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Abstract

Content-based Image Retrieval (CBIR) systems consider only a pairwise
analysis, i.e., they measure the similarity between pairs of images, ignor-
ing the rich information encoded in the relations among several images.
However, the user perception usually considers the query specification and
responses in a given context. In this scenario, re-ranking methods have
been proposed to exploit the contextual information and, hence, improve
the effectiveness of CBIR systems. Besides the effectiveness, the usefulness
of those systems in real-world applications also depends on the efficiency
and scalability of the retrieval process, imposing a great challenge to the re-
ranking approaches, once they usually require the computation of distances
among all the images of a given collection. In this paper, we present a novel
approach for the re-ranking problem. It relies on the similarity of top-k lists
produced by efficient indexing structures, instead of using distance informa-
tion from the entire collection. Extensive experiments were conducted on
a large image collection, using several indexing structures. Results from a
rigorous experimental protocol show that the proposed method can obtain
significant effectiveness gains (up to 12.19% better) and, at the same time,
improve considerably the efficiency (up to 73.11% faster). In addition, our
technique scales up very well, which makes it suitable for large collections.
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1. Introduction

Advances in multimedia technologies for creating and sharing digital con-
tents have triggered an exponential increase of image collections. In order
to deal with these collections, it is necessary to develop methods for effi-
ciently indexing and retrieving these data. Traditional search approaches
based on image metadata and keywords can be unfeasible for large collec-
tions, since manual annotation is prohibitively expensive. In this scenario,
Content-Based Image Retrieval (CBIR) systems [10, 35] have emerged as an
alternative to overcome those limitations by taking into account the content
of the images for supporting retrieval tasks.

A common task for CBIR systems is to retrieve the most similar images
to a query pattern (e.g., query image) defined by users. In general, the
output provided is a ranked list, where the images are disposed in decreasing
order of similarity, according to a visual property, such as shape, color, and
texture. In this scenario, accurately ranking the collection images is of great
relevance. Existing systems often consider only pairwise analysis, measuring
the similarity between pairs of images and ignoring the relevant information
encoded in the relations among several images. The user perception, on
the other hand, considers the query specification and responses in a given
context.

Motivated by these limitations, many supervised learning approaches
have been proposed. Relevance Feedback [13, 37, 34, 41, 53] and Active Re-
Ranking [42] methods, for example, were incorporated into CBIR systems
with the aim of exploiting interactions for learning users needs. Basically,
the image retrieval process with relevance feedback is comprised of four
steps: (i) showing a small number of retrieved images to the user; (ii) user
indication of relevant and non-relevant images; (iii) learning the user needs
by taking into account his/her feedbacks; (iv) and selecting a new set of
images to be shown. This procedure is repeated until a satisfactory result is
reached. Although very effective, these approaches require a lot of human
efforts for obtaining enough training data, which can be infeasible for some
real-world systems.

Aiming at overcoming these problems, efforts were put on unsupervised
approaches. Recently, various approaches [19, 29, 49, 50] have been proposed
to improve the effectiveness of retrieval tasks by taking into account the
relationships among all dataset objects. In other words, research efforts
have been focused on post-processing the similarity (or distance) scores, by
using the contextual information available in relationships among images of
a given collection. The goal of those methods is somehow mimic the human
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behavior on judging the similarity among objects by considering specific
contexts.

The key advantage of re-ranking approaches consists in the fact that
they require no user intervention, training or labeled data, operating on an
absolutely unsupervised way.

However, the usefulness of re-ranking approaches for CBIR systems de-
pends not only on the effectiveness, but also on the efficiency and scalability.
While the effectiveness is related to the quality of retrieved images, the ef-
ficiency refers to the time spent to obtain the results. Scalability considers
the system capability of handling growing image collections. Although the
effectiveness has been the focus of various recently works [27, 46, 49], dealing
with those three requirements at the same time is essential in real-world ap-
plications. Aiming at computing the relationship among images, re-ranking
algorithms often consider all the distances among images of a given dataset,
which represent a large computational effort (typically, between O(N2) and
O(N3)), hindering its use in searching services that deal with real-world
image collections.

On the other hand, significant research efforts have been spent trying to
improve the performance in processing similarity queries. Most of existing
indexes employed to accelerate data retrieval are constructed by partitioning
a set of objects using distance-based criteria. Those approaches avoid the
computation of distances among all the images of a given collection.

In this paper, we aim at combining the potential of effectiveness gains
obtained by the re-ranking approaches with the power of the indexing struc-
tures in processing similarity queries efficiently. Here, we present a novel
approach for the re-ranking problem that relies on ranked lists produced by
efficient indexing structures. The ranked lists used by the proposed method
contain only a subset of the most similar images, avoiding the computation,
storage, and processing of distance information from the entire collection.

The main contribution of the proposed index-based re-ranking approach
consists in its capacity of combining effectiveness and efficiency features,
making it suitable for large collections. The proposed re-ranking method re-
quires very low computational efforts, presenting an asymptotic complexity
of only O(N). On the other hand, the effectiveness gains are comparable to
state-of-the-art approaches.

We carried out extensive experiments on a large image collection, con-
sidering several indexing structures. The reported results demonstrate that
the proposed method obtains significant effectiveness gains (up to 12.19%
better) and, at the same time, improves considerably the efficiency (up to
73.11% faster). Moreover, our technique scales up very well, which makes
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it suitable for large collections. We also evaluated the proposed method
in comparison with several other state-of-the-art approaches considering a
common shape dataset. Experimental results demonstrate that the proposed
method yields effectiveness results comparable to post-processing algorithms
recently proposed in the literature.

The remainder of this paper is organized as follows. Section 2 describes
related work. Section 3 introduces the re-ranking problem based on ranked
lists. Section 4 presents our image re-ranking approach. Section 5 discusses
indexing structures used to produce ranked lists. Section 6 reports the
results of our experiments. Finally, we offer our conclusions and directions
for future work in Section 7.

2. Related Work

This section presents related work. Section 2.1 overviews image re-
ranking approaches, while existing indexes structures are discussed in Sec-
tion 2.2.

2.1. Image Re-Ranking

In recent years, several CBIR approaches [19, 27, 29, 46, 49, 51] have
been proposed aiming at improving the effectiveness of retrieval tasks by
replacing pairwise similarities by more global affinities that also consider
the relation among the database objects [51].

Although using a very diverse taxonomy (re-ranking [24, 29], graph
transduction [49], diffusion process [50], affinity learning [51], contextual
similarity/dissimilarity measures [30, 46]), these post-processing methods
have in common the goal of improving the effectiveness of retrieval tasks by
exploiting considering relationships among dataset objects on an unsuper-
vised way, requiring no training data.

Graph-based methods are used by several approaches [19, 46, 49]. In [49],
a graph-based transductive learning algorithm is proposed for shape retrieval
tasks. It learns a better metric through a graph transduction by propagating
the model through existing shapes, in a similar manner to the computation
of geodesics in a dataset manifold. Another approach based on propagating
the similarity information in a weighted graph is proposed in [51] as affinity
learning. Instead of propagating the similarity information in the original
graph, it uses a tensor product graph (TPG) obtained by the tensor product
of the original graph with itself. A shortest path propagation algorithm is
proposed in [46], which is a graph-based algorithm for shape/object retrieval.
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Given a query object and a target database object, it explicitly finds the
shortest path between them in the distance manifold of the database objects.

Another strategy frequently used consists in employing clustering meth-
ods [24, 38]. A re-ranking framework for CBIR systems based on contextual
dissimilarity measures is proposed in [38]. The contexts are modeled us-
ing a clustering algorithm to group similar images from the ranked list.
In [24], a re-ranking algorithm using post-retrieval clustering for CBIR is
proposed. In the first step, images are retrieved using visual features, such
as color histograms. Next, the retrieved images are analyzed using hierarchi-
cal agglomerative clustering methods and the rank of the results is adjusted
according to the distance of a cluster to a query.

Aiming at computing the relationship among images, re-ranking algo-
rithms commonly consider all the distances among images of a given dataset.
In general, a distance matrix is the input of those algorithms, which repre-
sents a large computational effort, assuming a complexity O(N2), where N
is the dataset size. Other approaches consider complete ranked lists, which
contain distance information of the entire collection ordered according to
their similarity to the query image. The processing time in this case is
O(N).

However, the most important information is found in the top positions
of ranked lists, which are expected to contain the most similar images to the
query image. Therefore, it can be very valuable an strategy that considers
only a subset of the ranked lists, with size less than N . It is valid specially
for large collections, where N is very high, and therefore the ranked lists are
very expensive to compute.

In this scenario, this paper presents two important contributions: (i)
the introduction of an image re-ranking method that does not require the
computation of distances among all the images or complete ranked lists; and
(ii) the use of efficient indexing structures for obtaining the ranked lists.

2.2. Indexing Structures

Traditional database systems [11, 31] are able to efficiently deal with
structured records by using the exact match paradigm. However, complex
data types, such as multimedia data (audio, image, and video), biological
data (genomic and protein sequences), among others, cannot be represented
effectively as structured records [55].

In those cases, similarity search [18] has been established as a fundamen-
tal paradigm. Essentially, the problem is to find, in a set of objects, those
which are the most similar to a given query object. The similarity between
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any pair of objects is computed by some distance function, being understood
that low values of distance correspond to high degrees of similarity [55].

The commonest types of similarity queries include (1) range queries,
where all the objects whose distance to the query does not exceed a threshold
are requested; and (2) k-nearest neighbors (kNN) queries, where a specified
number k of objects, which are closest to the query are requested [55].

Several index structures have been proposed to speed up similarity queries [3,
4, 8, 14, 33]. They can be broadly classified, depending on their field of appli-
cability, as multi-dimensional (or spatial) and metric access methods, where
the use of the former is only possible when the feature space is a vector
space [55].

Algorithms to search in general metric spaces can be divided into two
large areas: pivot-based and clustering-based methods [8]. A pivot-based
strategy selects some objects as pivots from the collection and then com-
putes and stores the distances between the pivots and the objects of the
database. During the search, those distances are used to discard objects
without comparing them with the query. Clustering techniques consist in
dividing the space into zones as compact as possible, normally in a recur-
sive fashion, and storing a representative (“center”) for each zone plus a
few extra data that allows us to quickly discard the zone at query time. In
a search, complete regions are discarded by using the distances from their
representatives to the query [8].

Two criteria can be used to delimit a zone in the clustering-based ap-
proaches. The first one selects a set of representatives and put each other
object inside the zone of its closest representative, thus the areas are limited
by hyperplanes. The second criterion is the covering radius, which is the
maximum distance between a representative and any object in its zone [8].

3. Problem Definition

Let C={img1, img2, . . . , imgN} be an image collection, where N is the
cardinality |C| of collection C. Let D be an image descriptor which can be
defined [36] as a tuple (ε, ρ), where:

• ε: Î → Rn is a function, which extracts a feature vector vÎ from an

image Î.

• ρ: Rn × Rn → R is a distance function that computes the distance
between two images by means of their corresponding feature vectors.
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In order to obtain the distance between two images imgi and imgj , it is
necessary to compute the value of ρ(ε(imgi), ε(imgj)). For simplicity and
readability purposes, we use the notation ρ(imgi,imgj) for the denoting the
distance between images imgi and imgj .

Based on the distance function ρ, given a query image imgq, we can
compute a ranked list σq in response to the query. The ranked lists can
contain distance information from the entire collection, sorted according to
their similarity to the query image. However, the top positions of ranked
lists are expected to contain the most relevant images related to the query
image. Therefore, it can be very desirable that the ranked list σq considers
only a subset of the NS most similar images, where NS < N is the number
of images at top positions of the ranked list that we would like to consider.
It is valid specially for large collections, where N is very high, and therefore
σq is very expensive to compute.

In this way, the ranked list σq=(img1, img2, . . . , imgNS
) can be de-

fined as a permutation of the image collection CS ⊂ C, which contains
the most similar images to query image imgq, such that and |CS | = NS .
A permutation σq is as a bijection from the collection CS onto the set
[NS ] = {1, 2, . . . , NS}. For a permutation σq, we interpret σq(i) as the
position (or rank) of image imgi in the ranked list σq. Therefore, we can
say that, if imgx is ranked before imgy, that is σq(x) < σq(y), then ρ(imgq,
imgx) ≤ ρ(imgq, imgy). We also can take every image imgi ∈ C as a query
image imgq, in order to obtain a set R = {σ1, σ2, . . . , σN} of ranked lists
for each image of the collection C.

An image re-ranking algorithm is given by a function fr, which takes a
set of ranked lists R as the input and computes a new and more effective
set of ranked lists R̂:

R̂ = fr(R). (1)

The image re-ranking algorithm, presented in next section, represents an
implementation of the function fr.

4. Image Re-Ranking Algorithm

The proposed re-ranking algorithm exploits the rich contextual informa-
tion encoded in ranked lists, aiming at improving the effectiveness of CBIR
systems. The algorithm is based on a recently proposed unsupervised strat-
egy [29] that iteratively computes the similarity of top-k lists. The main
novelty of our approach consists in the use of a subset of the ranked lists
(instead of using the complete distance matrix) and indexing structures for
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computing them, which enables the use of our re-ranking algorithm in large
collections. In this way, besides the effectiveness gains, the efficiency and
scalability issues are also addressed.

The central reasoning behind our image re-ranking algorithm relies on
the conjecture that contextual information encoded in the similarity between
ranked lists can provide useful information for improving the effectiveness
of CBIR descriptors [29]. In general, if two images are similar, their ranked
lists should be similar as well [26]. It is somehow close to the cluster hypoth-
esis [32], which states that “closely associated documents tend to be relevant
to the same requests”.

The modeling of contextual information considering only the similar-
ity between ranked lists represents an advantage of our strategy. Instead of
using the distance information, the proposed method requires only the rank-
ing information. Since there are several image descriptors available and each
one uses different approaches for distance computation, scores computed by
different image descriptors usually are in different scales and requires nor-
malization procedures. These variations can affect the effectiveness of the
re-ranking approaches. On the other hand, even different approaches for
distance computation produce ranked lists with the same structure. In this
scenario, the proposed re-ranking method can be used for different CBIR
tasks and can be easily adapted for other information retrieval tasks (e.g.,
text or multimodal retrieval). Beyond that, the re-ranking method can be
extended for using different similarity/dissimilarity measures among ranked
lists, a well-established research area [12, 47, 48].

4.1. Contextual Ranked Lists

In this section, we define the image re-ranking algorithm in terms of con-
textual top-k lists. The images at the top positions of ranked lists often are
the most relevant images, in the sense that they usually represent the results
in which users are interested. Therefore, the top-k lists represent, by itself,
a contextual description of images with respect to the whole dataset. In
this scenario, we conjecture that, given any two images, and their respective
top-k lists, a new and more effective ranked list can be computed, which we
named as contextual ranked list. Once new ranked lists are computed, the
process can be iteratively repeated, representing the basis of our re-ranking
algorithm.

The reasoning behind contextual ranked lists relies on exploiting the co-
occurrence of similar images in the top-k lists. Usually, the top positions
of ranked lists contain many images that are similar to the query image
and some wrong (non-similar) images. Those images placed at top positions
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usually are similar to each other and, therefore, there are many images in
common in their ranked lists. The objective of the proposed re-ranking
algorithm is to move the non-similar images down in the ranked lists, and,
as a result of this process, improve the quality of ranked lists.

In the following, we formally define the contextual ranked lists. First, we
use the definition of top positions of a ranked list as a top-k list, according
to [12]. Let us consider the neighborhood set N (i, k) of an image imgi,
which contains the k most similar images to imgi according to the ranked
list σq(i) computed by an indexing structure. A top-k list τi is a bijection
from a domain N (i, k) (the members of the top k list) to [k] = {1, 2, . . . , k}.
We say that imgj appears in the top-k list τi if imgj ∈ N (i, k). We interpret
τi(j) as the position (or rank) of image imgj in τi.

For computing the contextual ranked lists, we define a rank-based dis-
tance measure rd based on the similarity of top-k list. Assume that τi and
τj are top-k lists computed for images imgi and imgj , respectively. Sev-
eral similarity (or dissimilarity) measures for comparing τi and τj can be
defined [12, 47, 48]. Let d(τi, τj , k) denote a given distance measure for
comparing top-k lists, we define a non-iterative contextual distance measure
rd(imgi, imgj) based on comparison of the top-k lists, as follows:

rd(imgi, imgj) = d(τi, τj , k). (2)

Based on the conjecture that the rank-based distance measure rd repre-
sents a more effective distance between images, we can perform a re-ranking

computing new ranked lists based on this measure. Let σ
(0)
q (x) denotes the

contextual ranked lists produced after this first re-ranking, we can say that,

if rd(imgq,imgx) ≤ rd(imgq, imgy), then σ
(0)
q (x) < σ

(0)
q (y), that is, imgx is

ranked before imgy in the ranked list of imgq.
Since both input and output of the re-ranking process are ranked lists,

this process can be repeated in an iterative manner. Let (t) be a superscript

that denotes the iteration. Let τ
(t)
i be the top-k list for image imgi at

iteration t, which is computed considering the rank-based distance measure

r
(t)
d . Let r

(0)
d be the rank-based distance at first iteration, we can define an

iterative distance as follows:

r
(t+1)
d (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k). (3)

Once the effectiveness of the rank-based distance measure improves along
iterations, the effectiveness of ranked lists also improves. Non-relevant im-
ages are moved out from the first positions of the ranked lists and, therefore,
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k can be increased for considering more images. In this way, a larger k can
be considered for computation of top-k lists along iterations, as follows:

r
(t+1)
d (imgi, imgj) = d(τ

(t)
i , τ

(t)
j , k + t). (4)

After a given number of T iterations, a final ranked-based distance r
(T )
d

is computed. Therefore, a definitive contextual ranked list σTq (x) can also

be computed based on this distance. Let σ
(T )
q (x) denotes the definitive

contextual ranked lists produced, we can say that, if r
(T )
d (imgq,imgx) ≤ r(T )d

(imgq, imgy), then σ
(T )
q (x) < σ

(T )
q (y).

Finally, we can obtain a contextual ranked list σ
(T )
q for each imgq ∈ C,

computing a new set of ranked lists R(T ) and completing the re-ranking
process.

4.2. Distance Measure Between Top-k Lists

An approach to define the distance between two top-k lists τi and τj
proposed in [12] is to capture the extent of overlap between τi and τj . This
idea of overlap can be extended by considering not only the overlap at depth
k, but also the cumulative overlap at increasing depths [29, 47]. For each
kc ∈ {1 . . . k}, it is computed the overlap at kc, and then those overlaps are
averaged to derive a similarity measure. The measure gives higher weights to
the first positions of top k lists, which are considered many times. Equation 5
formally defines the intersection similarity measure δ:

δ(τi, τj , k) =

∑k
kc=1 | N (i, kc) ∩N (j, kc) |

k
. (5)

Note that if two ranked lists present the same images at the first posi-
tions, the size of the intersection set is greater, and the value of δ is greater
as well.

Since we are interested in a distance measure between top-k lists, we
define dδ as follows:

dδ(τi, τj , k) =
1

1 + δ(τi, τj , k)
. (6)

4.3. The Image Re-Ranking Algorithm

This section describes the image re-ranking algorithm, based on the pre-
sented ranked-based distance measure and the contextual ranked lists. The
main input of the algorithm consists of a set of ranked lists R, computed by
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indexing structures (discussed in details in Section 5). The size of ranked
lists retrieved by the indexing structures is given by the parameter NS .
A trade-off control between effectiveness and efficiency can be obtained by
varying this parameter. Increasing the NS value, higher effectiveness gains
can be obtained by the re-ranking algorithm. On the other hand, more
computational efforts are also required.

Given an initial set of ranked lists, an iterative approach is proposed. Let
the superscript (t) denotes the current iteration, a new and more effective set
of ranked lists R(t+1) is computed by taking into account distances among
top-k lists. Next, R(t+1) is used for the next execution of our re-ranking
algorithm and so on. These steps are repeated along several iterations aiming
to improve the effectiveness incrementally. After a number T of iterations a
definitive re-ranking is performed. Algorithm 1 outlines the proposed image
re-ranking algorithm.

Algorithm 1 Index-Based Image Re-Ranking Algorithm

Require: Image collection C, parameters ks, T , and NS

Ensure: Processed set of ranked lists R(T )

1: R(0) ← ∅
2: for all imgi ∈ C do
3: σi ← computeTopKListByIndexing(imgi, NS)
4: R(0) ← R(0) ∪ σi
5: end for
6: t← 0
7: k ← ks
8: while t < T do
9: for all σi ∈ R(t) do

10: for all imgj ∈ σi do
11: if δ(τi, τj , k) ≥ 0 then

12: r
(t+1)
d (i, j)← dδ(τi, τj , k)

13: else
14: r

(t+1)
d (i, j)← 1 + σi(j)

15: end if
16: end for
17: end for
18: R(t+1) ← reSortRankedLists(r

(t+1)
d )

19: k ← k + 1
20: t← t+ 1
21: end while
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The first loop (lines 1-5) calls the indexing structures aiming at retrieving
the set of ranked lists R, as defined in Section 3. The function computeTop-
KListByIndexing can use any indexing structure that can be parameterized
to produce ranked lists, which are is computed using kNN queries, consid-
ering the entire collection as query images. As mentioned before, the size of
the ranked lists is given by the parameter NS .

Note that the size of the top-k lists starts with the value of the parameter
ks. At each iteration t, we increment the number of k neighbors to be
considered (line 19). The motivation behind this increment relies on the
fact that the effectiveness of the ranked lists increase along iterations. In
this way, non-relevant images are moved out from the first positions of the
ranked lists and k can be increased for considering more images.

It is also important to emphasize the motivation of the conditional state-
ment in Line 11. The similarity between two top-k lists, given by the func-
tion δ, can return a score equals to zero. In these situations, the tie break
criterion is based on position of the image in the ranked list of the previous
iteration.

Figure 1 illustrates the overall searching process of the proposed ap-
proach, using re-ranking and indexing structures. The main characteristic
of the system is the set of ranked lists, which represents the interface between
the indexing structures and the re-ranking algorithm.

5. Indexing Structures

The problem of supporting nearest neighbor and range queries in metric
spaces has recently attracted the attention of researchers. An excellent
survey of metric access methods can be found in [8].

The pioneering work of Burkhard and Keller [7] provided two interesting
techniques for partitioning a metric dataset in a recursive fashion. Their
first approach partitions a dataset by choosing a representative from the set
and grouping the objects with respect to their distance to the representative.
The second approach divides the original set into a fixed number of groups
and chooses a representative from each of the groups.

The metric tree of Uhlmann [44] and the Vantage-point tree (VP-tree) [54]
are somewhat similar to the first technique of [7] as they divide the dataset
into disjoint partitions according to a representative, called a “vantage point”.
In order to reduce the number of distance calculations to answer similarity
queries using the VP-tree, Baeza-Yates et al. [5] suggested to use the same
vantage point in all partitions that belong to the same level. Then, a binary
tree degenerates into a simple list of vantage points. Bozkaya and Özsoyogly [6]
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Figure 1: Overall searching process of a CBIR system using re-ranking and indexing
structures.

proposed an extension of the VP-tree called the Multi-Vantage-Point tree (MVP-
tree), which carefully chooses m vantage points for each level of the tree.
The Generalized Hyperplane tree (GH-tree) [44] is another method that re-
cursively divides the dataset into disjoint partitions by selecting objects as
representatives and assigning the remaining ones to the closest representa-
tive.

The Metric tree (M-tree) [9] is a height-balanced tree also based on
the second technique presented in [7], which stores the data in the leaves
and builds an appropriate cluster hierarchy on top, allowing for dynamic
operations. Traina Jr. et al. [43] proposed an extension of the M-tree,
named Slim-tree. They introduced three new features: (1) a node-splitting
strategy based on the MST (minimum spanning tree) algorithm, (2) an
insertion policy based on the node occupancy, and (3) a post-processing al-
gorithm to reduce the overlapping volumes in the tree, called Slim-down.
Vieira et al. [45] suggested to relax the height balance constraint by keeping
a trade-off between breadth-searching and depth-searching in order to re-
duce the overlapping between nodes in high-density regions, improving the
search performance in those regions.

The Ball-and-Plane tree (BP-tree) [3] combines the advantages of both
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the first (partitions) and the second (groups) technique of [7] in order to
achieve a structure of tight and low overlapping clusters, yielding signifi-
cantly improved performance on performing similarity search.

6. Experimental Evaluation

In this section, we analyze the performance and the scalability of our
technique. Our experiments are intended (i) to validate that, even consid-
ering scalable data structures (only a subset of ranked lists computed by
indexing structures) as the input, our re-ranking algorithm can obtain sig-
nificant gains in effectiveness and efficiency; (ii) to demonstrate that our
approach does not depend on a specific image descriptor or indexing struc-
ture; and (iii) to show that the proposed method scales up very well and,
hence, it is suitable for large collections.

6.1. Experimental Setup

Experiments were conducted on a large set of images, known as the
Amsterdam Library of Object Images (ALOI)1 [15]. It is a collection of
72,000 images from 1,000 classes of objects, with a common background
and different viewpoint, occlusion, and illumination.

We tested our approach with five image descriptors described in liter-
ature and extensively used by the computer vision and image processing
communities. Those approaches have been used for the convenience of ob-
taining large datasets in which a reasonable ground truth can be established.
Regardless of that, our re-ranking scheme itself does not use any property
related to the nature of the methods. Our image descriptors are the follow-
ing:

• Auto Color Correlation (ACC) [17];

• Border/Interior pixel Classification (BIC) [39];

• Color Coherence Vectors (CCV) [25];

• Global Color Histogram (GCH) [40];

• Local Color Histograms (LCH) [23].

1http://staff.science.uva.nl/~aloi/ As of May 2012.
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For our experimental evaluation, we adopted the implementation of M-
tree, Slim-tree, and DBM-tree from the GBDI Arboretum Library2. It offers
a robust and uniform platform in which one can perform a reliable compar-
ative analysis between different metric access methods. For that reason,
BP-tree was implemented into the GBDI Arboretum Library, with the same
code optimization. In order to guarantee a fair comparison, all of the com-
pared methods were configured using their best recommended setup. A
performance comparison between those indexing structures can be found
in [3]. Our interest here is to use a well-established validation framework
in which we can perform a behavior analysis of the proposed method with
respect to indexing structures. Regardless of that, our approach is flexible
and, hence, any other indexing method can be used.

As described in Section 4, the image re-ranking algorithm relies on three
parameters: ks (the initial size of top-k lists); NS (the size of ranked lists
retrieved by the indexing structures); and T (the number of iterations). The
parameters used in our experiments were: ks equals to 45; NS set to 7,200;
and T equals to 1. The parameter NS was defined as 10% of the dataset
size. The parameters ks and T were established through experimental tests
according to an approach used in [29]. Retrieval scores are computed rang-
ing the parameters ks in the interval [1, 60] (in steps of 5) and T in the
interval [1, 5]; and the best parameter values are determined. In these ex-
periments, we considered only the combination BPTree + ACC. The same
parameter values are used for all the possible combinations between the
image descriptors and the indexing structures.

We assess the effectiveness of each of those combinations using the met-
rics of Precision and Recall. Precision is the ratio of the number of relevant
images retrieved to the total number of images retrieved. Recall is the ratio
of the number of relevant images retrieved to the total number of relevant
images in the database. However, there is a trade-off between Precision and
Recall. Greater Precision decreases Recall and greater Recall leads to de-
creased Precision. For that reason, we choose the Average Precision (AP) as
the metric used for assessing the effectiveness of CBIR tasks. The Average
Precision combines Recall and Precision into a single measure by taking the
set of ranks at which the relevant images occur, computing the precision
at those positions, and then averaging the set of precision values obtained.
The average precision across a series of queries can be averaged, resulting in
a measure known as Mean Average Precision (MAP).

2http://www.gbdi.icmc.usp.br/arboretum/ As of May 2012.
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6.2. Effectiveness Analysis

Tables 1, 2, 3, and 4 present the MAP obtained for the image descriptors
before and after the execution of the re-ranking algorithm on ranked lists
produced by BP-tree, DBM-tree, M-tree, and Slim-tree, respectively.

Table 1: MAP obtained for different image descriptors using ranked lists produced by
BP-tree.

Image Before After Effectiveness
Descriptor Re-Ranking Re-Ranking Gain

ACC 44.15% 46.12% 4.44%
BIC 71.95% 78.84% 9.57%
CCV 47.77% 50.96% 6.68%
GCH 50.87% 53.14% 4.47%
LCH 58.85% 66.03% 12.19%

Table 2: MAP obtained for different image descriptors using ranked lists produced by
DBM-tree.

Image Before After Effectiveness
Descriptor Re-Ranking Re-Ranking Gain

ACC 44.17% 46.14% 4.47%
BIC 71.90% 78.87% 9.70%
CCV 47.77% 50.99% 6.73%
GCH 50.88% 53.20% 4.55%
LCH 58.84% 65.94% 12.08%

Table 3: MAP obtained for different image descriptors using ranked lists produced by
M-tree.

Image Before After Effectiveness
Descriptor Re-Ranking Re-Ranking Gain

ACC 44.17% 46.15% 4.47%
BIC 71.88% 78.96% 9.85%
CCV 47.79% 51.01% 6.74%
GCH 50.89% 53.19% 4.53%
LCH 58.84% 65.91% 12.03%

The results indicate that the proposed method improves the effective-
ness of CBIR tasks. As we can observe, our approach provides significant
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Table 4: MAP obtained for different image descriptors using ranked lists produced by
Slim-tree.

Image Before After Effectiveness
Descriptor Re-Ranking Re-Ranking Gain

ACC 44.18% 46.16% 4.48%
BIC 71.91% 79.00% 9.86%
CCV 47.78% 51.00% 6.75%
GCH 50.90% 53.21% 4.54%
LCH 58.82% 65.97% 12.16%

effectiveness gains, ranging from 4.44% to 12.19%. For instance, the use of
BP-Tree + LCH produced the higher effectiveness gain of all the possible
combinations between the image descriptors and the indexing structures,
yielding an improvement equals to 12.19%.

Paired t-tests were performed to verify the statistical significance of those
results. For that, the confidence intervals for the differences between paired
means of each class from the database were computed to compare every
pair of approaches. If the confidence interval includes zero, the difference is
not significant at that confidence level. If the confidence interval does not
include zero, then the sign of the difference indicates which alternative is
better.

Tables 5, 6, 7, and 8 present the confidence intervals (with a confidence of
99.9%) of the differences between the MAP obtained for the image descrip-
tors before and after the execution of the re-ranking algorithm on ranked
lists produced by BP-tree, DBM-tree, M-tree, and Slim-tree, respectively.

Table 5: Differences between MAP obtained for the image descriptors before and after
using the image re-ranking algorithm on ranked lists produced by BP-tree, at a confidence
of 99.9%.

Image Confidence Interval (99.9%)
Descriptor Mean min. max.

ACC 1.96% 1.35% 2.57%
BIC 6.89% 6.11% 7.67%
CCV 3.19% 2.59% 3.79%
GCH 2.27% 1.70% 2.84%
LCH 7.18% 6.23% 8.12%

Since the confidence intervals do not include zero in any case, those
results confirm that the proposed method improves the effectiveness of CBIR
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Table 6: Differences between MAP obtained for the image descriptors before and after us-
ing the image re-ranking algorithm on ranked lists produced by DBM-tree, at a confidence
of 99.9%.

Image Confidence Interval (99.9%)
Descriptor Mean min. max.

ACC 1.98% 1.37% 2.58%
BIC 6.97% 6.19% 7.75%
CCV 3.22% 2.61% 3.82%
GCH 2.31% 1.75% 2.88%
LCH 7.11% 6.17% 8.04%

Table 7: Differences between MAP obtained for the image descriptors before and after
using the image re-ranking algorithm on ranked lists produced by M-tree, at a confidence
of 99.9%.

Image Confidence Interval (99.9%)
Descriptor Mean min. max.

ACC 1.98% 1.37% 2.58%
BIC 7.08% 6.30% 7.86%
CCV 3.22% 2.62% 3.82%
GCH 2.30% 1.73% 2.87%
LCH 7.08% 6.14% 8.01%

Table 8: Differences between MAP obtained for the image descriptors before and after
using the image re-ranking algorithm on ranked lists produced by Slim-tree, at a confidence
of 99.9%.

Image Confidence Interval (99.9%)
Descriptor Mean min. max.

ACC 1.98% 1.37% 2.29%
BIC 7.09% 6.31% 7.87%
CCV 3.23% 2.63% 3.83%
GCH 2.31% 1.74% 2.88%
LCH 7.15% 6.21% 8.10%

tasks, independent of the image descriptor and/or the indexing structure
employed to produce ranked lists.

6.3. Efficiency Analysis

In a sequential approach, retrieving a ranked list requires N distance
calculations (with N equals to 72,000 for the ALOI dataset). The use of
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indexing structures reduce significantly the need for distance calculations,
which impacts on both efficiency and scalability of the CBIR systems.

Table 9 presents, for each combination between the image descriptors
and the indexing structures, the average number of distance calculations
and the efficiency gains obtained by using an indexing structure regarding
the linear scan. As we can observe, the use of indexing structures reduces up
to 73% (for ACC + BP-Tree) the average number of distance calculations
required for producing ranked lists.

Table 9: Average number of distance calculations performed for different indexing struc-
tures.

Indexing Image Distance Efficiency
Structure Descriptor Calculations Gain

BP-tree

ACC 19358.40 73.11%
BIC 27821.20 61.36%
CCV 30846.80 57.16%
GCH 23264.80 67.69%
LCH 42896.50 40.42%

DBM-tree

ACC 22340.50 68.97%
BIC 33152.70 53.95%
CCV 38243.40 46.88%
GCH 31315.40 56.51%
LCH 47518.00 34.00%

M-tree

ACC 28244.00 60.77%
BIC 43846.90 39.10%
CCV 47014.70 34.70%
GCH 39654.90 44.92%
LCH 55672.50 22.68%

Slim-tree

ACC 32702.20 54.58%
BIC 40835.80 43.28%
CCV 53857.30 25.20%
GCH 52624.10 26.91%
LCH 57574.00 20.04%

Considering the re-ranking step, the main contribution of the proposed
method refers to the use of only a subset of the ranked lists (NS equals to
7,200). This characteristic impacts drastically on the scalability of CBIR
systems, since using the complete ranked lists or the complete distance ma-
trix can be impracticable (N2=5,184,000,000).
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The average time required for computing the re-ranking for each ranked
list is 0.06s, considering the parameters settings described in Section 6.1.
We used a Linux Ubuntu 10.04, running on a Intel Xeon X7560 CPU and
a C implementation. It is important to realize that the overall efficiency of
the proposed retrieval system can be even improved, if we consider the use
of possible optimizations based on exploiting parallel architectures in the
implementation of the re-ranking method.

6.4. Scalability Analysis

In this section, we evaluate the scalability of the image re-ranking algo-
rithm. While indexing structures save efforts in computing distances, the
re-ranking algorithm is also prepared for dealing with growing ranked lists.

The size of the ranked lists analyzed is given by the parameter NS and,
therefore, the asymptotic complexity of the algorithm is O(N). This pa-
rameter represents an important trade-off control between effectiveness and
efficiency.

In the following, we present a set of experiments aiming at evaluating the
impact of the parameter NS on the results. We ranged the parameter from
70 to 7000, reporting for each descriptor: (i) the average time (in seconds) of
re-ranking by ranked list; and (ii) the effectiveness gain obtained. In these
experiments, we considered only BP-tree for producing the ranked lists, as
it achieved the best performance among all the indexing structures.

Figure 2 shows the impact of the parameter NS (size of ranked lists)
on the effectiveness gains. A quickly grow of the effectiveness gains was
obtained for small values of NS and a stabilization can be observed for
larger values (specially for NS ≥ 2800). All descriptors presented analogous
results.

The impact of parameter NS on the average time of re-raking by ranked
list is illustrated in Figure 3. A linear growth of average times can be
observed for all image descriptors.

As we can observe in Figures 2 and 3, by increasing the size of the ranked
lists, the proposed method exhibits a linear increasing of the average time,
while the effectiveness increase very quickly at small values of NS . This
behavior represents the most important advantage of our method in com-
parison with other re-ranking methods, allowing its use for large datasets.

While other state-of-the-art approaches [51, 46] present computing cost
of O(N3) and storage requirements of O(N2), our method is linear both for
computational and storage costs.
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Figure 2: Impact of the size of the ranked lists on effectiveness gain.

6.5. Comparison to Other Approaches

We also evaluate our method in comparison with other state-of-the-art
post-processing methods. We use the MPEG-7 [20] dataset, with the called
bullseye score (Recall@40 ), commonly used for post-processing methods
evaluation and comparison. The following shape descriptors, also used by
other methods, were considered: Inner Distance Shape Context (IDSC) [21],
Contour Features Descriptor (CFD) [26], Aspect Shape Context (ASC) [22],
and Articulation-Invariant Representation (AIR) [16]. Table 10 presents re-
sults of our Index-Based Image Re-Ranking algorithm. Despite of low com-
putational efforts required and the scalable behavior previous discussed, the
proposed re-ranking method presented effectiveness results comparable to
state-of-the-art approaches.
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Figure 3: Impact of the size of the ranked lists on average time.

6.6. Impact of Indexing Structures

We also evaluate the impact of the use of indexing structures on the
effectiveness results. Table 11 presents the retrieval scores (Recall@40 ) for
the four shape descriptors considered, considering two different values of NS .
We also compared with the results obtained by the re-ranking algorithm
without the indexing structures (considering the full distance matrix). We
can observe that, in general, the loss in terms of effectiveness is very low in
comparison with the relevant gains in scalability. For the AIR descriptor,
which presents a high precision (similar images at beginning of ranked lists),
the indexing approach overcomes the original algorithm.

7. Conclusions

In this paper, we have presented a scalable re-ranking method that ex-
ploits contextual information for improving the effectiveness of CBIR tasks.
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Table 10: Post-processing methods comparison on MPEG-7 dataset (Recall@40).

Algorithm Shape Score Gain
Descriptor

Shape Descriptors

Contour Features Descritpor (CFD) [26] - 84.43% -

Inner Distance Shape Context (IDSC) [21] - 85.40% -

Aspect Shape Context (ASC) [22] - 88.39% -

Articulation-Invariant Rep. (AIR) [16] - 93.67% -

Post-Processing Methods

Graph Transduction (LP) [49] IDSC 91.00% +6.56%

Index-Based Image Re-Ranking IDSC 91.56% +7.21%

Index-Based Image Re-Ranking CFD 92.85% +9.97%

Contextual Spaces [28] CFD 93.02% +10.17%

Locally Constrained Diffusion Process [50] IDSC 93.32% +9.27%

Shortest Path Propagation [46] IDSC 93.35% +9.31%

Index-Based Image Re-Ranking ASC 94.09% +6.45%

Locally Constrained Diffusion Process [50] ASC 95.96% +8.56%

Index-Based Image Re-Ranking AIR 99.93% +6.68%

Tensor Product Graph [52] AIR 99.99% +6.75%

Table 11: Retrieval scores (Recall@40 ) for different descriptors, indexing structures and
sizes of ranked lists (NS).

DBM-tree M-tree Slim-tree BP-tree Without

NS=140 NS=280 NS=140 NS=280 NS=140 NS=280 NS=140 NS=280 Indexing

IDSC 90.56% 91.56% 90.56% 91.56% 90.56% 91.56% 90.56% 91.56% 92.18%
CFD 91.15% 92.85% 91.15% 92.85% 91.15% 92.85% 91.15% 92.85% 94.13%
ASC 93.06% 94.09% 93.06% 94.09% 93.06% 94.09% 93.06% 94.09% 94.69%
AIR 99.93% 99.93% 99.93% 99.93% 99.93% 99.93% 99.93% 99.93% 99.90%

The main idea consists in analyzing the similarity between ranked lists for
performing a re-ranking process.

Different from previous works, the proposed re-ranking method does not
require distance information among all the images of a given collection or
complete ranked lists. Instead, our technique relies on ranked lists produced
by efficient indexing structures. Such a strategy makes it scalable and,
hence, well-suited to large datasets.

We have conducted a large set of experiments on a well-known and public
dataset, considering several indexing structures. Experimental results have
demonstrated that the proposed re-ranking method can achieve significant
effectiveness gains (up to 12.19% better) and, at the same time, improve
considerably the efficiency (up to 73.11% faster).
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Future work includes the evaluation of other CBIR descriptors (e.g., local
features [2] or motion patterns [1]) and indexing structures. In addition,
the proposed re-ranking algorithm can be extended for combining results
obtained from different CBIR descriptors (rank aggregation tasks). Finally,
we want to investigate the effects of using parallel computing for accelerating
the image re-ranking algorithm.
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