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Abstract
In spite of the huge advances in supervised learning, the

common requirement for extensive labeled datasets repre-
sents a severe bottleneck. In this scenario, other learn-
ing paradigms capable of addressing the challenge asso-
ciated with the scarcity of labeled data represent a rele-
vant alternative solution. This paper presents a novel clus-
tering method called Self-Supervised Graph Convolutional
Clustering (SGCC)1, which aims to exploit the strengths
of different learning paradigms, combining unsupervised,
semi-supervised, and self-supervised perspectives. An un-
supervised manifold learning algorithm based on hyper-
graphs and ranking information is used to provide more ef-
fective and global similarity information. The hypergraph
structures allow identifying representative items for each
cluster, which are used to derive a set of small but high-
confident clusters. Such clusters are taken as soft-labels
for training a Graph Convolutional Network (GCN) in a
semi-supervised classification task. Once trained in a self-
supervised setting, the GCN is used to predict the cluster of
remaining items. The proposed SGCC method was evalu-
ated both in image and citation networks datasets and com-
pared with classic and recent clustering methods, obtaining
high-effective results in all scenarios.

1. Introduction
The amount of digital data generated every day is con-

stantly growing, mainly supported by the technological ad-
vances in several areas of knowledge [4]. This huge amount
of content creates an imperative demand for methods able
to automatically organize, separate, and obtain knowledge
from data. During the last decade, impressive advances has
been achieved in supervised learning tasks, where labeled
data is available for training machine learning models later
used to make predictions. However, despite the substantial
advances especially supported by the use of deep learning
techniques [19], some challenges still remains, since such
methods require extensive labeled sets for training. Fur-
thermore, real-world scenarios often lack cataloged infor-
mation. By demanding huge human efforts associated to its
creation, the labeled sets are usually sparse, inaccurate or
even nonexistent [40].

In order to overcome such limitations, research efforts
have been put on other learning paradigms, capable of han-
dling the scarcity of labeled data. In this scenario, several
semi-supervised, unsupervised and self-supervised learning

1The code is available at https://github.com/lopes-leonardo/sgcc

approaches have been recently proposed. Although some of
them represent traditional research directions, they have at-
tracted a crescent interest due to recent conditions and chal-
lenges. Semi-supervised learning techniques address the
existence of a reduced number of labeled samples, mainly
by exploiting abundant unlabeled data and expanding the
information through the datasets [9, 35, 13, 10]. Unsuper-
vised learning methods aim to obtain knowledge from data
by only exploiting the relation between objects, without
any labeled information [33, 11]. Self-supervised learning
methods are another recent approach in which supervised or
semi-supervised techniques are trained with knowledge ob-
tained in an unsupervised manner, by pairwise comparisons
or based on soft labels obtained from the original data [40].

In unsupervised learning, clustering is an important cat-
egory of methods applied in several domains, such as com-
puter vision, pattern recognition and data mining. De-
spite being a traditional field, it remains an active research
area [14, 33, 24]. The main objective consists in discover-
ing and separating the natural groupings of a set of patterns
by exploring some inherent similarities between them [33].
Analogous to other machine learning techniques, clustering
is highly dependent on the features and similarity measure-
ment to achieve effective results: the better the similarity
given by the representation embedded in the input feature-
space, the better the groups found by those methods [24].

In a close direction to clustering, unsupervised mani-
fold learning techniques exploit the structure of datasets
to obtain better similarity relationships between the data
samples. The methods take into account the dataset mani-
fold through more global and effective similarity measures.
Among the different approaches applied in manifold learn-
ing, ranked-based techniques have been established as a
promising solution. They analyze the similarity relation-
ship encoded in ranked lists, which provide a rich source of
similarity information, to compute new similarity measures
based on global data relationships [29]. Those new mea-
sures are used to improve retrieval and machine learning
tasks [1, 30].

In semi-supervised learning, graph-based algorithms are
widely exploited to extract the underlying structure of data.
A promising research direction is given by the use of Graph
Convolutional Networks (GCNs) [35], which have achieved
state-of-the-art results on semi-supervised learning tasks.
Such networks allow the learning of more effective embed-
dings through convolutional operations on non-Euclidean
domains, defined by graph structures.

Moreover, GCNs have been recently applied to cluster-
ing tasks, exploiting relationships represented as graphs. In
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[5], a clustering network exploits the relation between the
node features and the normalized adjacency matrix using a
Messaging Passing (MP) layer. The output is assigned to
cluster by a Multi-Layer Perceptron (MLP) and the model
is trained using a combined loss. A different approach is
used in [7], where a GCN is combined with an autoencoder
network to clusterize the dataset. Firstly, the autoencoder
learns to reconstruct the input data in an unsupervised man-
ner. The GCN layers receive the representation learned by
the respective layer of the autoencoder, before the activation
function. The framework is trained with a self-supervised
approach based on the similarity between each object’s au-
toencoder representation and its cluster center vector.

In this paper, we propose a novel clustering method
called Self-Supervised Graph Convolutional Clustering
(SGCC). The strengths of different learning paradigms are
exploited, combining unsupervised, semi-supervised and
self-supervised perspectives. Firstly, the proposed ap-
proach employs an unsupervised manifold learning algo-
rithm based on hypergraphs [29] to provide more effective
and global similarity information. The hypergraph struc-
tures are exploited to select representative elements of the
dataset and create a reliable initial cluster configuration.
The initial clusters are modeled as soft-labels for training
a GCN, used for classification in a semi-supervised man-
ner. Subsequently, the GCN is used to predict the cluster of
remaining data samples, resulting in a self-supervised clus-
tering method. Furthermore, by processing the data at a fea-
ture level, our proposed approach can be applied to several
domains, such as citation networks.

To the best of our knowledge, it is the first attempt that
uses a robust similarity formulation given by hypergraph-
based manifold learning to derive a self-supervised method
based on GCNs for clustering tasks. Another relevant con-
tribution is given by a novel approach for defining represen-
tative proxy elements and creating initial reliable clusters
used for training the GCN models.

The effectiveness of the proposed method was assessed
though a extensive experimental evaluation. Experiments
were conduced on several datasets, including image datasets
and citation networks, various GCN models, different eval-
uation measures, and comparison with classic and recent
clustering techniques. A visual experiment was also con-
ducted to demonstrate the ability of our method in project-
ing elements from the same classes closely in the embed-
ding space computed by GCNs. The results obtained by
the proposed approach were better or comparable with the
considered methods in all evaluated scenarios.

2. Formal Definition
This section presents a formal definition for the three

main tasks involved in the proposed approach.
2.1. Rank-Based Manifold Learning

Let C = {o1, o2, . . . , on} be a data collection, where
each object oi denotes a data item. Let xi be a feature vector
defined in Rd, which represents the element oi ∈ C in a d-
dimensional feature space. The feature vectors are widely
used for retrieval and machine learning tasks, commonly

supported on distance or similarity measures computed be-
tween pairs of objects. Formally, let ρ: Rd × Rd → R+ be
a distance function that computes the distance between two
objects based on their feature vectors. The distance between
two objects oi and oj can be defined by ρ(xi, xj). The tra-
ditional Euclidean distance is often employed. However,
considering only pairs of objects can waste relevant infor-
mation contained in more general relationships. In this sce-
nario, ranked-based techniques aim to represent and exploit
rich contextual similarity information.

A ranked list τq can be computed, based on the distance
function ρ, to obtain the most similar objects of a given el-
ement oq . Therefore, τq=(o1, o2, . . . , ol) can be formally
defined as a permutation of the collection Cl, where l defines
the length of the ranked list and Cl ⊂ C is a sub-set contain-
ing the l most similar objects to oq . The permutation τq is
a bijection from the set Cl onto the set [Lg] = {1, 2, . . . , l}.
Moreover, τq(oi) represent the position of the object oi in
the ranked list τq . If oi is ranked before oj in the ranked list
of oq , that is, τq(oi) < τq(oj), then ρ(xq,xi) ≤ ρ(xq,xj).

By computing a ranked list τi for every object oi ∈ C,
the set T = {τ1, τ2, . . . , τn} of ranked lists can be obtained.
This set encodes important similarity information, which
takes into account the structure of the dataset. Rank-based
manifold learning algorithms exploit the similarity informa-
tion encoded in the set of ranked lists T to compute a new
similarity measure, which in turn can be used to update the
set of ranked lists. Formally, we can define an unsupervised
manifold learning method as a function m()̇ which com-
putes a more effective set of ranked lists T ′, as follows:

T ′ = m(T ). (1)

In this work, a hypergraph formulation [29] is used to
instantiate the function m(·). The set T ′ and the hypergraph
structures are used by the proposed clustering approach.

2.2. Clustering
Clustering can be defined as an unsupervised learning

task that aims to extract natural disjunct groups from a data
collection C [14]. Formally, let S = {S1,S2, . . . ,Sc} be
a set of c clusters, where S1

⋂
S2

⋂
. . .

⋂
Sc = ∅ and

S1

⋃
S2

⋃
. . .

⋃
Sc = C. Every object oi ∈ C is assigned to

exactly one cluster Sj ∈ S and does not belong to any other
cluster [33].

2.3. Semi-Supervised Classification through GCNs
Recently, GCNs have been successfully applied to semi-

supervised learning using graph-based representations of
data [35]. We formally define semi-supervised classifica-
tion tasks based on GCNs, according to [15]. Let G =
(V, E ,X) be an undirected graph. Let V = {v1, v2, . . . , vn}
denotes a the set of graph nodes, where each vi ∈ V repre-
sents an object of data collection oi ∈ C. Let E be the
edge set and X = [x1,x2, . . . ,xn]

T ∈ Rn×d be a fea-
ture matrix, where each xi ∈ X is a d-dimensional feature
vector which represents the object oi and its correspond-
ing node vi. The edge set, composed by a set of pairs
(vi, vj) ∈ E , can be defined by a non-negative adjacency
matrix A = [aij ] ∈ Rn×n.
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Figure 1. General structure and data flow of the proposed Self-Supervised Graph Convolutional Clustering (SGCC) method. Based on
features and ranked lists from the original datasets, alongside with graph representations (when available), the proposed approach separates
the data into clusters in three stages.

In addition, let Y = {y1, y2, . . . , yc} be a set of labels,
representing the target classes that can be assigned to nodes
vi ∈ V . In this scenario, a partially labeled dataset can
be defined as V = {v1, v2, . . . , vL, vL+1, . . . , vn}, where
VL = {vi}Li=1 represents a subset of labeled objects VL ∈
V and VU = {xi}ni=L+1 is the subset of unlabeled objects
VU ∈ V . As a general rule, in semi-supervised classifi-
cation, |VL| ≪ |VU |. The training set can be defined by
a function lb : VL → Y , which assign labels such that
yj = lb(vi) ∀ vi ∈ VL. The main objective of GCN clas-
sification is to learn a new labeling function l̂b : VU → Y ,
which will predict labels of unlabeled nodes in VU .

3. Proposed Approach
This section presents the proposed self-supervised clus-

tering approach, named Self-Supervised Graph Convolu-
tional Clustering (SGCC). The method is based on three
main techniques, as illustrated in Figure 1 and discussed in
detail in the following:

1. Manifold Learning based on Hypergraphs: A rank-
based manifold learning algorithm [29] based on a hyper-
graph formulation is used to redefine the similarity among
data samples. Additionally, the hypergraph structures are
exploited by our approach in order to derive the initial clus-
ters. The manifold algorithm is discussed in Section 3.1;

2. Self-Supervised Clustering: The more effective similar-
ity and the hypergraph structures are used to derive a novel
approach capable of identifying representative elements and
creating small but reliable clusters. Section 3.2 describes
how our method select representative elements and uses
them to derive high-effective small clusters;

3. Graph Convolutional Network: A GCN is trained us-
ing the reliable clusters as soft-labels, using the original
dataset features. A reciprocal k-NN graph is created from
the improved ranked lists computed by the manifold learn-
ing algorithm, if the input data does not provide graph infor-
mation. The GCN is used in a semi-supervised learning set-
ting, exploiting both soft-labeled and unlabeled data. Sec-
tion 3.3 describes the general concepts of GCNs and some
of its variants used.

3.1. Manifold Learning based on Hypergraphs
The Log-based Hypergraph of Ranking References

(LHRR) [29] is an unsupervised manifold learning method
which computes more effective similarities among data el-
ements. The method is based on ranking information from
the set of ranked lists T modeled in hypergraph structures.
The algorithm can be broadly divided in five main steps,
which are described in the following sections:

3.1.1 Rank Normalization
Firstly, the method computes a new similarity measure pn
by using reciprocal rank positions. The pn similarity be-
tween xi and xj can be defined as:

ρn(oi, oj) = 2l − (τi(oj) + τj(oi)), (2)

where l denotes the ranked list length. The top-l items of the
ranked lists are then updated by a stable sorting algorithm,
based on the new computed similarities.

3.1.2 Hypergraph Construction
Hypergraphs are a robust generalization of graphs, where
hyperedges can connect any set of vertices. Let G =
(V,E,w) be a hypergraph composed by a finite set of ver-
tices V and by a hyperedge set E. Each item oi ∈ C is
associated to a vertice vi ∈ V . The hyperedge set E can be
defined as a family of subsets of V , such that

⋃
e∈E = V .

Additionally, a weight w(ei) is assigned to each hyperedge
ei, representing the confidence established by its relation-
ships. A hyperedge ei can be defined by a set of vertices
ei = {v1, v2, . . . , vm}. In this configuration, a hyperedge
ei is incident with a vertex vj when vj ∈ ei. Following this
definition, we can represent the hypergraph using an inci-
dence matrix H of size |E| × |V |, such that:

h(ei, vj) =

{
r(ei, vj) if vj ∈ ei,
0 otherwise. ,

where r : E × V → R+ is a membership function which
indicates the degree of a vertex vj belongs to a hyperedge
ei. The function exploits a second-order neighborhood rela-
tionship. For each data object oi ∈ C, a hyperedge ei is de-
fined based on the k-neighborhood set of oi and neighbors
of neighbors. Formally, the function r(ei, vj) is defined as:
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r(ei, vj) =
∑

oz∈N (oi,k)∧oj∈N (oz,k)

wp(oi, oz)× wp(oz, oj),

(3)
where wp(oi, oz) computes a relevance weight to oz based
on its position in the ranked list of oi, namely τi. The func-
tion is computed through a log-based formulation:

wp(oi, oz) = 1− logk τi(oz). (4)

Additionally, the Hyperedge Weight w(ei) measures the
confidence of the relationships between the objects in hy-
peredge ei. In order to compute w(ei), a Hypergraph
Neighborhood Set Nh is defined, containing the k vertices
with the highest scores h(ei, .) in the hyperedge. Consider-
ing the Hypergraph Neighborhood Nh, an effective hyper-
edge is expected to contain few vertices with high values
of h(ei, .) [29]. Therefore, the hyperedge weight w(ei) is
computed as follows:

w(ei) =
∑

j∈Nh(oi,k)

h(ei, vj). (5)

Moreover, since each hyperedge ei ∈ E is created based
on the respective ranked list τi ∈ T , the Hyperedge Weight
w(ei) can be considered as an unsupervised effectiveness
measure of τi. Consequently, the more effective the ranked
list, higher the hyperedge weight and more reliable the re-
lationships contained in the hyperedge [29].

3.1.3 Hyperedge Similarities

After the hypergraph construction, LHRR [29] creates a
new similarity matrix Sp based on two hypotheses. Firstly,
similar objects have similar ranked lists and thus similar hy-
peredges. The similarity measure between two hyperedges
ei and ej is given by its inner products, by multiplying the
incidence matrix by its transposed: Sh = HHT .

The second hypothesis states that similar objects are ex-
pected to be referenced by the same hyperedges. Conse-
quently, the similarity between two vertices vi and vj can
be computed by multiplying the h values in their corre-
sponding hyperedges, given by: Sv = HTH. Finally, the
two similarities are combined by the Hadamard product be-
tween matrices Sh and Sv , obtaining the similarity matrix
Sp = Sh ◦ Sv .

3.1.4 Cartesian Product of Hyperedge Elements

Aiming to maximize the similarity information extracted
from the hypergraph, LHRR exploits the vertices pairwise
relationship by computing the Cartesian product between
their respective hyperedges. Therefore, the Cartesian prod-
uct between two hyperedges eq and ei can be defined as:

eq × ei = {(vy, vz) : vy ∈ eq ∧ vz ∈ ei} (6)

The Cartesian product can also be used to exploit the re-
lationship between elements of the same hyperedge eq , be-
ing described as e2q . For each pair (vi, vj) ∈ eq

2, a relation-
ship p : E×V ×V → R+ is established. This relationship

is computed based on the weight w(eq), which represents
the confidence of the hyperedge. Moreover, the relationship
p also defines a membership degree between the vertices vi
and vj with respect to eq:

p(eq, vi, vj) = w(eq)× h(eq, vi)× h(eq, vj). (7)
Based on the membership degree p, the matrix Q can be

constructed considering the relationships across all hyper-
edges:

Qi,j =
∑

eq∈E∧(vi,vj)∈eq2

p(vi, vj). (8)

3.1.5 Hypergraph-Based Similarity

Both matrices Sp and Q are combined to compute the
Hypergraph-based similarity matrix W = Q ◦ Sp. This
new similarity matrix, which concentrates all similarity in-
formation extracted from the hypergraph, is used to com-
pute a new set of ranked lists for the data collection. Addi-
tionally, by using both input and output as ranked lists, the
LHRR method can be iteratively repeated in order to obtain
increasingly effective rankings and hypergraph representa-
tions. Let the superscript (t) denotes the current iteration,
the set of ranked lists T (t+1) is computed based on the sim-
ilarity W(t) and set T (0) is defined by the initial feature
representation.

For its application in SGCC, the LHRR method is re-
peated along t iterations. The final ranked list set T (t+1),
the current hyperedges set E(t) and its respective weights
are used to initially cluster the input data, as discussed in
the following sub-section.

3.2. Self-Supervised Clustering
This section discusses how the proposed SGCC method

exploits the similarity information encoded into the hyper-
graph structures to create the initial reliable clusters. Subse-
quently, such clusters and the set of ranked lists computed
by LHRR are used by GCNs for clustering remaining data
items in a self-supervised manner. The self-supervised clus-
tering approach, illustrated in Figure 1, and can be summa-
rized in four main steps, discussed in the following:

1. Hyperedge Self-Confidence Score: A new score is
computed in order to estimate the quality of similarity in-
formation encoded in the hyperedges. The hyperedges are
ranked based on this estimation, such that top hyperedges
present higher hyperedge weights and stronger similarity
relationships with its neighbors;

2. Representatives Proxy Selection: Based on this score,
a representative data item is selected for each of the de-
sired clusters. These representatives items provide a high-
effective initial representation for each cluster and are used
for directing an agglomeration process;

3. Reliable Clusters Set: Each cluster is represented by a
cluster hyperedge, initially defined by its respective repre-
sentative’s hyperedge. Subsequently, a sub-set of the data
objects is agglomerated into the created clusters follow-
ing the rank defined by the top hyperedge self-confidence
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scores. At each step, the next most reliable item is agglom-
erated based on its hyperedge relationship with each of the
clusters. During the agglomeration, the cluster’s hyperedge
is updated by merging the new item’s hyperedge;

4. Graph Convolution Network Clustering: Finally,
based on the ranked lists retrieved from LHRR, a reciprocal
k-NN graph is created. This new graph is combined with
the dataset’s feature set in order to train a GCN using the
labels defined by reliable clusters. After training, the full
dataset is classified by the graph-based network, retrieving
a final clusters set.

Each step is further discussed and formally defined in the
following sections.

3.2.1 Hyperedge Self-Confidence Score
As discussed in Section 3.1.2, the hyperedge weight w(ei)
is an unsupervised effectiveness estimation of the ranked
list τi, associated with the hyperedge ei. Additionally, the
incidence matrix score of a vertex vi in its own hyperedge
ei, represented by h(ei, vi), is incremented every time the
oi is referenced in the ranked list of an element present in
Nh(oi, k) and can be interpreted as an estimation of the re-
ciprocal relationships contained in oi’s explored neighbor-
hood. Aiming to obtain a general ranking of the most reli-
able items in the dataset, those two scores are combined in
a hyperedge self-confidence score wh:

wh(ei) = h(ei, vi)× w(ei). (9)

Based on wh, the ranked list τh=(o1, o2, . . . , on) is de-
fined as a permutation of the collection C, such that if oi
is ranked before oj , then wh(ei) ≥ wh(ej). The ranked
list τh defines the order in which the dataset items are pro-
cessed by the proposed algorithm. The more reliable items
are selected and agglomerated earlier.

3.2.2 Representatives Proxy Selection
In spite of containing a reliable order of the dataset items
according its similarity information confidence, τh can in-
clude various items similar to each other at top positions. In
this scenario, inspired by [2], a selection of one representa-
tive element for each cluster is proposed in order to ensure
diversity. These representatives will direct the creation of a
reliable set of initial clusters.

Let R = (o1, o2, . . . , oc) ∈ C be the set of selected rep-
resentatives objects, such that |R| = c and each oi ∈ R is
selected by the following equation:

oi = argmax
oj ∈ C \ R

wh(oj)

1 +
∑

ok ∈ Ri−1
h(ek, vj)

, (10)

where Ri−1 = (o1, . . . , oi−1) represents the set of previ-
ously selected representatives. Equation 10 can be sum-
marized as: select the next candidate with a high self-
confidence score (numerator) and low similarity with rep-
resentatives selected in previous iterations (denominator).

The representatives set R is initialized with the first ele-
ment in the ranked list τh, where τh(oi) = 1. After the se-
lection of the first element, c− 1 iterations are conducted to

select the remaining representatives (Equation 10). Based
on R, the initial clusters set S can be defined, such that
|S| = c and ∀Si ∈ S, Si = {ri ∈ R}. Therefore, a unitary
cluster is created for each representative object oi ∈ R.

3.2.3 Reliable Clusters Set
The hyperedge is a powerful representation of the relation-
ship between multiple data elements. Consequently, this
structure can also be explored to represent clusters based
on the hyperedges of their respective objects. In this sce-
nario, the cluster hyperedges set can be defined as the in-
cidence matrix Hs of size |S| × |V |, which represents the
assignment degree between the data objects and each of the
defined clusters. Therefore, Hs can be obtained as follows:

hs(Si, vj) =
∑
ez∈Si

h(ez, vj), (11)

The matrix Hs supports the agglomeration process that
leads to the reliable clusters set. Therefore, its values are
updated on each new agglomeration performed in this step.
The cluster assignment degree hs(Si, vj) is given by the
sum of similarity values between a data object represented
by vj and all the objects in the cluster Si. Based on the clus-
ter assignment degree and the size of each cluster, a function
nc : C → S selects the most similar cluster to an object oi,
being defined as:

nc(oi) = argmax
Sj ∈ S

hs(Sj , oi)

|Sj |
. (12)

Based on the nc function, a sub-set of the data collection
is agglomerated to retrieve an initial cluster configuration.
Let q = n× p be the size of the sub-set of data collection
clustered in this step, where n = |C| and p ∈ (0, 1) is a con-
stant. The set containing all objects selected for agglomera-
tion, Ca is given by the top hyperedge self-confidence score
wh(·), and can be defined as:

Ca = {Ca ⊆ C \ R, |Ca| = q − c ∧ ∀oi ∈ Ca,
oj ∈ C \ Ca : wh(oi) > wh(oj)}.

(13)

By agglomerating the objects contained in Ca, each ini-
tial cluster Sj ∈ S can be defined as:

Sj =
⋃

oi∈Ca

∧
nc(oi)=Sj

{oi} (14)

The nc(oi) function select the target for an object oi
based on the current cluster configuration. Therefore, the
order contained in the ranked list τh is exploited to conduct
the agglomerations. After the agglomeration of all objects
contained in Ca, the SGCC recovers a highly reliable initial
cluster configuration, which is used as training labels for a
GCN model, responsible to conduct the final clustering.

3.2.4 Graph Convolution Network Clustering

In a final step, the initial reliable cluster set obtained by
SGCC is used as soft-labels for training a GCN model. Af-
terwards, the trained model classify the remaining objects
into the discovered clusters. The cluster configuration con-
tained in S represents the subset of labeled nodes VL, as
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defined in Section 2.3. The training procedure uses opti-
mization based on the cross-entropy loss over the labeled
nodes set VL. After being trained, a new inference is exe-
cuted in order to retrieve the final cluster configuration for
the whole input data collection C. Next section discusses
GCNs and how they are used by SGCC.

3.3. Graph Convolutional Networks
In recent years, much effort has been made to develop

deep learning approaches based on graph data [8]. The
GCN main objective can be summarized as to learn an em-
bedding (representation) for each node based on the iter-
ative aggregation of its neighbors, encoding the received
graph structure in a neural network model. In a representa-
tive work [15], a two-layer GCN model is applied to semi-
supervised classification, utilizing a graph represented by a
symmetric adjacency matrix A. The obtained model can be
defined as a function based both on the feature matrix X
and on the adjacency matrix A:

Z = f(X,A), (15)

In this scenario, Z represents an embedding matrix,
such that Z = [z1, z2, . . . , zn]

T ∈ Rn×d and zi is a
d-dimensional embedded representation computed for the
node vi. In order to obtain the matrix Z, firstly the degree
matrices are computed as a pre-processing step, being de-
fined as Â = D̃−1/2ÃD̃−1/2, where Ã = A+ I and D̃ is
the degree matrix of Ã. The function f(·), which represents
the two-layer GCN model, can be defined as:

Z = log(softmax(ÂReLU(ÂXW(0))W(1))) (16)

The neural network weights for an input-to-hidden layer
is defined by W(0) ∈ Rd×H , where H represents the num-
ber of feature maps. Similarly, W(1) ∈ RH×d is a hidden-
to-output weights matrix. Both W(0) and W(1) are trained
based on the cross-entropy error over the labeled nodes set
VL. After the embedding process, the softmax activation
function is applied row-wise in order to obtain the proba-
bility distribution over d class labels for each row. By ap-
plying the log function on those probabilities, the class with
the less negative value in the embedded representation zi is
assigned as label to the respective node vi.

3.3.1 GCN Models and Input Data

Mostly grounded by the success of the GCN [15], various
related graph convolutional network models have been re-
cently proposed [37, 16, 39, 6, 20, 3, 17]. In this work,
besides the original GCN [15], another two approaches
were selected based on recent research applications [27] and
on results obtained in our initial experiments: the Simple
Graph Convolution (SGC) [39], a simplified GCN model
obtained after the removal of nonlinearities and the collapse
of weight matrices between consecutive layers and the Ap-
proximate Personalized Propagation of Neural Predictions
(APPNP) [16], a model that exploits the relationship be-
tween GCNs and PageRank by deriving a propagation strat-
egy based on personalized PageRank.

GCN models receive a feature matrix and an adjacency
matrix as inputs. In this scenario, our approach uses the in-
put feature matrix X and adjacency matrix A is computed
as reciprocal k-NN graph based on LHRR’s output ranked
list set T (t+1). Natural graph-based data can also be con-
sidered for the input graph, as citation network datasets.

4. Experimental Evaluation
4.1. Experimental Protocol

The experimental analysis considered seven different
datasets, containing from 3 to 200 classes. The first group
of datasets is composed by four image datasets: (i) MPEG-
7, 1400 images, 70 classes [18]; (ii) Flowers, 1360 images,
17 classes [26]; (iii) Corel5k, 5000 images, 50 classes [21];
and (iv) CUB200, 11788 images, 200 classes [38]. Besides
from MPEG-7, which used the distance matrix obtained by
CFD [28] descriptor, all image datasets used feature vec-
tors extracted from a Resnet [12] CNN pre-trained on the
ImageNet dataset. The input ranked list for the LHRR
method was obtained by the Euclidean distance in the image
datasets features. The k-NN graph used in the GCNs train-
ing was based on the ranked lists obtained from LHRR.

The second group is composed of three citation network
datasets, largely used in semi-supervised learning tasks and
in recently proposed deep clustering techniques: (i) Cora,
2708 articles, 7 classes [34]; (i) CiteSeer, 3312 articles, 6
classes [34]; and (i) PubMed, 19717 articles, 3 classes [34].
For this group, the original binary feature vectors were used
alongside their respective citation graphs. The input ranked
list for the LHRR method were obtained by the Jaccard in-
dex in the binary feature vectors.

Three external measures are used for effectiveness eval-
uation: Normalized Mutual Information (NMI) [33], V-
Measure [31] and Accuracy (ACC) [24].

4.2. Parameter Settings
Regarding parameter settings, the SGCC method re-

quires only four parameters, c: the number of clusters; k:
neighborhood size used by LHRR and for the creation of the
reciprocal k-NN graph; t: number of iterations for LHRR;
and p: percentage of data elements agglomerated in the ini-
tial reliable clusters. The parameter c followed the size of
real classes in all scenarios. The impact of the p param-
eter was analyzed by varying its value in all the available
range while maintaining the remaining configurations. Fig-
ure 2 presents the results for NMI and V-Measure metrics
on Corel5K dataset, using k = 50 and both t = 1 and
t = 2. Both GCN models presented similar behaviors re-
garding the relationship between parameters p and t.

For t = 1, both metrics improved as a larger portion of
the dataset was separated before the GCN training. How-
ever, using 2 iterations of the LHRR method, all models
presented the best results with around 20% to 30% of the
dataset being separated as soft labels. Aiming to explore a
larger range of configurations, half of the dataset was clas-
sified and used as soft-labels in the GCN training (p = 0.5)
in all experiments.
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Figure 2. Evaluation of the impact of parameter p. The experiment
was conducted on Corel5K, using k = 50. The results of NMI and
V-Measure for the GCN models using values t = 1 e t = 2.

Furthermore, two evaluation scenarios were considered:
(i) using k = 50 for every experiment, being this value cho-
sen as an indication with comparable results in all evaluated
datasets, and (ii) varying k with values between [10..100]
and reporting the best results. In both scenarios, the best
result for the parameter t between 1 and 2 is reported.

Additionally, during all experiments, the GCN models
used 32 hidden layers and learning rate of 10−3 being
halved every 100 epochs. The model was trained for 400
epochs. The reported values are the mean and standard de-
viation over 10 executions and every iteration has an early-
stop mechanism, in case the model achieves 100% accuracy
over the training labels 2.

4.3. Results
The proposed approach was evaluated in two experi-

ments, over seven different datasets. In a first experiment,
the neighborhood size was fixed to k = 50 in all scenar-
ios. Table 1 presents the results. The SGC model obtained
the best value for all metrics in almost every dataset, except
for Cora and PubMed, and the GCN model was not able
to process the MPEG-7 dataset, probably since the distance
matrix was used as a feature matrix.

In a second experiment, the neighborhood size k was var-
ied in the [10..100] range, searching for better results. Ta-
ble 2 presents the obtained results. Again, in this scenario,
the SGC model achieved the best results in almost every
dataset 3.
4.4. Comparison with Other Methods

The SGCC was compared with six different cluster-
ing approaches, considering traditional and recent meth-
ods: K-Means [22], Agglomerative [25], HDBSCAN [23],
FINCH [32], SDCN [7] and MinCutPool [5]. FINCH is a
recently proposed method based on first-neighbor relations.
SDCN and MinCutPool are both based on recent GCN mod-
els. All compared methods used the pre-defined parameters
and, when possible, the exact number of classes as the de-
sired number of clusters.

2The parameter selection is discussed in the supplementary material.
3The effect of each component from our proposed approach is analyzed

in the ablation study contained in the supplementary material

Table 1. Results for k = 50 on all datasets.
Dataset Network t NMI V-Measure ACC

Corel5K
GCN 1 91.34± 00.16 91.10± 00.15 88.45± 00.12

SGC 1 91.74± 00.06 91.50± 00.06 88.74± 00.05

APPNP 1 91.64± 00.15 90.47± 00.15 88.72± 00.15

CUB200
GCN 2 68.93± 00.42 68.22± 00.45 47.70± 00.46

SGC 2 69.97± 00.03 69.33± 00.03 48.37± 00.04

APPNP 2 69.68± 00.13 68.93± 00.12 47.77± 00.30

Flowers
GCN 2 80.48± 00.57 80.18± 00.59 82.61± 00.61

SGC 2 81.27± 00.07 81.01± 00.07 83.49± 00.09

APPNP 2 80.79± 00.25 80.51± 00.25 82.85± 00.23

MPEG-7
GCN - - - -
SGC 2 89.74± 00.34 87.64± 00.35 74.06± 00.77

APPNP 1 16.85± 33.70 06.83± 13.65 02.02± 01.19

Cora
GCN 1 31.32± 00.40 30.71± 00.40 45.86± 00.21

SGC 1 35.94± 00.11 35.49± 00.11 49.65± 00.06

APPNP 1 37.12± 00.23 36.52± 00.24 49.18± 00.27

Citeseer
GCN 2 28.80± 00.21 28.51± 00.21 54.20± 00.17

SGC 2 30.86± 00.07 30.47± 00.07 55.86± 00.05

APPNP 2 30.55± 00.17 30.24± 00.17 55.68± 00.20

PubMed
GCN 1 18.32± 00.08 18.04± 00.07 56.45± 00.07

SGC 1 31.19± 00.40 17.77± 00.49 49.76± 00.29

APPNP 1 18.17± 00.08 17.69± 00.10 56.27± 00.38

Table 2. Results considering the best k in a range [10..100].
Dataset Network k t NMI V-Measure ACC

Corel5K
GCN 95 2 91.89± 00.13 91.79± 00.13 90.86± 00.11

SGC 70 2 92.62± 00.06 92.44± 00.06 90.80± 00.04

APPNP 95 2 92.27± 00.12 92.16± 00.11 91.19± 00.12

CUB200
GCN 55 2 69.07± 00.13 68.21± 00.12 47.52± 00.16

SGC 55 2 69.97± 00.02 69.19± 00.02 48.38± 00.02

APPNP 50 2 69.68± 00.13 68.93± 00.12 47.77± 00.30

Flowers
GCN 45 2 80.98± 00.28 80.70± 00.31 82.68± 00.47

SGC 50 2 81.27± 00.07 81.01± 00.07 83.49± 00.09

APPNP 45 2 81.27± 00.24 80.99± 00.26 82.86± 00.33

MPEG-7
GCN 25 1 07.58± 22.75 02.32± 06.96 01.76± 00.99

SGC 20 2 96.45± 00.15 96.37± 00.15 94.56± 00.16

APPNP 75 1 32.39± 39.81 12.71± 20.09 04.82± 08.77

Cora
GCN 85 1 39.45± 00.34 38.97± 00.33 59.22± 00.22

SGC 85 1 45.02± 00.15 44.81± 00.15 62.96± 00.09

APPNP 65 1 44.58± 00.19 44.39± 00.18 62.46± 00.18

Citeseer
GCN 60 1 32.84± 00.24 32.64± 00.24 61.11± 00.20

SGC 65 1 35.50± 00.08 35.34± 00.08 62.95± 00.07

APPNP 65 1 35.42± 00.21 35.23± 00.21 62.73± 00.14

PubMed
GCN 40 1 26.31± 00.07 25.37± 00.07 62.95± 00.11

SGC 45 1 28.59± 00.08 22.41± 00.07 52.15± 00.04

APPNP 65 1 27.41± 00.39 25.12± 00.13 62.07± 00.41

Table 3 presents the results obtained on image datasets.
All the best results inside the same standard deviation are
highlighted. During the evaluation process, we were not
able to obtain effective results for MPEG-7 with the SDCN
method and for CUB200 with the MinCutPool method. It
can be observed that the proposed SGCC achieved the best
results for all metrics in all datasets. Table 4 presents the
results on the citation network datasets. Analogously, all
the best results inside the same standard deviation are high-
lighted. In this scenario, the proposed SGCC approach
achieved the best results on Cora and CiteSeer datasets for
all measures. On PubMed dataset, SGCC achieved the best
results considering the ACC measure.

4.5. Visual Analysis
In the visual analysis, we employed dimensionality re-

duction methods to represent the impact of the proposed
method on a 2-D projection of feature space, considering
the GCN-based embeddings. Figure 3 presents the visual-

75640



Table 3. Comparison of NMI, V-Measure (VM) and ACC values in image datasets between SGCC, classic and recent clustering methods.
Method Input Corel5K CUB200 Flowers MPEG-7

NMI VM ACC NMI VM ACC NMI VM ACC NMI VM ACC

K-Means (1967) X
89.38 88.71 82.12 67.07 66.45 41.03 73.23 72.90 71.85 79.32 78.65 59.55
±00.46 ±00.42 ±01.07 ±00.19 ±00.14 ±00.44 ±00.93 ±00.99 ±02.06 ±00.32 ±00.37 ±00.93

Agglomerative (1983) X 91.03 90.65 86.68 67.06 66.24 42.03 78.06 77.03 72.64 90.43 86.76 59.00
HDBSCAN (2017) X 75.66 54.91 35.28 49.94 14.89 04.30 38.60 15.98 13.52 90.16 79.32 64.92

FINCH (2019) X 90.06 81.13 52.32 77.23 25.65 04.57 79.60 66.54 52.20 87.04 83.72 60.64

SDCN (2020) X & A
87.43 86.95 81.51 62.62 61.23 31.76 67.02 66.73 36.91 - - -±00.36 ±00.32 ±00.74 ±00.21 ±00.18 ±00.62 ±00.99 ±00.99 ±00.58

MinCutPool (2020) X & A
85.76 77.71 33.96 - - - 72.55 72.46 74.54 30.07 06.59 00.02
±00.78 ±17.28 ±12.38 ±02.05 ±02.07 ±02.82 ±36.89 ±08.62 ±00.69

Proposed Approach

SGCC (GCN) X & A
91.89 91.79 90.86 69.07 68.21 47.52 80.98 80.70 82.68 07.58 02.32 01.76
±00.13 ±00.13 ±00.11 ±00.13 ±00.12 ±00.16 ±00.28 ±00.31 ±00.47 ±22.75 ±06.96 ±00.99

SGCC (SGC) X & A
92.62 92.44 90.80 69.97 69.19 48.38 81.27 81.01 83.49 96.45 96.37 94.56
±00.06 ±00.06 ±00.04 ±00.02 ±00.02 ±00.02 ±00.07 ±00.07 ±00.09 ±00.15 ±00.15 ±00.16

SGCC (APPNP) X & A
92.27 92.16 91.19 69.68 68.93 47.77 81.27 80.99 82.86 32.39 12.71 04.82
±00.12 ±00.11 ±00.12 ±00.13 ±00.12 ±00.30 ±00.24 ±00.26 ±00.33 ±39.81 ±20.09 ±08.77

Table 4. Comparison of NMI, V-Measure (VM) and ACC results in citation datasets between SGCC, classic and recent clustering methods.

Method Input Cora Citeseer PubMed
NMI VM ACC NMI VM ACC NMI VM ACC

K-Means (1967) X
16.80 15.60 35.50 18.65 18.19 40.57 35.46 31.26 59.51
±04.80 ±04.57 ±03.08 ±04.79 ±04.81 ±06.16 ±00.07 ±00.08 ±00.01

Agglomerative (1983) X 23.39 21.93 37.22 19.76 18.97 42.23 11.75 04.04 42.59
HDBSCAN (2017) X 04.84 00.39 29.87 40.01 01.29 21.52 01.38 00.06 39.84

FINCH (2019) X 20.38 01.84 30.46 26.78 15.06 32.94 05.39 01.64 40.38

SDCN (2020) X & A
21.65 21.17 38.49 30.96 30.69 58.09 07.64 00.02 39.94
±00.16 ±00.16 ±00.18 ±00.10 ±00.10 ±00.10 ±00.28 ±00.00 ±00.00

MinCutPool (2020) X & A
41.68 40.41 39.43 28.51 28.20 35.01 20.66 20.29 46.84
±01.96 ±01.90 ±01.82 ±02.78 ±02.75 ±02.34 ±20.29 ±01.10 ±02.76

Proposed Approach

SGCC (GCN) X & A
39.45 38.97 59.22 32.84 32.64 61.11 26.31 25.37 62.95
±00.34 ±00.33 ±00.22 ±00.24 ±00.24 ±00.20 ±00.07 ±00.07 ±00.11

SGCC (SGC) X & A
45.02 44.81 62.96 35.50 35.34 62.95 28.59 22.41 52.15
±00.15 ±00.15 ±00.09 ±00.08 ±00.08 ±00.07 ±00.08 ±00.07 ±00.04

SGCC (APPNP) X & A
44.58 44.39 62.46 35.42 35.23 62.73 27.41 25.12 62.07
±00.19 ±00.19 ±00.18 ±00.21 ±00.21 ±00.14 ±00.39 ±00.13 ±00.41

ization of the original features and the GCN-based features
from two datasets: Flowers and Cora. The t-SNE [36] algo-
rithm was used for dimensionality reduction.

Original GCN-based

Flow
er

s
Cor

a

Figure 3. Visual analysis: the impact of the GCN embeddings.

It is possible to notice that the GCN-based embeddings
improved the separability among classes, setting the ele-
ments in the same class closer in the two-dimension em-
bedding space. The positive effects can be observed in both
datasets, especially in the Cora dataset where the original
features, represented as binary vectors, are not able to en-
code the class similarity information. Therefore, the sepa-

ration is highly improved by the GCN-based embeddings.

5. Conclusion

In this work, a novel self-supervised clustering approach
is proposed. The method combines a hypergraph-based
manifold learning method, able for modeling similarity in-
formation in unsupervised scenarios, with GCN models,
which represent the state-of-the-art in semi-supervised clas-
sification. The SGCC method was evaluated both in image
and citation networks datasets and compared with classic
and recent clustering methods. The results obtained were
better in most of the scenarios. Additionally, visual analy-
ses were conducted to illustrate the embedding efficiency of
our proposed approach. As future work, we intend to fur-
ther analyze the parameter estimation aiming to pre-select
the best values and to further explore the hypergraph infor-
mation to enhance the obtained results.
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