of ranked lists T̄

1: for all imgi ∈ C do
2: for all imgj ∈ N (i, 2× L) do
3: R̄ij ← WLij

+WLji

4: ρ̄(i, j)← 1/(1 + r̄ij)
5: end for
6: end for
7: T̄ ← stableSorting(T , ρ̄)

Normalization steps defined in Equations 7 and 8, for example, originally
use sums involving the entire matrix. However, an efficient algorithm can
be employed considering only top-k positions for matrix W normalization
and top-L positions for matrix P normalization. Algorithm 3 outlines the
proposed W normalization algorithm, restricting the loops of lines 5 and 10 to
the top-k positions. The same approach is valid to the matrix P considering
the top-L positions.

Algorithm 3 Matrix Normalization

Require: Matrix W (t)

Ensure: Normalized Matrix W̄ (t)

1: for all imgj ∈ C do
2: sj ← 0
3: end for
4: for all imgi ∈ C do
5: for all imgj ∈ N (i, k) do

6: sj = sj +W
(t)
ij

7: end for
8: end for
9: for all imgi ∈ C do

10: for all imgj ∈ N (i, k) do

11: W̄
(t)
ij = W

(t)
ij /sj

12: end for
13: end for
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6.2. Efficient Rank Diffusion

The rank diffusion defined by Equation 9, which represents the most
expensive step of the method, can also be efficiently computed. Basically,
the central idea consists in identifying the non-zero and relevant elements of
the matrices W and P based on information of ranked lists. Algorithm 4
presents the proposed approach with a time complexity of O(n).

Algorithm 4 Rank Diffusion Step

Require: Matrices W̄ (t) and P̄ (t)

Ensure: Matrix P (t+1)

1: for all imgi ∈ C do
2: for all imgj ∈ N (i, L) do

3: p
(t+1)
ij ← 0

4: for all imgl ∈ N (j, k) do

5: p
(t+1)
ij ← p

(t+1)
ij + (p̄

(t)
il × w̄

(t)
jl )

6: end for
7: end for
8: end for

First, it should be emphasized that the resulting matrix is not fully com-
puted. Instead, only the similarity of the top-L positions are considered
(loop of line 2). Additionally, the computational complexity of each element

is drastically reduced. More precisely, for computing an element p
(t+i)
ij using

an originally matrix multiplication approach, it is necessary to computed the
inner product between two vectors of n elements. Instead, the proposed al-
gorithm computes the product considering only the top-k positions (loop of
line 4).

The Reciprocal Rank Diffusion defined in Equation 10 also admits an
efficient solution. In fact, the reasoning is very similar to Algorithm 4. How-
ever, instead of using the top-k elements of the matrix W , a list of non-zero
elements computed in the last iteration of Algorithm 4 is considered.

7. Adaptive Neighborhood Size

Several approaches including both rank-based and diffusion-based meth-
ods use a parameter k for determining the size of local neighborhood size.
In general, the value of parameter k is empirically or experimentally deter-
mined. Although this practice does not invalidate the utility of unsupervised
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methods, it represents a limitation. Once unsupervised scenarios imply in-
dependence of human intervention, fine tuning actions should be avoided.

In this paper, an adaptive-k approach is proposed for automatically iden-
tifying the neighborhood size, turning our method completely independent
of parameter settings. More specifically, the proposed method considers four
parameters: s, i, k, and L. The parameters s, i and k are directly related to
the local neighborhood, which is considered for the rank diffusion: s defines
the position of starting neighbor, i represents the increment at each itera-
tion, and k the maximum neighborhood size. Both parameters s and i have
natural small default values (s = 2 and i = 1). On the other hand, the value
of L represents a trade-off between effectiveness and efficiency (a detailed
discussion is presented in experimental section). Therefore, the parameter k
is the only one that needs to be defined a priori.

The neighborhood size is estimated by analyzing the reciprocal references
between each image and its neighbors, considering different magnitudes of k.
The main motivation consists in determining a value of k where the density
of reciprocal references achieves a stable state.

The similarity matrix is used for this analysis, since its squared form W 2
k

is directly associated with reciprocal references. The reciprocal density score
d(q, k) of a ranked list τq for a neighborhood size k is formally defined as:

d(q, k) =
∑

i∈N (q,k)

w2
kqi
, (14)

Considering all ranked lists, an accumulated reciprocal density score a(k)
is defined as:

a(k) =
∑
i∈C

d(i, k). (15)

The reciprocal density score is computed considering different iterations,
with increasing neighborhood sizes of k. For each size, the variation of the
accumulated density score is analyzed, until a stable state is reached. This
state is determined in terms of the derivatives of the accumulated reciprocal
density score. Let a(k) denote the accumulated authority score at an iteration
with neighborhood size k, the first and second derivatives f

(k)
d and s

(k)
d are

defined respectively as:

f
(k)
d = a(k) − a(k−1), (16)
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s
(k)
d = f

(k)
d − f

(k−1)
d . (17)

The value of k is increased until s
(k)
d < 0, when the stable state is identified

and the loop is interrupted. Section 9.3 presents an experimental analysis of
this approach.

8. Rank Aggregation

Different features often encode distinct and complementary visual infor-
mation extracted from images. Therefore, if a feature produces effective
rankings by itself and is complementary (heterogeneous) to other features,
then it is expected that a higher search accuracy can be achieved by com-
bining them [34].

In this work, a rank aggregation approach is presented for combining dif-
ferent rankings using the proposed rank diffusion process. The rank diffusion
is performed in two stages: first, for each descriptor in isolation and in the
following, considering a fused set of ranked lists.

Let D = {D1, D2, . . . , Dd} be a set of different image descriptors and
let {T1, T2, . . . , Td} be their respective set of ranked lists. The rank diffu-
sion process is computed for each set Ti, in order to compute a matrix Pr
(Equation 10). In the following, a fused matrix Pf is defined as:

Pf =
∑
j∈D

Prj . (18)

Based on Pf , a new distance ρf is computed:

ρf (i, j) =
1

1 + Pfij
. (19)

A fused set of ranked lists Tf is computed using the distance ρf . Finally,
we aim at exploiting the contextual information of the fused set of ranked
lists Tf . Once the set Tf presents the same structure of a set obtained for a
single descriptor, it is submitted to the regular rank diffusion process, giving
rising to a final set Tr.
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9. Experimental Evaluation

The proposed method was evaluated through a rigorous experimental
evaluation, considering various datasets, several image descriptors and dif-
ferent image retrieval tasks.

9.1. Datasets and Descriptors

Six public well-known datasets with diverse types of images and diverse
characteristics are considered in the experimental evaluation. Several image
descriptors are used, including local, global (shape, color, and texture prop-
erties), and convolutional neural network-based features. Table 1 presents a
summary of datasets and and Table 2 describes the features used for each
dataset. The Mean Average Precision (MAP) was used as effectiveness mea-
sure for most of experiments. For each dataset, all images are considered as
query images, except for Holidays [35] dataset.

Table 1: Datasets used in the experimental evaluation.

Dataset Size Type General Effectiv.
Description Measure

MPEG-7 [36] 1,400 Shape A well known dataset composed of 1400
shapes divided in 70 classes. Commonly used
for evaluation of post-processing methods.

MAP,
Recall@40

Soccer [37] 280 Color
Scenes

Dataset composed of images from 7 soccer
teams, containing 40 images per class.

MAP

Brodatz [38] 1,776 Texture A popular dataset for texture descriptors
evaluation composed of 111 different textures
divided into 16 blocks.

MAP

ETH-80 [39] 3,280 Objects Dataset equally divided into 8 classes, with
images containing one single object.

MAP

Holidays [35] 1,491 Scenes Commonly used as image retrieval bench-
mark, the dataset is composed of 1,491 per-
sonal holiday pictures with 500 queries.

MAP

UKBench [40] 10,200 Objects/
Scenes

Popular benchmark, composed of 2,550 ob-
jects or scenes. Each object/scene is cap-
tured 4 times from different viewpoints, dis-
tances, and illumination conditions.

N-S
Score
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Table 2: Image descriptors considered for each dataset.

Dataset Image Features Type
Soccer [37] Global Color Histogram (GCH) [41], Auto Color Correlograms

(ACC) [42], Border/Interior Pixel Classification (BIC) [43]
Color

MPEG-7 [36] Segment Saliences (SS) [44], Beam Angle Statistics (BAS) [45], In-
ner Distance Shape Context (IDSC) [46], Contour Features Descrip-
tor (CFD) [47], Aspect Shape Context (ASC) [48], Articulation-
Invariant Representation (AIR) [49]

Shape

Brodatz [38] Local Binary Patterns (LBP) [50], Color Co-Occurrence Matrix
(CCOM) [51], Local Activity Spectrum (LAS) [52]

Texture

ETH-80 [39] ACC [42], BIC [43], GCH [41], and Color Structure Descriptor
(CSD) [53]

Color

Holidays [35] Joint Composite Descriptor (JCD) [54], Scalable Color Descriptor
(SCD) [55] Color and Edge Directivity Descriptor Spatial Pyramid
(CEED-Spy) [56, 57], ACC [42], Convolutional Neural Network by
Caffe [58] (CNN-Caffe), Convolutional Neural Network by Over-
Feat [59] (CNN-OverFeat)

Color,
Texture,
BoVW,
CNN

UKBench [40] CEED-Spy [56, 57], Fuzzy Color and Texture Histogram Spatial
Pyramid (FCTH-SPy) [60, 57], SCD [55], ACC Spatial Pyramid
(ACC-SPy) [42, 57], CNN-Caffe [58] ACC [42], Vocabulary Tree
(VOC) [61]

Color,
Texture,
BoVW,
CNN

9.2. Impact of Parameters

This section analyzes the impact parameters on the effectiveness of the
proposed method. Experiments were conducted on the MPEG-7 [36] dataset
considering the CFD [47] shape descriptor and the MAP as effectiveness
measure. The parameters related the local neighborhood are analyzed in the
first experiment. The position of starting neighbor was fixed as s=2 while
the increment i and the maximum neighborhood size k are varied in the in-
tervals [1,5] and [5,30], respectively. For each combination, we evaluated the
obtained MAP. Figure 3 illustrates the results. A large red region can be
observed, demonstrating the robustness of the propose method to different
parameter settings. For most of experiments, the manual parameter set-
ting was defined as s=5, i=5, and k=20, except for UKBench and Holidays
datasets, which used s=2, i=2, k=6 and s=2, i=1, k=3, respectively, due
to the small number of images per class. Notice that such parameters apply
to a manual setting process, once the adaptive neighborhood approach does
not require any parameter.

The second experiment analyzes the trade-off between efficiency and effec-
tiveness given by the constant L. The constant L defines the size of ranked
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Figure 3: Impact of parameters k and i.

list used as input. The higher the value of L, the higher the effectiveness
gains, but the higher the computational costs. Figure 4 shows the impact of
L on MAP scores for three shape descriptors on the MPEG-7 [36] dataset.
As it can be observed, the most expressive effectiveness gains are obtained
for low values of L, which is a very positive property of the algorithm when
dealing with large collections.
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9.3. Adaptive Neighborhood Size

An experiment was conducted for analyzing the scores involved in the
adaptive neighborhood size. The MPEG-7 [36] dataset and the CFD [47]
shape descriptor were considered. Figure 5 presents the evolution of the
reciprocal density score according to different values of k. The values of the
first and second derivatives used for detecting the neighborhood size are also
presented. All values are normalized in the interval [0,1]. The value of k is
determined according to the second derivative, when it reaches a value equal
to or less than zero. We can observe in Figure 5 that the second derivative (in
red) reaches the x-axis when the reciprocal density score (in green) becomes
stable.
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Figure 5: Adaptive-k analysis.

9.4. Shape, Color, and Texture Retrieval

The proposed method is evaluated in general image retrieval tasks con-
sidering shape, color, and texture properties. Three different datasets and
twelve descriptors are considered. Experiments were conducted evaluating
both the manual parameter setting and the adaptive neighborhood size ap-
proaches. We also consider different values of L (L ≤ 400), and the whole
ranked list. Statistical paired t-tests were conducted comparing the results
before and after the use of the proposed algorithm.

Tables 3 and 4 present the experimental results based on Manual and
Adaptive Neighborhood, respectively.
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Table 3: Rank Diffusion based on Manual Neighborhood for general image retrieval tasks,
considering shape, color, and texture features.

Original Rank Gain Stat. Rank Gain Stat.
Descriptor Dataset MAP Diff. Sig. Diffusion Sig.

Manual-k, L = 400 99% Manual-k, Full L 99%
Shape Descriptors

SS [44] MPEG-7 37.67% 52.17% +38.49% • 53.01% +40.72% •
BAS [45] MPEG-7 71.52% 82.36% +15.16% • 83.03% +16.09% •
IDSC [46] MPEG-7 81.70% 90.89% +11.25% • 91.09% +11.49% •
CFD [47] MPEG-7 80.71% 93.75% +16.16% • 94.17% +16.68% •
ASC [48] MPEG-7 85.28% 92.98% +9.03% • 93.07% +9.13% •
AIR [49] MPEG-7 89.39% 97.98% +9.61% • 97.97% +9.60% •

Color Descriptors
GCH [41] Soccer 32.24% 36.34% +12.72% • 36.34% +12.72% •
ACC [42] Soccer 37.23% 49.58% +33.17% • 49.58% +33.17% •
BIC [43] Soccer 39.26% 50.39% +28.35% • 50.39% +28.35% •

Texture Descriptors
LBP [50] Brodatz 48.40% 50.42% +4.17% • 50.40% +4.13% •

CCOM [51] Brodatz 57.57% 66.30% +15.16% • 66.46% +15.44% •
LAS [52] Brodatz 75.15% 80.59% +7.24% • 80.68% +7.36% •

Table 4: Rank Diffusion based on Adaptive Neighborhood for general image retrieval tasks,
considering shape, color, and texture features.

Original Rank Gain Stat. Rank Gain Stat.
Descriptor Dataset MAP Diff. Sig. Diffusion Sig.

Adaptive-k, L = 400 99% Adaptive-k, Full L 99%
Shape Descriptors

SS [44] MPEG-7 37.67% 39.94% +6.03% • 21.24% -43.61% •
BAS [45] MPEG-7 71.52% 80.35% +12.35% • 81.89% +14.50% •
IDSC [46] MPEG-7 81.70% 90.08% +10.26% • 90.31% +10.54% •
CFD [47] MPEG-7 80.71% 93.86% +16.29% • 94.52% +17.11% •
ASC [48] MPEG-7 85.28% 91.91% +7.77% • 91.99% +7.87% •
AIR [49] MPEG-7 89.39% 97.74% +9.34% • 97.39% +8.95% •

Color Descriptors
GCH [41] Soccer 32.24% 34.70% +7.63% • 34.70% +7.63% •
ACC [42] Soccer 37.23% 48.42% +30.06% • 48.42% +30.06% •
BIC [43] Soccer 39.26% 49.57% +26.26% • 49.57% +26.26% •

Texture Descriptors
LBP [50] Brodatz 48.40% 48.28% -0.25% 48.27% -0.27%

CCOM [51] Brodatz 57.57% 65.10% +13.08% • 65.24% +13.32% •
LAS [52] Brodatz 75.15% 79.02% +5.15% • 79.17% +5.35% •

Positive gains with statistical significance can be observed for all descrip-
tors and datasets for the manual neighborhood, reaching high effectiveness
gains up to +40.72%. For the adaptive neighborhood, the results are posi-

23



tive for most of descriptors, except for SS [44] and LBP [50] descriptors. The
effectiveness results obtained for partial (L ≤ 400) and the entire ranked lists
(full L) are very similar, demonstrating that only a sub-set of ranked lists
is enough to obtain high effectiveness gains. For most descriptors, the effec-
tiveness gains of manual and adaptive neighborhood are also similar, with a
narrow margin for the manual setting.

A visual example of the impact of the algorithm on retrieval results is
illustrated in Figure 6.

Figure 6: Visual examples of the effectiveness gains considering the CFD [47] and ASC [48]
descriptor on the MPEG-7 [36] dataset. Retrieval results before and after the use of the
algorithm: query image with green border and wrong images with red borders.

Table 5 presents the results for rank aggregation tasks, considering two
descriptors of each visual property. As it can be observed, high effective
results are also obtained.

9.5. Object Retrieval

We evaluated the proposed method in object retrieval tasks considering
the ETH-80 [39]. Table 6 presents the effectiveness results obtained by four
color descriptors before and after the use of the algorithm.

Positive effectiveness gains can be observed for all descriptors, considering
the both manual and adaptive neighborhood size selection. A relative gain
of +8.67% was reached considering the CSD [53] descriptor.

9.6. Natural Image Retrieval

We evaluate the proposed method in natural image retrieval tasks consid-
ering two popular datasets: the University of Kentucky Recognition Bench-
mark - UKBench [40] and the Holidays [35] dataset.

Table 7 presents the effectiveness results for the UKBench [40] dataset.
The N-S score is used as effectiveness measure, varying between 1 and 4.
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Table 5: Rank Diffusion for rank aggregation tasks (shape, color, and texture).

Descriptor Type Dataset Neighbor Score
Selection (MAP)

CFD [47] Shape MPEG-7 - 80.71%
ASC [48] Shape MPEG-7 - 85.28%

CFD+ASC Shape MPEG-7 Manual-k 99.29%
CFD+ASC Shape MPEG-7 Adaptive-k 99.00%
ACC [42] Color Soccer - 37.23%
BIC [43] Color Soccer - 39.26%

BIC+ACC Color Soccer Manual-k 49.75%
BIC+ACC Color Soccer Adaptive-k 48.20%
CCOM [51] Texture Brodatz - 57.57%

LAS [52] Texture Brodatz - 75.15%
LAS+CCOM Texture Brodatz Manual-k 84.52%
LAS+CCOM Texture Brodatz Adaptive-k 82.88%

Table 6: Rank Diffusion for object retrieval on ETH-80 [39] dataset.

Original Rank Rank
Descriptor Score Diffusion Diffusion

(MAP) Manual-k Adaptive-k
BIC [43] 49.72% 51.99% 52.66%
ACC [42] 48.50% 51.49% 51.99%
CSD [53] 48.46% 51.30% 52.66%
GCH [41] 41.62% 42.40% 43.42%

This score corresponds to the number of relevant images among the first four
image returned (the highest achievable score is 4). We can observe significant
improvements for N-S scores. Notice, for example, the Caffe [58] convolu-
tional neural network, which is improved from 3.31 to 3.61. The results are
even more impressive considering the rank aggregation tasks, reaching a N-S
score of 3.94.

Table 8 presents the results obtained by the Rank Diffusion method on
the Holidays [35] dataset. Significant effectiveness gains can be observed for
all features, reaching +13.4% for the CNN-Caffe [58] feature.

9.7. Comparison with Other Approaches

The proposed method is also evaluated in comparison with various other
state-of-the-art approaches and recently proposed retrieval approaches. Ex-
periments were conducted on three image datasets: MPEG-7 [36], Holi-
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Table 7: Rank Diffusion for natural image retrieval on the UKBench [40] dataset.

Original Rank Rank
Descriptor N-S Diffusion Diffusion

Score Manual-k Adaptive-k
CEED-SPy [56, 57] 2.81 3.10 3.10
FCTH-SPy [60, 57] 2.91 3.19 3.19

SCD [55] 3.15 3.35 3.36
ACC-SPy [42, 57] 3.25 3.51 3.51
CNN-Caffe [58] 3.31 3.61 3.61

ACC [57] 3.36 3.60 3.60
VOC [61] 3.54 3.72 3.72

VOC+ACC - 3.90 3.90
VOC+CNN-Caffe - 3.90 3.90
ACC+CNN-Caffe - 3.87 3.88

VOC+ACC+CNN-Caffe - 3.94 3.94

Table 8: Rank Diffusion for natural image retrieval on the Holidays [35] dataset.

Descriptor Original Rank Relative
MAP Diffusion Gain

JCD [54] 52.83% 54.03% +2.27%
SCD [55] 54.26% 57.11% +5.25%

CEED-SPy [56, 57] 56.09% 58.06% +3.51%
ACC [42] 64.29% 71.48% +11.18%

CNN-Caffe [58] 64.09% 72.77% +13.54%
CNN-OverFeat [59] 82.59% 86.17% +4.33%
ACC + CEED-SPy - 71.59% +11.35%

ACC + Caffe + OverFeat - 85.93% +4.04%
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days [35] and UKBench [40], which are popular datasets commonly used
as benchmark for image retrieval and post-processing methods.

Table 9: Comparison with state-of-the-art on the MPEG-7 [36] dataset.
Shape Descriptors

DDGM [62] - 80.03%
CFD [47] - 84.43%
IDSC [46] - 85.40%

SC [63] - 86.80%
ASC [48] - 88.39%
AIR [49] - 93.67%

Post-Processing Methods
Algorithm Descriptor(s) Score

Graph Transduction [7] IDSC 91.61%
Shortest Path Propagation [64] IDSC 93.35%

Mutual kNN Graph [8] IDSC 93.40%
Locally C. Diffusion Process [6] ASC 95.96%

RL-Sim [11] CFD 95.33%
Pairwise Recommendation [65] CFD 96.15%

Rank Diffusion CFD 96.19%
Tensor Product Graph [5] ASC 96.47%

Self-Smoothing Operator [9] SC+IDSC 97.64%
Co-Transduction [66] SC+IDSC 97.72%

SCA [14] SC+IDSC 99.01%
Tensor Product Graph [5] AIR 99.99%

Generic Diffusion Process [24] AIR 100%
Neighbor Set Similarity [13] AIR 100%

Rank Diffusion AIR 100%

Table 9 presents the obtained results on the MPEG-7 [36] dataset in
comparison with various other state-of-the-art post-processing methods. The
bull’s eye score, which counts the matching shapes within the top-40 ranked
images, is used as evaluation measure. As it can be observed, the effectiveness
results of the proposed method compares favorably with the recent retrieval
approaches.

Table 10 shows the MAP scores obtained on the Holidays [35] dataset.
The effectiveness results are comparable to most of considered methods. Fi-
nally, Table 11 presents the results of Rank Diffusion method on the UK-
Bench [40] dataset in comparison with recent retrieval approaches. The Rank
Diffusion method yielded the best N-S score in comparison with other state-
of-the-art methods.
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Table 10: Comparison with state-of-the-art on the Holidays [35] dataset.

MAP scores for recent retrieval methods.
Jégou et al. [35] Li et al. [67] Zheng et al. [68] Tolias et al. [69]

75.07% 89.20% 85.80% 82.20%

Qin et al. [70] Zheng et al. [71] Rank Diffusion
CNN-OverFeat

84.40% 85.20% 86.17%

Table 11: Comparison with state-of-the-art on the UKBench [40] dataset.

N-S scores for recent retrieval methods
Zheng Qin Wang Zhang Zheng Bai

et al. [72] et al. [26] et al. [73] et al. [74] et al. [34] et al. [14]
3.57 3.67 3.68 3.83 3.84 3.86

Xie Rank Diffusion Rank Diffusion Rank Diffusion
et al. [75] VOC+CNN VOC+ACC VOC+ACC+CNN

3.89 3.90 3.90 3.94

10. Conclusions

Post-processing procedures based on unsupervised learning approaches
have been establishing as an indispensable tool for improving the effective-
ness of CBIR systems. Since diffusion process methods require high compu-
tational efforts, rank-based approaches attracted a lot of research attention
recently to circumvent their limitations. In this paper, a novel rank diffusion
method is proposed exploiting characteristics of both diffusion and rank-
based approaches. Despite the use of a diffusion strategy, a low-complexity
re-ranking algorithm is proposed, once only rank information is considered.
A rigorous experimental evaluation demonstrated the effectiveness of the
proposed approach.

Future work focuses on the deep investigation of contextual information
encoded in the rank similarity matrix. We also plan to investigate the use of
indexing schemes to speed up processing time even further.

28



Acknowledgments

The authors are grateful to São Paulo Research Foundation – FAPESP
(grants #2013/08645-0 and #2013/50169-1), CNPq (grants #306580/2012-8
and #484254/2012-0), CAPES, AMD, and Microsoft Research.

References

[1] M. S. Lew, N. Sebe, C. Djeraba, R. Jain, Content-based multimedia
information retrieval: State of the art and challenges, ACM Transactions
on Multimedia Computing, Communications, and Applications 2 (1)
(2006) 1–19.

[2] Y. Liu, D. Zhang, G. Lu, W.-Y. Ma, A survey of content-based image
retrieval with high-level semantics, Pattern Recognition 40 (1) (2007)
262 – 282.

[3] B. Thomee, M. Lew, Interactive search in image retrieval: a survey,
International Journal of Multimedia Information Retrieval 1 (2) (2012)
71–86.

[4] C. D. Ferreira, J. A. dos Santos, R. da S. Torres, M. A. Gonçalves, R. C.
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