
Rank-based Self-Training for

Graph Convolutional Networks

Daniel Carlos Guimarães Pedronette

Department of Statistics, Applied Mathematics and Computing (DEMAC),

São Paulo State University (UNESP), Rio Claro, Brazil

Longin Jan Latecki

Department of Computer and Information Sciences,
Temple University, Philadelphia, USA

Abstract

Graph Convolutional Networks (GCNs) have been established as a fun-

damental approach for representation learning on graphs, based on convolu-

tion operations on non-Euclidean domain, defined by graph-structured data.

GCNs and variants have achieved state-of-the-art results on classification

tasks, especially in semi-supervised learning scenarios. A central challenge

in semi-supervised classification consists in how to exploit the maximum of

useful information encoded in the unlabeled data. In this paper, we address

this issue through a novel self-training approach for improving the accuracy of

GCNs on semi-supervised classification tasks. A margin score is used through

a rank-based model to identify the most confident sample predictions. Such

predictions are exploited as an expanded labeled set in a second-stage train-

ing step. Our model is suitable for different GCN models. Moreover, we

also propose a rank aggregation of labeled sets obtained by different GCN

models. The experimental evaluation considers four GCN variations and tra-

ditional benchmarks extensively used in the literature. Significant accuracy

gains were achieved for all evaluated models, reaching results comparable

or superior to the state-of-the-art. The best results were achieved for rank

aggregation self-training on combinations of the four GCN models.

Accepted Version of the paper published on Information Processing & Management
DOI: https://doi.org/10.1016/j.ipm.2020.102443

https://doi.org/10.1016/j.ipm.2020.102443

Keywords: graph convolutional networks, self-training, rank model,

semi-supervised learning

1. Introduction

Mainly grounded by deep-learning approaches, classification methods ex-

perimented a remarkable development in last decade. However, in spite of

the huge advances achieved, performing classification tasks based on scarce

labeled data still remains a challenging task, since deep models often require

large amount of data for training. In this scenario, semi-supervised classifi-

cation re-emerge as a promising approach, capable of also exploiting useful

information encoded in the unlabeled data. Actually, semi-supervised learn-

ing (SSL) is halfway between supervised and unsupervised, being suitable to

operate with large amounts of unlabeled data and a small quantity of labeled

data [1, 2]. A direct and central motivation for semi-supervised learning re-

lies on the fact that labeled data is typically much harder to obtain compared

to unlabeled data [3].

One of the earliest approaches of semi-supervised learning is self-training,

also known as self-labeling or self-supervision [1, 4]. The main idea consists in

a wrapper approach that repeatedly exploits a supervised learning method.

Firstly, the supervised method is trained based on labeled data only. Sub-

sequently, the unlabeled data is labeled according to the trained supervised

model. Then, a selected sub-set of predictions is exploited as additional

labeled data to re-train the supervised method [1]. Naturally, the possi-

ble combinations between supervised models and approaches to select the

additional labeled data open a broad and promising range of self-training

approaches [2].

On the other hand, graphs have been employed as a representation tool in

a wide range of real-world scenarios, mainly due to their expressive power [5].

Graph analytics approaches enable a better understanding of what is behind

2

the data, being useful in diverse applications and domains. Tasks as node

classification, node recommendation, and link prediction often can benefit

from graph-based representations in several areas, from social networks to

physical and biological systems [6]. Additionally, the semi-supervised learn-

ing literature also exploits graphs as a way to encode the geometry of both

labeled and unlabeled data in order to improve supervised methods [1].

For graph-based semi-supervised learning, a remarkable recent develop-

ment has been achieved by Graph Neural Networks (GNNs) [7] and, more

specifically, by Graph Convolutional Networks (GCNs) [8]. The GCN mod-

els integrate local node features and graph topology in the convolutional

layers [9]. In fact, graph convolution enables the extension of standard

convolution from Euclidean to non-Euclidean domain, defined by graph-

structured data [5]. Recently, GCNs [8] and subsequent variants [10–14]

have achieved state-of-the-art results in diverse applications, specially in-

volving semi-supervised classification tasks. Many variants propose changes

in the network structure, mostly by including or removing components. For

instance, in [12], the weight matrices between consecutive layers are col-

lapsed and non-linearities removed. In [13], a convolutional layer based on

auto-regressive moving average filter is inserted.

In a distinct and promising research direction, other recent works [5, 9,

15, 16] have exploited traditional machine learning strategies for further im-

proving GCN capacities. Mainly motivated by the recent impressive GCN

results, some relevant techniques in machine learning have been revisited

in conjunction with GCN models [9]. In [15], hypergraphs are exploited to

learn deep embeddings on the high-order graph-structured data. A diffusion

process is employed in [16] for aggregating information from a larger neigh-

borhood. The neighborhood is constructed based on the sparsification of a

generalized form of graph diffusion.

In this context, some few self-training approaches have been investigated

3

for GCNs very recently [5, 9, 17]. The GCN model is described as a special

form of Laplacian smoothing in [9], discussing scenarios of success and fails

of the model. While the smoothing is pointed as the key reason for successful

scenarios, potential over-smoothing can occur for many convolutional layers.

A self-training approach is proposed to overcome such limitations. In a more

recent work [5], the method is extended to multiple self-training stages. An

aligning mechanism is used on the output of a deep-clustering approach. The

clusters are used to assign pseudo-labels for each unlabeled data point in the

embedding space.

In this paper, we propose a novel Rank-Based Self-Training approach

for Graph Convolutional Networks. Our work focuses on the selection of

data points in the embedding space to be used as additional labeled data.

How to accurately select effective predictions is a challenging task for self-

training approaches, few exploited in recent related work [5, 9]. Typically,

the selection is performed by considering the top softmax scores per class [5,

9]. We propose to employ a margin-based selection score inspired by active

learning approaches [18]. The nodes are represented according to the score

in a rank-based model for the whole dataset, allowing to handle unbalanced

additional labeled data per class. Based on the rank model, an expanded

labeled set is defined for a second-stage training and classification. The main

contributions, differences and novelties with respect to related works can be

summarized as follows:

• The proposed self-training approach is not restricted to a specific GCN

model. Different from recent related self-training methods [5, 9, 17],

which are focused on a GCN model, the proposed method was vali-

dated on four GCN models [8, 11–13] with a log-soft-max as the last

layer. Actually, the rank-based formulation is versatile and can be

easily extended to other learning tasks;

4

• The proposed margin score addresses the challenging task of self-labeled

data selection, which has a central problem in self-training methods.

Most of approaches consider the softmax score of the predicted class

to estimate the confidence of prediction. In contrast, the proposed

margin confidence considers not only the class predicted, but the re-

lationship between the first and second higher scores. The motivation

is based on the conjecture that even a high softmax score can provide

a low accurate estimation when first and second top prediction scores

are similar. The proposed score provides a simple, yet effective label

prediction estimation;

• Our approach employ a global ranking of nodes, being able to handle

data with unbalanced classes. In contrast, other self-training meth-

ods [5, 9, 17] often select a fixed number of nodes per class as the

expanded labeled set. However, a forced equal amount per class can

add low-accurate predictions to certain classes;

• A rank aggregation approach is proposed to exploit and fuse the in-

formation from distinct GCN models and training executions. Based

on the fused confidence which consider different models, an aggregated

and more effective ranking of nodes is computed in order to obtain a

more accurate expanded labeled set. To the best of our knowledge, it is

the first approach which fuses information from distinct GCN models

in a self-training setting.

The proposed approach was evaluated for semi-supervised classification

tasks on citation datasets broadly used as benchmark in the literature [5,

8, 9, 11–13, 15]. The experiments indicate significant accuracy gains of the

proposed self-training method applied to four different GCN models. Accu-

racy results on semi-supervised classification outperform most of state-of-art

methods.

5

The remainder of this paper is organized as follows. Section 2 discusses re-

lated work and a formal definition of the problem setting. Section 3 presents

the proposed self-training approach. Section 4 describes the conducted ex-

perimental evaluation and, finally, Section 5 discusses the conclusions.

2. Problem Definition and Preliminaries

2.1. Graph-based Semi-Supervised Learning

In this section, we first discuss a formal definition of the semi-supervised

learning classification task using graph convolution networks, mostly follow-

ing [8, 9].

Let G denotes an undirected graph represented by G = (V , E ,X), where

V is the node set, E is the edge set and X is a feature matrix. The node set

is given by V = {v1, v2, . . . , vn} and the edge set is defined by a set of pairs

(vi, vj) ∈ E , which can be represented by a non-negative adjacency matrix

A = [aij] ∈ Rn×n. The feature matrix is defined as X = [x1,x2, . . . ,xn]T ∈
Rn×d, where xi is a d-dimensional feature vector which represents the node

vi.

Let Y = {y1, y2, . . . , yc} be a set of labels which can be assigned to

nodes vi ∈ V . In this way, the node set can be more specifically defined

as V = {v1, v2, . . . , vL, vL+1, . . . , vn}, which denotes a partially labeled data

set, where VL = {vi}Li=1 is the labeled data items subset and VU = {xi}ni=L+1

is the unlabeled data items subset. For semi-supervised classification, as a

general rule, we have |VL| � |VU |. Formally, the training set can be seen as

a labeling function l : VL → Y , where yi = l(vi)∀vi ∈ VL. The goal is to

learn a function l̂ : VU → Y to predict the labels of unlabeled nodes in VU .

2.2. Graph Convolutional Networks

Recently, much effort has been made on exploiting deep learning ap-

proaches for graph data [6]. In this context, Graph Convolutional Networks

6

(GCN) represent a relevant graph-based neural network model, introduced

in [8]. In a simplified way, GCN learns the embedding (representation) of

each node by iteratively aggregating the embeddings of its neighbors, en-

coding the graph structure directly on a neural network model. A two-layer

GCN model is used for semi-supervised node classification in [8], taking into

account a graph represented by a symmetric adjacency matrix A.

The network model can be depicted as a function both on the feature

data X and on the adjacency matrix A, as:

Z = f(X,A), (1)

where Z denotes an embedding matrix, such that Z = [z1, z2, . . . , zn]T ∈ Rn×c

and zi is a c-dimensional embedded representation learned for the node vi.

The degree matrices are computed as a pre-processing step, defined as

Â = D̃−1/2ÃD̃−1/2, where Ã = A + I and D̃ is the degree matrix of Ã.

Then, the function f(·) which represents the two-layer GCN model assumes

the form:

Z = log(softmax(ÂReLU(ÂXW(0))W(1))) (2)

The matrix W(0) ∈ Rd×H defines the neural network weights for an input-

to-hidden layer with H feature maps, while W(1) ∈ RH×c is a hidden-to-

output matrix. Both matrices W(0) and W(1) are trained using gradient

descent, considering the cross-entropy error over all labeled nodes vl ∈ VL.

The softmax activation function is applied row-wise and yields the probability

distribution over the c class labels for each row, i.e., the probability values

sum up to 1 for each row. After log function, the label assigned to a node vi

is defined according to the class with the less negative value in the embedded

representation zi.

Mostly grounded by the success of the GCN [8], various related graph

convolutional network models have been recently proposed [9–13, 15, 16].

7

While some approaches focus in the structure of network models [11–13, 15],

others present contributions involving training steps and manifold informa-

tion [9, 16]. Different network models [8, 11–13] can be used in conjunction

with the proposed self-training approach. The only condition is that a log-

soft-max operation is kept as the last layer.

3. Rank-based Self-Training

We propose a self-training approach focused on better exploiting the unla-

beled data by taking into account the information encoded in the embedding

computed by a first stage semi-supervised classification. The method post-

processes the predicted labels computed through a GCN classification, by

identifying high-confidence predictions to be used for pseudo-labeled data

expansion.

A challenging task for different self-training methods [5, 9, 17] is how to

identify high-accurate label predictions. This task is a central problem of

self-training methods. Most approaches consider the soft-max score of the

predicted class to estimate the confidence of prediction, which is often not

sufficient. In this regard, we present a margin prediction confidence, inspired

by active learning approaches [18, 19], which consider the gap between the

first and second higher scores. While active learning methods aims at identi-

fying the most informative samples, we are interested in the most confident

labels. Our score is based on the conjecture that the log-soft-max output

tends to provide similar values to both first and second classes when the

classification is not correct.

Different from other self-training methods, which keep a confidence score

update at each epoch [17] or multi-stage [5], our method employs a simple

two-stage approach, i.e., we train the GCN twice, first with original label

set, and then with the augmented label set. A direct advantage is improved

8

efficiency and simplicity. A two-state training approach requires the compu-

tation of the margin score and the global ranking of vertices. Considering a

two-stage approach, such steps are computed only once, reducing substan-

tially the computational efforts required. Hence a two-stage approach keeps

a favorable trade-off between effectiveness and efficiency.

x4

x2
x1 x3

x5
x6 ...x7x7

(X, A)

Input Layer

Labels

z4

z2
z1 z3

z5
z6 ...z7Hydden Layers

Output Layer

z2
z5
z3
z1
z6

...

Y1Y2

thr

Rank
SecondStage

FirstStage

Expanded Labeled Set
Z

MarginScore c(.)

Figure 1: Overview of the proposed Rank-based Self-Training for Graph Convolutional

Networks.

The proposed approach is illustrated in Figure 1. Firstly, a first-stage

classification is performed by a GCN model. Subsequently, the proposed

approach can be divided into three main steps:

1. Margin Confidence Score: a margin-based score is computed for each

graph node aiming to estimate the confidence on the computed embed-

ding;

2. Labeled Set Expansion: the nodes are represented through a rank model,

defined according to the margin score. Subsequently, some nodes are

selected for an expanded labeled set;

9

3. Second Stage Semi-Supervised Classification: the GCN model is re-

trained by taking into account the expanded labeled set.

The three main steps of the proposed method are detailed and formally

defined in next sub-sections. A general outline of the proposed method is

presented in Algorithm 1. Line 1 performs the firs-stage classification. Lines

2-4 define the computation of the margin confidence, discussed in Section 3.1.

The labeled set expansion step is defined in lines 5-12 and detailed in Sec-

tion 3.2. Line 13 performs the second-stage classification, discussed in Sec-

tion 3.3.

Algorithm 1 Rank-based Self-Training for GCNs

Require: Feature matrix X, adjacency matrix A, labeled data VL, α

Ensure: Embedding matrix Z, learned function l̂(2)

1: Z = fGCN(X,A,VL) # first-stage classification: learned function l̂(1)

2: for all vi ∈ V do

3: ci = c(vi,Z) # margin score computation

4: end for

5: τ = sort(V , c) # ranked list computation

6: thr = |V| × α # threshold definition

7: VE = VL # labeled set expansion

8: for all ve ∈ V do

9: if τ(ve) ≤ thr then

10: VE = VE ∪ ve
11: end if

12: end for

13: Z = fGCN(X,A,VE) # second-stage classification: learned function l̂(2)

3.1. Margin Confidence Score

The margin confidence score is defined based on the learned embeddings.

Given a c-dimensional vector which defines the embedded representation zi

10

for a node vi, a set Si is computed containing the zi absolute values. The set

Si is formally defined as:

Si = {|Zij| : j ∈ {0, 1, . . . c}} (3)

Once a log function is applied to the soft-max layer and the set Si contains

its absolute values, we are interested in the smallest values in Si. Such values

are associated with the most likely classes. Therefore, we consider a function

m(Si, k) that returns the k-th smallest element in Si. Formally, the function

m : Si × N→ R can be defined as:

m(Si, k) =

{
min(Si), k = 1

min({v : v ∈ Si, v > m(Si, k − 1)}), k > 1.
(4)

More specifically, the value of interest is given by the normalized dif-

ference between the smallest and the second smallest values. Therefore, the

confidence estimation c(vi) of the predicted class for a given node vi is defined

as:

c(vi,Z) =
m(Si, 2)−m(Si, 1)∑

v∈Si v
. (5)

3.2. Labeled Set Expansion

Once a confidence estimation is defined, the nodes are ranked according

to the function c(·) in order to obtain a ranked list τ . The ranked list τ can

be formally defined as a permutation (v1, v2, . . . , vn) of the node set V . A

permutation τ is a bijection from the set V onto the set [N] = {1, 2, . . . , n}.
For a permutation τ , we interpret τ(vi) as the position (or rank) of node

vi in the ranked list τ . If vi is ranked before vj in the ranked list τ , i.e.,

τ(vi) < τ(vj), then c(vi,Z) ≥ c(vjZ). The rank τ(vi) is used to decide if the

node vi is included in the expanded training set.

11

Let α ∈ [0, 1] denote a hyper-parameter that regulates the extend of

labeled set expansion. Based on α, a ranking threshold thr is defined as:

thr = |V| × α (6)

The threshold thr defines a position in the ranked list τ , until which

the nodes are included in the expanded training set. Let VE denotes the

expanded labeled set, it is formally defined as:

VE = {ve ∈ V|τ(ve) ≤ thr} ∪ VL (7)

3.3. Second Stage Semi-Supervised Classification

Once an expanded labeled set VE is defined, a second training stage is

performed. Let l̂(1) denotes the labeled function learned by the first training

stage. The second stage training uses the same network model and same

hyper-parameters of the first stage. However, the second stage training con-

siders the set VE as the labeled set to learn a new function l̂(2). Finally, the

function l̂(2) is used for performing the definitive classification.

3.4. Complexity Analysis

This section presents a brief discussion about the complexity of proposed

rank-based self-training approach. The first and second stage classifications

are directly associated with the GCN model used. Therefore, the complexity

of our method is given by the computation of the margin confidence and the

labeled set expansion procedure.

The margin score is computed based on the c-dimensional vector which

defines the embedded representation, where c denotes the number of classes.

Therefore, the complexity is O(c). The labeled set expansion requires a

sorting procedure of the vertices, which has O(n log n) complexity. Since

c� n, the general complexity of the proposed model is given by O(n log n).

12

3.5. Rank Aggregation for Prediction Confidence Fusion

Effectively exploiting the useful information encoded in the unlabeled

data is a central issue in semi-supervised learning. More specifically in self-

training, the use of unlabeled data is closely associated with the identification

of high-accurate predictions.

A true power of the proposed self-training approach becomes unlocked

when a few diverse GCN models are exploited. The labeled set expansion is

defined through the ranked list of vertices, which is computed based on the

margin score. Once the margin score varies according to the GCN model,

distinct GCN models yield different expanded labeled sets. Therefore, ranked

lists from different GCN models present diversity, which can be exploited and

aggregated for a more accurate label expansion step.

Additionally, even the same GCN model can give rise to distinct expanded

labeled sets through distinct training executions, due to the stochastic char-

acteristics of optimization procedures and random parameters initialization

involved. In this scenario, we propose a rank aggregation approach to exploit

such diversity. A fused prediction confidence score is computed by aggregat-

ing the ranks in two dimensions: distinct GCN models and different training

executions of each model. The fused scores gives rise to a more effective ag-

gregated ranking and, therefore, a more accurate expanded labeled set. Based

on the expanded labeled set, a second stage classification is performed.

More formally, each training execution of each GCN model assigns a dif-

ferent prediction score to given pair (node, class). As a result, a different

margin-based confidence score is computed for each execution. Let M de-

notes a set of GCN models, such that a model Mj ∈ M and |M| = mf .

Let t denotes the current training execution, such that t ∈ {1, 2, . . . , nf}.
Let ct,j(vi) denotes a confidence score computed by a GCN model Mj on

the training execution t for a node vi. A fused confidence score cf (vi) is

13

computed based on a multiplicative rank aggregation formulation [20], as:

cf (vi) =

mf∏
j=1

nf∏
t=1

(1 + ct,j(vi)) (8)

The fused confidence score cf (vi) combines information from different

GCN models and training executions and can be used in place of function

c(·) (Equation 5) to define the ranked list τ . In this way, the aggregated

ranking τ is exploited to define a more accurate expanded labeled set for a

second-stage classification. The second stage classification can be performed

by any model Mj ∈ M. In order to ensure a consistent aggregation, the

fused score cf (vi) can only be considered if the the same label is assigned

to node vi by all GCN models on all training executions. Otherwise, we set

cf (vi) = 0.

4. Experimental Evaluation

In this section, we describe the experiments conducted to assess the ac-

curacy of the proposed method in the task of semi-supervised node classifi-

cation.

4.1. Graph Convolutional Network Models

As previously discussed, the proposed self-training approach allows dif-

ferent GCN models and variants. The margin-based score requirement is

restricted only to the last layer, expected to be a log-soft-max operation. We

validated the proposed method on four GCN models with a log-soft-max as

the last layer, described in the following:

• GCN : Graph Convolution Network [8], a seminal GCN model broadly

defined as an efficient variant CNNs on graphs (detailed in Section 2.2);

14

• SGC : Simple Graph Convolution [12], a simplification of GCN mod-

els obtained by removing nonlinearities and collapsing weight matrices

between consecutive layers;

• APPNP : Approximate Personalized Propagation of Neural Predictions [11],

an algorithm which exploits the relationship between GCNs and PageR-

ank, deriving a propagation strategy based on personalized PageRank;

• ARMA: ARMA Filter Convolutions [13], a GCN variant which de-

fines a convolutional layer based on Auto-Regressive Moving Average

(ARMA) filters.

All four network models are used in the rank aggregation fusion to boost

the correctness of the extended label sets. Diverse combinations of pairs and

all models are considered on the experimental evaluation.

4.2. Datasets

The experimental evaluation was conducted on three citation network

datasets1: Cora [21, 22], Citeseer [22, 23] and Pubmed [24]. Such datasets

have been largely used in the literature [10, 12, 15, 25–27] as benchmark for

semi-supervised classification tasks, including some representative [8, 24] and

recent [15, 26] works. Table 1 presents some statstics of the three datasets,

briefly detailed in the following.

The three datasets are composed by textual documents and a list of ci-

tation links between them. A graph is defined, where each node represents

a document and each edge represents a citation link. Additionally, a sparse

bag-of-words feature vector is associated to each document. The Cora dataset

contains scientific publications divided into 7 categories. Each publication is

described by a binary bag-of-word representation, where 0 (or 1) indicates

1https://linqs.soe.ucsc.edu/data

15

Table 1: Citation network datasets statistics.

Dataset Nodes Edges Classes Features Train/Val/Test

Cora 2708 5429 7 1433 140/500/1000

CiteSeer 3327 4732 6 3703 120/500/1000

PubMed 19717 44338 3 500 60/500/1000

the absence (or presence) of the corresponding word from the dictionary. The

dictionary consists of 1,433 unique words (features). The Citeseer dataset

employs an analogous representation but of 3, 703 dimensions. The Pubmed

dataset is divided into 3 classes and uses a vectorial representation using

Term Frequency-Inverse Document Frequency (TF-IDF), based on a dictio-

nary of 500 terms. For all datasets, each document has a single class label.

4.3. Experimental Protocol and Implementation Details

The experiments were conducted according to the protocol initially used

in [24] and followed by other works [8, 25]. The training is performed using

20 labels per class, but all feature vectors (labeled and unlabeled data). The

accuracy prediction accuracy is evaluated on a test set of 1,000 nodes. The

dataset splits follows [8, 24, 25], with a validation set of 500 labeled samples

used by [8, 25]. The labels of the validation set are not used for training.

The implementation of the proposed Rank-based Self-Training was made

upon PyTorch Geometric (PyG) [25], a geometric deep learning extension

library for PyTorch [28]. We also used the PyG [25] implementation of

the four network models previously discussed: Graph Convolution Network

(GCN) [8]; Simple Graph Convolution (SGC) [12]; Approximate Personal-

ized Propagation of Neural Predictions (APPNP) [11]; and ARMA Filter

Convolutions (ARMA) [13].

All the models were trained for 200 epochs using using Adam [29] opti-

mization. During the training process, for both first and second stages, the

16

model is selected according to the lowest validation loss. The hyperparam-

eters and network configurations for each model followed the default values

given by the benchmark provided in PyG [25]2. The learning rate is defined

as 0.01 for all networks except SGC, which used 0.1. The dropout param-

eter is set to 0.5 also for all networks except SGC, which does no employ

dropout. The early stop window size was defined to 10 for all networks ex-

cept ARMA, which used 100. The rank-based Self Training approach has

only one hyper-parameter α, which, is discussed in next sub-section.

Regarding feature normalization, the PyG implementation includes a nor-

malization procedure, which impacts positively on most of network models.

However, our self-training approach performs better without the normaliza-

tion. Therefore, we report results before self-training on both situations:

with and without feature normalization.

4.4. Parameter Space Analysis

This section presents an analysis of the parameter space and definition

of parameter settings. The proposed rank-based Self Training requires only

one hyper-parameter α, which defines a rank threshold. The impact of α

on accuracy was evaluated on Cora dataset considering an average of 20

executions. Figure 2 presents the results for SGC and GCN networks.

We can observe that very low and high values of α lead to small gains in

comparison with the network model in isolation (orange line). However, a

large intermediary region tends to produce higher accuracy gains, indicating

the robustness of our approach to small parameter variations. In all exper-

iments we used α = 0.4, which approximates the beginning of intermediary

values with high associated accuracy gains.

The aggregation of network models also considers a parameter nf , which

defines the aggregation of executions on first stage and the average of execu-

2https://github.com/rusty1s/pytorch_geometric/tree/master/benchmark

17

https://github.com/rusty1s/pytorch_geometric/tree/master/benchmark

0.0 0.2 0.4 0.6 0.8
Hyper-parameter

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

Ac
cu

ra
cy

Impact of hyper-parameter on Accuracy - Cora Dataset

SGC
Rank-based Self-Training + SGC

(a) SGC

0.0 0.2 0.4 0.6 0.8
Hyper-parameter

79

80

81

82

83

84

Ac
cu

ra
cy

Impact of hyper-parameter on Accuracy - Cora Dataset

GCN
Rank-based Self-Training + GCN

(b) GCN

Figure 2: Evaluation of the impact of hyper-parameter α on accuracy.

tions on second stage classifications. We varied nf in the interval [5,50] and

evaluated the impact on accuracy. Figure 3 shows the results, which are very

stable to different settings. The value of nf = 20 was empirically defined and

used in all aggregation experiments.

18

10 20 30 40 50
Hyper-parameter nf

81

82

83

84

85

Ac
cu

ra
cy

Impact of hyper-parameter nf on Aggregation - Cora Dataset

SGC
GCN
Rank Self-Training: SGC(SGC+GCN)

Figure 3: Evaluation of the impact of hyper-parameter nf on aggregation.

4.5. Results

This section present the accuracy results on semi-supervised classification

tasks for the citation datasets. Firstly, we report the accuracy results of the

four network models in isolation, considering feature normalization. Table 2

present the results reported according to PyG [25], with higher accuracy in

bold.

Table 2: Accuracy of semi-supervised classification on citation datasets as reported in [25]

with feature normalization.

Method Cora CiteSeer PubMed

GCN [8] 81.5 ± 0.6 71.1 ± 0.7 79.0 ± 0.6

SGC [12] 81.7 ± 0.1 71.3 ± 0.2 78.9 ± 0.1

ARMA [13] 82.8 ± 0.6 72.3 ± 1.1 78.8 ± 0.3

APPNP [11] 83.3 ± 0.5 71.8 ± 0.5 80.1 ± 0.2

Table 3 present the accuracy results for the proposed Rank-based Self-

Training method. We reported the results of each network model in isolation

and jointly with the proposed self-training approach. All results consider an

19

average of 100 executions and do not use feature normalization. The best

accuracy results are highlighted in bold. We can observe significant gains

obtained for most network models and datasets. All the highest accuracy

results (in bold) are achieved by the Rank-based Self-Training, even consid-

ering results of Table 2.

Table 3: Accuracy of Rank-based Self-Training on citation datasets. Results without

feature normalization.

Method Cora CiteSeer PubMed

GCN [8] 80.5 ± 0.6 66.9 ± 0.7 78.9 ± 0.3

Rank-based Self-Trainig + GCN 83.3 ± 0.9 69.4 ± 1.9 80.3 ± 0.4

SGC [12] 80.9 ± 0.0 69.3 ± 0.0 78.9 ± 0.0

Rank-based Self-Trainig + SGC 84.1 ± 0.2 73.1 ± 0.2 75.9 ± 0.0

ARMA [13] 80.1 ± 1.0 64.6 ± 2.2 78.2 ± 0.4

Rank-based Self-Trainig + ARMA 82.9 ± 1.0 68.0 ± 4.4 79.5 ± 0.6

APPNP [11] 82.8 ± 0.7 70.1 ± 0.7 79.9 ± 0.2

Rank-based Self-Trainig + APPNP 84.7 ± 0.6 71.2 ± 0.7 81.2 ± 0.7

Results for fusion of confidence prediction are reported on Table 4. Dif-

ferent pairs combinations and the aggregation of all network models are con-

sidered. SGC and APPNP network models are considered for the second

stage classification, once have achieved the best results on individual results

reported in Table 3. As it can be observed, the results of fusion reached the

high accuracy results for all datasets. The highest results for each segment

of the table is highlighted in bold.

4.6. Visual Analysis

In order to enrich the discussion about the impact of the proposed method,

we present a qualitative visualization of the feature space. The visual analysis

illustrates the outcome of the method through a 2-D projection of data fea-

20

Table 4: Accuracy results for confidence prediction fusion based on Rank Aggregation

Self-Training.

Method Cora CiteSeer PubMed

Rank-based Self-Trainig + GCN 83.3 ± 0.9 69.4 ± 1.9 80.3 ± 0.4

Rank-based Self-Trainig + SGC 84.1 ± 0.2 73.1 ± 0.2 75.9 ± 0.0

Rank-based Self-Trainig + ARMA 82.9 ± 1.0 68.0 ± 4.4 79.5 ± 0.6

Rank-based Self-Trainig + APPNP 84.7 ± 0.6 71.2 ± 0.7 81.2 ± 0.7

Rank Aggregation Self-Training: SGC for second stage classification

GCN+SGC 84.2 ± 0.2 73.2 ± 0.0 76.9 ± 0.0

GCN+ARMA 83.7 ± 0.0 73.3 ± 0.0 79.1 ± 0.0

GCN+APPNP 84.2 ± 0.0 73.3 ± 0.1 78.9 ± 0.0

SGC+ARMA 84.2 ± 0.2 73.4 ± 0.0 77.8 ± 0.0

SGC+APPNP 84.4 ± 0.2 72.8 ± 0.1 77.8 ± 0.0

ARMA+APPNP 84.1 ± 0.0 73.5 ± 0.1 79.0 ± 0.0

GCN+SGC+ARMA+APPNP 84.3 ± 0.0 74.1 ± 0.0; 78.3 ± 0.0

Rank Aggregation Self-Training: APPNP for second stage classification

GCN+SGC 84.0 ± 0.4 71.4 ± 0.4 79.3 ± 0.3

GCN+ARMA 84.6 ± 0.3 71.6 ± 0.5 80.3 ± 0.4

GCN+APPNP 84.9 ± 0.5 71.4 ± 0.5 80.8 ± 0.2

SGC+ARMA 84.7 ± 0.4 72.1 ± 0.3 79.3 ± 0.2

SGC+APPNP 85.1 ± 0.4 72.5 ± 0.5 79.6 ± 0.2

ARMA+APPNP 85.0 ± 0.3 71.9 ± 0.5 80.9 ± 0.2

GCN+SGC+ARMA+APPNP 85.0 ± 0.5 72.1 ± 0.5 79.9 ± 0.2

tures and their respective computed embeddings. The analysis is conducted

on three datasets with the 2-D projected space computed by the t-SNE [30]

algorithm.

Figure 4 shows three t-SNE visualizations on the Cora dataset: (a) de-

picting the raw dataset features; (b) the embeddings computed by SGC [12]

model; and (c) the embeddings computed by the proposed self-training ap-

21

20 15 10 5 0 5 10 15

15

10

5

0

5

10

15

20

(a) Cora Raw features

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

(b) Cora SGC embeddings

60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80

(c) Cora Self-Training SGC embeddings

Figure 4: t-SNE [30] visualization of initial features and computed embeddings for the

Cora dataset.

22

4 3 2 1 0 1 2 3 4

4

3

2

1

0

1

2

3

4

(a) CiteSeer Raw features

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80

(b) CiteSeer SGC embeddings

80 60 40 20 0 20 40 60 80

80

60

40

20

0

20

40

60

80

(c) CiteSeer Self-Training SGC embeddings

60 40 20 0 20 40 60

60

40

20

0

20

40

60

(d) PubMed Raw features

100 75 50 25 0 25 50 75 100

75

50

25

0

25

50

75

100

(e) PubMed SGC embeddings

75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

(f) PubMed Self-Training SGC embeddings

Figure 5: t-SNE [30] visualization of initial features and computed embeddings for the

CiteSeer and PubMed datasets.

23

proach based on SGC [12]. Despite of the subjectivity associated to the

visualization, we can observe a higher cohesion of data items according to

the seven topic classes of Cora and better separation of different classes for

the proposed self-training embedding.

Figure 5 illustrates analogous t-SNE visualizations on CiteSeer and PubMed

datasets. The impact of self-training is more pronounced on the CiteSeer

dataset, where the embeddings representations of each class are thinned. On

the PubMed dataset, the difference is slight, but a better separation between

blue and black classes can be observed.

4.7. Comparison with State-of-the-art

We compared the proposed method with various state-of-the-art algo-

rithms on semi-supervised classification tasks. The comparison was con-

ducted on Cora, Citesser, and Pubmed datasets. The experimental setting

and data splits followed the protocol used in [8, 24], which have been es-

tablished as a standard benchmark protocol in the area. The classification

accuracy of the compared methods is directly quoted from the literature.

Several methods were considered, from traditional semi-supervised learning

methods [31, 32] to more recent baselines [24, 33]. Representative works,

as GCN [8] and GAT [10], were also considered in addition to very recent

network models [15, 26]. Related self-training approaches were also included

in the comparison, considering the higher accuracy results reported in [9].

Other self-training methods [5, 17] were not included due to distinct experi-

ments settings and data splits from [24].

Table 5 presents the accuracy results on the three datasets. We report the

results for Rank-based Self-Training considering the network models which

presented the best accuracy results in isolation: APPNP [11] and SGC [12].

For the Rank Aggregation Self-Training, we considered two selected combi-

nation of pairs reported in Table 4: ARMA [13] + APPNP [11] with SGC [12]

24

as second stage classification and SGC [12] + APPNP [11] with APPNP [11]

for second stage. As we can observe, the the proposed approach achieved the

best accuracy results on the three datasets in comparison with all state-of-art

methods (in bold).

Table 5: Comparison with state-of-the-art methods in terms of classification accuracy (%).

Method Cora Citeseer Pubmed

Manifold Regularization [34] 59.5 60.1 70.7

Semi-Supervised Embedding [35] 59.0 59.6 71.1

Label Propagation (LP) [31] 68.0 45.3 63.0

DeepWalk [33] 67.2 43.2 65.3

Iterative Classification Algorithm (ICA) [32] 75.1 69.1 73.9

Planetoid [24] 75.7 64.7 77.2

Graph Convolution Netork (GCN) [8] 81.5 70.3 79.0

Graph Attention Network (GAT) [10] 83.0 72.5 79.0

Variance Reduction [27] 82.0 72.9 79.0

Self-Training [9] 80.5 69.9 78.3

Simple Graph Convolution (SGC) [12] 81.0 71.9 78.9

Deep Graph Infomax (DGI) [26] 82.3 71.8 76.8

Hypergraph Convolution and Attention [15] 82.7 71.2 78.4

Auto-Regressive Moving Average Filters (ARMA) [13] 83.4 72.5 78.9

Approx. Pers. Propagation of Neural Pred. (APPNP) [11] 83.3 71.8 80.1

Rank-based Self-Traing + SGC 84.1 73.1 75.9

Rank-based Self-Traing + APPNP 84.7 71.2 81.2

R. Agreg. Self-Training: SGC (ARMA+APPNP) 84.1 73.5 79.0

R. Agreg. Self-Training: APPNP (SGC+APPNP) 85.1 72.5 79.6

5. Conclusion

In this paper, we proposed a simple and effective self-training approach

for Graph Convolutional Networks. Our approach uses a margin-based score

25

computed over log-soft-max layer of GCNs and analyzed through a rank-

based model. Considering the crucial role of unlabeled data on semi-supervised

learning, the proposed Rank-based Self Training approach allows an effective

labeled set expansion and more accurate results on a second-stage classifica-

tion. Evaluated on different GCN models, our approach achieved state-of-

the-art results on benchmarks widely used in the literature. In future work,

we intend to investigate the use of our approach on graph classification tasks,

in addition to node classification.

Acknowledgments

The authors are grateful to Fulbright Commission, São Paulo Research Foun-

dation - FAPESP (grants #2018/15597-6 and #2017/25908-6), Brazilian National

Council for Scientific and Technological Development - CNPq (grant #308194/2017-

9) and Microsoft Research. This work was also partly supported by the National

Science Foundation Grant No. IIS-1814745.

References

[1] O. Chapelle, B. Schlkopf, A. Zien, Semi-Supervised Learning, 1st Edition,

The MIT Press, 2010.

[2] I. Triguero, S. Garćıa, F. Herrera, Self-labeled techniques for semi-supervised

learning: taxonomy, software and empirical study, Knowl. Inf. Syst. 42 (2)

(2015) 245–284.

[3] Qi Tian, Jie Yu, Qing Xue, N. Sebe, A new analysis of the value of unla-

beled data in semi-supervised learning for image retrieval, in: 2004 IEEE

International Conference on Multimedia and Expo (ICME), Vol. 2, 2004, pp.

1019–1022.

[4] H. J. Scudder, Probability of error of some adaptive pattern-recognition ma-

chines, IEEE Trans. Inf. Theory 11 (3) (1965) 363–371.

26

[5] K. Sun, Z. Lin, Z. Zhu, Multi-stage self-supervised learning for graph convo-

lutional networks on graphs with few labeled nodes, in: Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-20), AAAI

Press, 2020.

[6] H. Cai, V. W. Zheng, K. C. Chang, A comprehensive survey of graph em-

bedding: Problems, techniques, and applications, IEEE Trans. Knowl. Data

Eng. 30 (9) (2018) 1616–1637.

[7] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P. S. Yu, A comprehensive survey

on graph neural networks, CoRR abs/1901.00596 (2019).

[8] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolu-

tional networks, in: 5th International Conference on Learning Representa-

tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-

ceedings, 2017.

[9] Q. Li, Z. Han, X. Wu, Deeper insights into graph convolutional networks

for semi-supervised learning, in: S. A. McIlraith, K. Q. Weinberger (Eds.),

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

(AAAI-18), AAAI Press, 2018, pp. 3538–3545.

[10] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph

attention networks, in: 6th International Conference on Learning Representa-

tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings, 2018.

[11] J. Klicpera, A. Bojchevski, S. Günnemann, Predict then propagate: Graph

neural networks meet personalized pagerank, in: International Conference on

Learning Representations, ICLR 2019, 2019.

[12] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Weinberger, Simplifying graph

convolutional networks, in: International Conference on Machine Learning

(ICML), Vol. 97, 2019, pp. 6861–6871.

27

[13] F. M. Bianchi, D. Grattarola, L. Livi, C. Alippi, Graph neural networks with

convolutional ARMA filters, CoRR abs/1901.01343 (2019).

[14] H. Pei, B. Wei, K. C. Chang, Y. Lei, B. Yang, Geom-gcn: Geometric graph

convolutional networks, in: International Conference on Learning Represen-

tations, ICLR 2020, 2020.

[15] S. Bai, F. Zhang, P. H. S. Torr, Hypergraph convolution and hypergraph

attention, CoRR abs/1901.08150 (2019).

[16] J. Klicpera, S. Weißenberger, S. Günnemann, Diffusion improves graph learn-

ing, in: Advances in Neural Information Processing Systems, NeurIPS 2019,

2019, pp. 13333–13345.

[17] Z. Zhou, S. Zhang, Z. Huang, Dynamic self-training framework for graph

convolutional networks, ArXiv abs/1910.02684 (2019).

[18] B. Settles, Active learning literature survey, Computer Sciences Technical

Report 1648, University of Wisconsin–Madison (2009).

URL http://axon.cs.byu.edu/~martinez/classes/778/Papers/

settles.activelearning.pdf

[19] T. Scheffer, C. Decomain, S. Wrobel, Active hidden markov models for in-

formation extraction, in: International Conference on Advances in Intelligent

Data Analysis, IDA ’01, Springer-Verlag, Berlin, Heidelberg, 2001, p. 309–318.

[20] D. C. G. Pedronette, R. d. S. Torres, Image re-ranking and rank aggregation

based on similarity of ranked lists, Pattern Recognition 46 (8) (2013) 2350–

2360.

[21] S. K. McCallum, K. Nigam, J. Rennie, K. Seymore, Automating the con-

struction of internet portals with machine learning, Information Retrieval 3

(2000) 127–163.

[22] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad, Col-

lective classification in network data, AI Magazine 29 (3) (2008) 93.

28

http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf
http://axon.cs.byu.edu/~martinez/classes/778/Papers/settles.activelearning.pdf

[23] C. L. Giles, K. D. Bollacker, S. Lawrence, Citeseer: An automatic citation

indexing system, 1998.

[24] Z. Yang, W. W. Cohen, R. Salakhutdinov, Revisiting semi-supervised learn-

ing with graph embeddings, in: International Conference on International

Conference on Machine Learning, ICML’16, JMLR.org, 2016, p. 40–48.

[25] M. Fey, J. E. Lenssen, Fast graph representation learning with pytorch geo-

metric, CoRR abs/1903.02428 (2019).

[26] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, R. D. Hjelm, Deep

graph infomax, in: International Conference on Learning Representations,

ICLR 2019, 2019.

[27] J. Chen, J. Zhu, L. Song, Stochastic training of graph convolutional networks

with variance reduction, in: International Conference on Machine Learning,

ICML 2018, Vol. 80, 2018, pp. 941–949.

[28] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, in:

NIPS-W, 2017.

[29] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:

Y. Bengio, Y. LeCun (Eds.), International Conference on Learning Repre-

sentations, 2015.

[30] L. van der Maaten, G. Hinton, Visualizing data using t-SNE, Journal of Ma-

chine Learning Research 9 (2008) 2579–2605.

[31] X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian

fields and harmonic functions, in: Proceedings of the Twentieth International

Conference on International Conference on Machine Learning, ICML’03, 2003,

p. 912–919.

29

[32] Q. Lu, L. Getoor, Link-based classification, in: International Conference on

International Conference on Machine Learning, ICML’03, AAAI Press, 2003,

p. 496–503.

[33] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social repre-

sentations, in: ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’14, 2014, p. 701–710.

[34] M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples, Journal of ma-

chine learning research 7 (2006) 2399–2434.

[35] J. Weston, F. Ratle, R. Collobert, Deep learning via semi-supervised embed-

ding, in: International Conference on Machine Learning, ICML ’08, 2008, p.

1168–1175.

30

	Introduction
	Problem Definition and Preliminaries
	Graph-based Semi-Supervised Learning
	Graph Convolutional Networks

	Rank-based Self-Training
	Margin Confidence Score
	Labeled Set Expansion
	Second Stage Semi-Supervised Classification
	Complexity Analysis
	Rank Aggregation for Prediction Confidence Fusion

	Experimental Evaluation
	Graph Convolutional Network Models
	Datasets
	Experimental Protocol and Implementation Details
	Parameter Space Analysis
	Results
	Visual Analysis
	Comparison with State-of-the-art

	Conclusion

