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ABSTRACT
This paper presents an efficient diffusion-based re-ranking
approach. The proposed method propagates contextual in-
formation defined in terms of top-ranked objects of ranked
lists in a diffusion process. That makes the method suitable
for large scale real-world collections. Experiments were con-
ducted considering public image collections, several descrip-
tors, and comparisons with state-of-the-art methods. Exper-
imental results demonstrate that the proposed method pro-
vides high effectiveness gains with low computational costs.

Keywords
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1. INTRODUCTION
A relevant change can be observed in the multimedia con-

tent generation, since common users are not long mere con-
sumers and have become active producers. As a result, huge
amounts of visual content have been accumulated daily, gen-
erated from a large variety of digital sources. The Content-
Based Image Retrieval (CBIR) systems are considered a
promising solution in this scenario, supporting searches ca-
pable of taking into account the visual properties of digital
images.

The development of CBIR systems has been mainly sup-
ported by the creation of various visual features (based on
shape, color, and texture properties) and different distance
measures. However, more recently, research initiatives have
focused on other stages of the retrieval process, which are not
directly related to low-level feature extraction procedures.
In several computer vision and image retrieval applications,
capturing and exploiting the intrinsic manifold structure be-
comes a central problem for different vision, learning, and
retrieval tasks [14].

Diverse methods also have been proposed in order to im-
prove the effectiveness of distance measures in image re-
trieval tasks, specially based on diffusion approaches [14,
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15, 39, 40]. In general, these post-processing methods aims
at replacing pairwise distances by more global affinity mea-
sures capable of considering the dataset manifold [40]. Al-
though indispensable for improving the effectiveness of re-
trieval, the wide use of post-processing methods on large-
scale real-world applications also depends on efficiency and
scalability aspects [24]. More recently, due to the high com-
putational costs associated with diffusion-based approaches,
other methods have emerged. Mainly based on rank analy-
sis, such contextual rank measures [2, 26] can be efficiently
computed.

In this paper, we propose a novel hybrid approach, named
Rank Diffusion, which is based on a diffusion process defined
in terms of ranking information. This method establishes
a relationship between diffusion approaches and contextual
rank measures in the sense it spreads ranking information,
taking into account the dataset structure. A relevant con-
tribution of the proposed approach is given in terms of effi-
ciency aspects. Despite the use of a diffusion strategy, since
only rank information is considered, low computational ef-
forts are required.

An experimental evaluation was conducted, considering
public datasets and several image descriptors, including global,
local, and convolution-neural-network-based descriptors. Ex-
periments were conducted on different retrieval tasks. The
proposed method achieved significant effectiveness gains, yield-
ing better results in terms of effectiveness performance than
state-of-the-art approaches. For example, an accuracy score
of 100% and a N-S score of 3.94 were achieved on the well-
known MPEG-7 [17] and UKBench [22] datasets.

2. RELATED WORK
In various multimedia and learning applications, objects

are often modeled as high dimensional points in an Eu-
clidean space. For retrieval or classification purposes, the
distance between two objects is computed often consider-
ing the Euclidean distance. However, once pairwise dis-
tance measures define relationships only between pairs of
images, the global structure of the dataset and the context
wherein the query is computed are ignored. Therefore, how
to capture and exploit the intrinsic manifold structure be-
comes a central problem in the vision and retrieval applica-
tions [14]. In this scenario, many approaches have been pro-
posed [6, 9, 12, 14, 26, 28, 38, 39] to improve the effectiveness
of image retrieval tasks. Such methods take into account the
dataset manifold and the global relationships among images,
without the need of any user intervention. Some of the most
important diffusion- and rank-based methods.
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Diffusion-based approaches [7] rely on the definition of
a global measure, which describes the relationship between
pairs of points in terms of their connectivity. In general,
diffusion processes consider as input a pairwise affinity ma-
trix W , which can be interpreted as a graph that encodes
the relationships among objects [9]. Let G = (V,E) be a
graph, such as the nodes vi ∈ V are associated with dataset
objects and edges eij ∈ E indicate the existence of relation-
ships among them. Edge weights, in turn, are defined by
the affinity values wij . The matrix W is often computed by
applying a Gaussian kernel to a distance matrix computed
by an image descriptor [14]. Giving the edge weights [9] de-
fined by the matrix W , the diffusion processes spread the
affinities through the graph. In general, a walk in the graph
occurs more likely through the edges with larger weights.

Several methods based on diffusion approaches have been
proposed [9, 14, 38, 39]. The diffusion-based algorithms have
been achieving significant improvements on retrieval perfor-
mance although they are very expensive to compute, spe-
cially when the size of datasets becomes larger [2, 27].

Recently, various contextual rank-based approaches [2, 6,
26, 27, 29] have yielded very significant gains on retrieval ef-
fectiveness. Additionally, since the most relevant informa-
tion of rankings is found at top positions, the rank-based ap-
proaches can significantly reduce the computational efforts
required by exploiting indexing structures [24]. Therefore,
other important requirements, such as efficiency and scala-
bility [2, 24], are met.

In this paper, a novel hybrid re-ranking approach, which
is based on a diffusion process defined in terms of ranking
information, is presented. An advantage of the proposed
method when compared with other approaches rely on its
efficiency. As the diffusion process is based o rank informa-
tion, only the top-ranked images can be considered.

3. FORMAL PROBLEM DEFINITION
This section formally defines the image retrieval and rank-

ing model. Let C={img1, img2, . . . , imgn} be an image col-
lection. The notation ρ(i, j) denotes the distance between
two images imgi and imgj according to a given descriptor.
Let imgq be a query image. A ranked list τq can be com-
puted in response to imgq based on the distance function ρ.
The ranked list σq=(img1, img2, . . . , imgn) can be defined
as a permutation of the collection C. A permutation σq is
a bijection from the set C onto the set [N ] = {1, 2, . . . , n}.
For a permutation σq, we interpret σq(i) as the position (or
rank) of image imgi in the ranked list σq.

The top positions of ranked lists are expected to contain
the most similar images to the query image. Additionally, σq
is expensive to compute, specially when n is high. Therefore,
the computed ranked lists can consider only a sub-set of the
images. Let τq be a ranked list that contains only the L most
similar images to imgq, where L� n. Formally, let CL be a
sub-set of of the collection C, such that CL ⊂ C and |CL| = L.
The ranked list τq can be defined as a bijection from the set
CL onto the set [N ] = {1, 2, . . . , L}. Every image imgi ∈ C
can be taken as a query image imgq. A set of ranked lists T
= {τ1, τ2, . . . , τn} can also be obtained, with a ranked list
for each image in the collection C.

Our goal is to exploit the similarity information encoded
in the set T , with the aim of computing a more effective set
Tr. In fact, a more effective distance function ρr is defined,
giving rise to a new set of ranked lists. Additionally, the

fusion problem is also considered, in which different sets of
ranked lists {T1, T2, . . . , Td} are taken as input aiming at
computing a more effective set Tr.

4. RANK DIFFUSION PROCESS
This section discusses and defines the proposed rank dif-

fusion process, presenting each step involved in the method,
until the computation of the rank-diffusion distance.

4.1 Rank Similarity Matrix
Many diffusion-based algorithms use the distance informa-

tion for defining a similarity matrix W . A Gaussian kernel

is often considered, such that wij = exp(−ρ
2(i,j)

2σ2 ), where σ
is a parameter to be defined. Therefore, some strategies are
required to define a suitable value for the parameter, also
considering that the distance distribution may vary among
different descriptors.

In this work, a rank similarity matrix W is proposed based
only on rank information. The rank modeling of similarity
information allows an uniform representation, independent
of distance scores. The similarity score wij varies linearly
according to the position of imgj in the ranked list τi. Addi-
tionally, the score considers only a neighborhood set, which
is defined by the size of ranked lists.

Let m denote the size of ranked lists and, therefore the
neighborhood considered. Let N (i,m) be the neighborhood
set, which is formally defined as follows:

N (i,m) = {R ⊆ C, |R| = m ∧ ∀x ∈ R, y ∈ C −R :

ρ(i, x) 6 ρ(i, y)}.
(1)

The similarity rank matrix Wm is defined as:

wmij =

{
m− τi(j) + 1 if imgj ∈ N (i,m)
0 otherwise.

(2)

The size of the ranked list can assume different values de-
pending on the desired analysis. In the proposed method,
the matrix W is defined assuming m ≤ k, for a local neigh-
borhood analysis, and m = L for a more comprehensive
collection sub-set. Notice that, since the matrix W has di-
mension of n×n, both k and L values are much smaller than
n, i.e, k, L � n. Therefore, the matrix W is very sparse.
This property is exploited for defining an efficient algorithm,
which computes operations that are equivalent to a matrix
multiplication considering W .

4.2 Reciprocal Rank Normalization
While most of similarity pairwise measures are symmetric,

the same does not occur for rank measures. In other words,
an image imgi well ranked for a query imgj does not imply
that imgj is well ranked for query imgi. However, the ben-
efits of improving the symmetry of the k-neighborhood rela-
tionship are remarkable in image retrieval applications [12].
Thus, a simple rank normalization procedure is conducted
before the rank diffusion process. The reciprocal references
among all ranked lists at top-L positions are considered,
such m = L. For this, the similarity matrix WL is used and
its asymmetry is exploited. The value of wij is defined con-
sidering the position of imgj in the ranked list τi, while wji
considers the position of imgi in τj . Therefore, a normalized
rank similarity matrix R̄L can be defined as the sum of the
original matrix W with its transposed:

R̄ = WL +WT
L . (3)



Based on the matrix R̄, a rank normalized distance ρ̄ is
defined as:

ρ̄(i, j) =
1

1 + r̄ij
, (4)

where r̄ij ∈ R̄.
In the following, all the ranked lists are updated according

to the normalized distance, using a stable sorting algorithm.
In this way, all similarity scores defined as 0 in the matrix
R̄ have their distance changed to 1. In these cases, after the
execution of the stable sorting algorithm, the previous order
of ranked lists are maintained.

This update gives rise to a new set of ranked lists T̄ , used
as input for the next steps of the proposed algorithm.

4.3 Iterative Rank Diffusion
The proposed rank diffusion approach is defined by an it-

erative update of similarity information encoded into a ma-
trix P . The update at each iteration is computed according
to a rank similarity matrix W of increasing neighborhood
size. The central idea consists in spreading the similarity in-
formation through P considering initially a small neighbor-
hood, which is gradually expanded over iterations. There-
fore, the number of iterations is defined proportionally to
the neighborhood size.

Formally, let (t) denote the current iteration and let s be a
constant value, which defines the initial neighborhood size.
The rank similarity matrix at a given iteration t is defined
as:

W (t) = Ws+t. (5)

where the size of ranked lists m = (s + t). The value of
s = 2 can be used as a default starting value, or s can be
manually defined. The initialization of matrix P is defined
considering t = 0, and therefore:

P (0) = Ws. (6)

Given the asymmetry rank relationships, a normalization
similarity value is computed proportionally to the accumu-
lated rank similarity of each image. The normalization is
defined for matrices W and P , respectively as

W̄ij
(t)

=
W

(t)
ij

n∑
c=1

W
(t)
jc

, (7)

and

P̄
(t)
ij =

P
(t)
ij

n∑
c=1

P
(t)
jc

. (8)

The iterative diffusion step is defined in terms of the mul-
tiplication of the normalized matrices P̄ and W̄ . At each
iteration, a larger neighborhood is considered in W̄ and dis-
seminated along P :

P (t+i) = P̄ (t)W̄ (t)
T
, (9)

where i indicates the increment (its default value is 1). The
process is iteratively executed while t ≤ (k − s), where k
is a parameter that defines the size of the neighborhood
considered.

4.4 Reciprocal Rank Diffusion
The diffusion step defined in Equation 9 considers the

transposed matrix W̄ (t)
T

. In this way, the similarity of a
given image imgi to other images is updated according to
the ranked list τi and is encoded in the similarity matrix.

However, the reciprocal similarity information should also
be considered. With this purpose, after the iterative rank
diffusion, a self-diffusion step is defined as:

Pr = P̄ (k−s)P̄ (k−s), (10)

where P̄ (k−s) represents the last matrix computed by the
iterative diffusion after normalization.

4.5 Rank Diffused Distance
Finally, a new rank diffused distance ρd is computed in-

versely proportional to the reciprocal similarity matrix Pr:

ρr(i, j) =
1

1 + Prij
(11)

Based on the distance ρr, the new and more effective set of
ranked lists Tr is computed using a stable sorting algorithm.
As for the rank normalization step, images, which present
similarity values equal to 0, maintain the previous order in
the ranked lists.

5. RANK AGGREGATION
Different features often encode distinct and complemen-

tary visual information extracted from images. Therefore,
if a feature produces effective rankings by itself and is com-
plementary (heterogeneous) to other features, then it is ex-
pected that a higher search accuracy can be achieved by
combining them [42].

In this work, a rank aggregation approach is presented
for combining different rankings using the proposed rank
diffusion process. The rank diffusion is performed in two
stages: first, for each descriptor in isolation and in the next,
considering a fused set of ranked lists.

Let D = {D1, D2, . . . , Dd} be a set of different image de-
scriptors and let {T1, T2, . . . , Td} be their respective set of
ranked lists. The rank diffusion process is computed for
each set Ti, in order to compute a matrix Pr (Equation 10).
In the following, a fused matrix Pf is defined as:

Pf =
∑
j∈D

Prj . (12)

Based on Pf , a new distance ρf is computed:

ρf (i, j) =
1

1 + Pfij
. (13)

A fused set of ranked lists Tf is computed using the dis-
tance ρf . Finally, we aim at exploiting the contextual in-
formation of the fused set of ranked lists Tf . Once the set
Tf presents the same structure of a set obtained for a sin-
gle descriptor, it is submitted to the regular rank diffusion
process, giving rising to a final set Tr.

6. EXPERIMENTAL EVALUATION
The proposed method was evaluated on shape and natu-

ral image retrieval tasks, considering the MPEG-7 [17] and
UKBench [22] datasets, which are commonly used as bench-
mark for image retrieval and post-processing methods. All
images of each dataset are used as query images. Regarding
parameters, we used s=5, i=5, and k=20 for the MPEG-
7 [17] dataset and s=2, i=2, and k=6 for the UKBench [22]
dataset, due to the small number of images per class.

6.1 Shape Retrieval
The shape retrieval experiments were condcuted on the

MPEG-7 [17], which is a well-known shape dataset, com-



posed of 1400 shapes divided into 70 classes. Six shape de-
scriptors were considered and the Mean Average Precision
(MAP) was used as effectiveness measure.

Table 1 presents the experimental results for shape re-
trieval experiments. Statistical paired t-tests were conducted
comparing the results before and after the use of the pro-
posed algorithm. Different values of L are considered: L =
400 and the whole ranked list. Positive gains with statisti-
cal significance can be observed for all descriptors, reaching
high effectiveness gains up to +40.72%. The effectiveness
results obtained for partial and the entire ranked lists are
very similar, demonstrating that only a sub-set of ranked
lists is enough to obtain high effectiveness gains.

Results for rank aggregation tasks are also presented con-
sidering the combination of the three best descriptors. The
relative gains are computed based on the descriptor with
the lowest MAP score. As it can be observed, high effective
results are also obtained, reaching 99.78% for CFD+AIR.

Table 1: Rank Diffusion for shape retrieval tasks (MAP as score).
Orig. L = 400 Full L

Descriptor MAP Rank Gain Stat. Rank Gain Stat.
Diff. Sig. Diff. Sig.

SS [8] 37.67% 52.17% +38.49% • 53.01% +40.72% •
BAS [1] 71.52% 82.36% +15.16% • 83.03% +16.09% •

IDSC [18] 81.70% 90.89% +11.25% • 91.09% +11.49% •
CFD [25] 80.71% 93.75% +16.16% • 94.17% +16.68% •
ASC [19] 85.28% 92.98% +9.03% • 93.07% +9.13% •
AIR [10] 89.39% 97.98% +9.61% • 97.97% +9.60% •

CFD+ASC - 99.29% +23.02% • 99.25% +22.97% •
ASC+AIR - 99.57% +16.76% • 99.58% +16.77% •
CFD+AIR - 99.78% +23.63% • 99.79% +23.64% •

6.2 Natural Image Retrieval
We evaluate the proposed method in natural image re-

trieval tasks considering the University of Kentucky Recog-
nition Benchmark – UKBench [22]. The UKBench dataset
has a total of 10,200 images, composed of 2,550 objects or
scenes, where each object/scene is captured 4 times from
different viewpoints. The small number of images per class
constitutes a challenging scenario for unsupervised learning
approaches. Various distinct features are used, including
color and color/texture features available on LIRE frame-
work [20]. Local features are considered based on Vocabu-
lary Tree (VOC) [36]. Convolution neural networks (CNN)
features based on Caffe [13] framework are also considered.

Table 2 presents the effectiveness results considering the
UKBench [22] dataset. The N-S score is used as effectiveness
measure, varying between 1 and 4. This score corresponds
to the number of relevant images among the first four im-
age returned (the highest achievable score is 4). We can
observe significant improvements for N-S scores. Notice, for
example, the Caffe [13] convolutional neural network, which
is improved from 3.31 to 3.61. The results are even more
impressive considering the rank aggregation tasks.

6.3 Comparison with Other Approaches
The proposed method is also evaluated in comparison with

various other state-of-the-art approaches and recently pro-
posed retrieval approaches. Table 3 presents the results of
Rank Diffusion method on the UKBench [22] dataset in com-
parison with recent retrieval approaches. Table 4 presents
the obtained results on the MPEG-7 [17] dataset in com-
parison with various other state-of-the-art post-processing
methods. The bull’s eye score, which counts the matching

Table 2: Rank Diffusion on the UKBench [22] dataset.

Original Rank
Descriptor N-S Diffusion

CEED-SPy [4, 20] 2.81 3.10
FCTH-SPy [5, 20] 2.91 3.19

SCD [21] 3.15 3.35
ACC-SPy [11, 20] 3.25 3.51
CNN-Caffe [13] 3.31 3.61

ACC [20] 3.36 3.60
VOC [36] 3.54 3.72

VOC+ACC - 3.90
VOC+CNN - 3.90
ACC+CNN - 3.87

VOC+ACC+CNN - 3.94

shapes within the top-40 ranked images, is used as evalua-
tion measure. As it can be observed, the effectiveness results
of the proposed method compares favorably with the recent
retrieval approaches.

Table 3: Retrieval comparison on the UKBench [22] dataset.
N-S scores for recent retrieval methods

Zheng Qin Wang Zhang Zheng Xie
et al. [43] et al. [28] et al. [34] et al. [41] et al. [42] et al. [37]

3.57 3.67 3.68 3.83 3.84 3.89

N-S scores for the Rank Diffusion method
Rank Diff.: Rank Diff. Rank Diff. Rank Diff.
ACC+CNN VOC+CNN VOC+ACC VOC+ACC+CNN

3.88 3.90 3.90 3.94

Table 4: Comparison on the MPEG-7 [17] dataset.
Shape Descriptors

CFD [25] - 84.43%
IDSC [18] - 85.40%
ASC [19] - 88.39%
AIR [10] - 93.67%

Post-Processing Methods
Algorithm Descriptor(s) Score
Graph Transduction [38] IDSC 91.00%
Locally C. Diffusion Process [39] IDSC 93.32%
Shortest Path Propagation [35] IDSC 93.35%
Locally C. Diffusion Process [39] ASC 95.96%
Rank Diffusion CFD 96.19%
Tensor Product Graph [40] AIR 99.99%
Generic Diffusion Process [9] AIR 100%
Neighbor Set Similarity [2] AIR 100%
Rank Diffusion AIR 100%

7. CONCLUSIONS
Post-processing procedures based on unsupervised learn-

ing approaches have been established as indispensable tools
for improving the effectiveness of CBIR systems. Since dif-
fusion process methods require high computational efforts,
rank-based approaches attracted a lot of research attention
recently to circumvent their limitations. In this paper, a
novel rank diffusion method is proposed exploiting charac-
teristics of both diffusion and rank-based approaches. A
rigorous experimental evaluation demonstrated the effective-
ness of the proposed approach. Future work focuses on the
deep investigation of contextual information encoded in the
rank similarity matrix.
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