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ABSTRACT
This paper presents a novel unsupervised learning approach
that takes into account the intrinsic dataset structure, which
is represented in terms of the reciprocal neighborhood refer-
ences found in different ranked lists. The proposed Recipro-
cal kNN Distance defines a more effective distance between
two images, and is used to improve the effectiveness of image
retrieval systems. Several experiments were conducted for
different image retrieval tasks involving shape, color, and
texture descriptors. The proposed approach is also evalu-
ated on multimodal retrieval tasks, considering visual and
textual descriptors. Experimental results demonstrate the
effectiveness of proposed approach. The Reciprocal kNN
Distance yields better results in terms of effectiveness than
various state-of-the-art algorithms.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Search pro-
cess

General Terms
Experimentation, Performance

Keywords
Content-based image retrieval, Unsupervised distance learn-
ing

1. INTRODUCTION
The goal of Content-Based Image Retrieval (CBIR) sys-

tems is to retrieve the most similar images in a collection
by taking into account image visual properties [10]. The
distance among images are computed according to a given
image descriptor and the collection images are ranked in de-
creasing order of similarity. Therefore, the effectiveness of
CBIR systems is very dependent on the distance measure
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adopted. For decades, several different visual features have
been proposed for image retrieval tasks (based on shape,
color, and texture properties).

More recently, however, aiming at improving the retrieval
effectiveness of CBIR systems, the research community has
also focused on other stages of the retrieval pipeline, which
are not directly related to low-level feature extraction [26].
One of the techniques adopted consists in using unsuper-
vised approaches to associate low-level features with query
patterns. The use of unsupervised approaches presents the
important advantage of not requiring any training or labeled
data.

CBIR systems often compute only pairwise distance
among images, and therefore, ignore the information en-
coded in the relationship among images in a given collec-
tion. This important source of information, commonly ref-
ereed as contextual information [16], can be exploited by
various techniques aiming at improving the effectiveness of
CBIR systems without the need of user intervention. The
objective of such initiatives is to capture and utilize the in-
trinsic structure of the relationships among images in a col-
lection [17].

In this paper, we propose a novel unsupervised learning
approach called Reciprocal kNN Distance, which aims at ex-
ploiting the intrinsic collection structure by analyzing re-
ciprocal neighborhoods. The objective of Reciprocal kNN
Distance is to define a more effective distance between two
images by analyzing the reciprocal references among im-
ages at top positions of their ranked lists. The main nov-
elty of the proposed approach consists in the combination
of two techniques that have been receiving great attention
on post-processing methods recently: (i) the similarity be-
tween ranked lists [6, 32], and (ii) the reciprocal neighbor-
hood [33, 51]. The Reciprocal kNN Distance models the sim-
ilarity between ranked lists in terms of the density of recip-
rocal neighborhoods.

A large experimental evaluation was conducted, consider-
ing different datasets, image descriptors, and retrieval tasks.
Experiments were conducted on three image datasets con-
sidering twelve different visual descriptors (shape, color, and
texture descriptors). The proposed approach was also eval-
uated on object retrieval and multimodal image retrieval
tasks, considering various visual and textual descriptors.
The experimental evaluation demonstrates that the pro-
posed method can achieve significant effectiveness improve-
ments in several image retrieval tasks. We also evaluated the
proposed Reciprocal kNN Distance in comparison with sev-
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eral other state-of-the-art approaches considering a shape
dataset commonly used for benchmarking. Experimental
results demonstrate that the proposed unsupervised learn-
ing approach yields better results in terms of effectiveness
performance than various methods recently proposed in the
literature.

The paper is organized as follows: Section 2 discusses re-
lated work and Section 3 presents the problem formulation.
In Section 4, we present the Reciprocal kNN Distance learn-
ing method. Section 5 presents the experimental evaluation
and, finally, Section 6 presents our conclusions and possible
future work.

2. RELATED WORK
Although effective, supervised image retrieval techniques

often require very expensive human efforts for obtaining
training or labeled data. In fact, unlabeled data is far eas-
ier to obtain, and therefore unsupervised learning represents
a very attractive solution for many practical situations. In
a sense, “unsupervised learning can be thought of as find-
ing patterns in the data above and beyond what would be
considered unstructured noise” [12]. Given that it does not
require any feedback or user intervention, the goal of these
approaches is to build representations of the input space that
can be used for predicting future inputs, distance learning,
or even ranking dataset objects.

Two classic examples of unsupervised techniques are clus-
tering and dimensionality reduction. When dealing with
data in high-dimensional spaces, a challenging problem is
how to reduce the complexity of a data set preserving infor-
mation that is important for understanding the data struc-
ture itself. That is also valid for performing tasks such
as clustering, classification, and regression [20]. The di-
mensionality reduction term designates methods that aim
at finding meaningful low-dimensional structures hidden in
their high-dimensional observations [39].

In the information retrieval applications, unsupervised
learning approaches have also been proposed aiming at im-
proving the effectiveness of distance measures. The term
“global ranking” was introduced in [34]. Basically, a global
ranking approach considers that it is better to define the
ranking model as a function of all the objects to be ranked,
by taking into account the relationships among objects.

Various approaches have also been proposed aiming at im-
proving the distance measures in CBIR systems [18, 45, 48,
49]. The objective of these approaches consists in replacing
pairwise similarities by more global affinity measures [49].
Usually, they exploit the information encoded in the rela-
tionships among images, commonly referred to as contextual
information. These methods often use iterative strategies to
process contextual information. Various different techniques
have been employed, such as clustering [30], graphs [18], and
diffusion process [48, 49].

More recently, distance learning approaches based on the
similarity between ranked lists [6, 32] have been proposed.
These methods are based on the conjecture that contextual
information is encoded in the ranked lists. Other recent
approaches are based on the concept of reciprocal neighbor-
hood [33, 51] as a stronger indicator of similarity between
images.

The proposed Reciprocal kNN Distance aims at combin-
ing the analysis of ranked lists and reciprocal neighborhoods
by modelling the similarity between ranked lists in terms of

the density of reciprocal references found in ranked lists.
Another novelty of the proposed approach relies on the fact
that the Reciprocal kNN Distance is non-iterative and, there-
fore, requires no parameter for the number of iterations
or convergence criterion as iterative methods recently pro-
posed [32, 47]. In this way, it also reduces the computational
efforts needed for distance learning.

3. PROBLEM FORMULATION
Let C={img1, img2, . . . , imgn} be an image collection.

Let n = |C| denotes the size of the collection C. Let D
be an image descriptor which can be defined [8] as a tuple

(ε, ρ), where ε: Î → Rn is a function, which extracts a fea-

ture vector vÎ from an image Î; and ρ: Rn × Rn → R is a
distance function that computes the distance between two
images according to the distance between their correspond-
ing feature vectors, i.e., the distance distance between two
images imgi and imgj is given by the value of ρ(ε(imgi),
ε(imgj)). For simplicity and readability purposes, we use
the notation ρ(i, j) along the paper.

The distance ρ(i, j) among all images imgi, imgj ∈ C can
be computed to obtain a squared n × n distance matrix A,
such that Aij = ρ(i, j). Also based on the distance func-
tion ρ, a ranked list τq can be computed in response to a
query image imgq. The ranked list τq=(img1, img2, . . . ,
imgn) can be defined as a permutation of the collection C.
A permutation τq is a bijection from the set C onto the set
[N ] = {1, 2, . . . , n}. For a permutation τq, we interpret τq(i)
as the position (or rank) of image imgi in the ranked list τq.
We can say that, if imgi is ranked before imgj in the ranked
list of imgq, that is, τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j). We
also can take every image imgi ∈ C as a query image imgq,
in order to obtain a set R = {τ1, τ2, . . . , τn} of ranked lists
for each image of the collection C.

Our problem consists in redefining the distance ρ by com-
puting a more effective distance function ρr. The objective
of function ρr(i, j,R) is to exploit the information encoded
in the set R by analyzing the reciprocal references found in
the top positions of ranked lists aiming at improving the ef-
fectiveness of distances among images. In a math notation:
ρr: C×C×R → R is a distance function between two images
imgi, imgj ∈ C that considers the information of the set of
ranked lists R.

We also consider the problem of distance fusion, in which
there are two or more image descriptors available. In this
case, we define a function ρrf which takes as input the dif-
ferent sets of ranked lists {R1,R2, . . . ,Rd} computed by
different descriptors, where d denotes the number of consid-
ered descriptors, and produces a distance score.

4. RECIPROCAL KNN DISTANCE
LEARNING

The objective of Reciprocal kNN Distance is to define a
more effective distance between two images by analyzing
the reciprocal references among images at top positions of
their ranked lists. This objective is mainly supported by
the “cluster hypothesis”, which states that closely related
documents tend to be relevant to the same request [42]. In
other words, if two query images are similar, the images well
ranked for these queries probably refer to each other at top
positions of their own ranked lists.



The analysis of the cluster hypothesis by the proposed Re-
ciprocal kNN Distance is performed based on two approaches
that have been receiving great attention on unsupervised
distance learning recently: (i) the similarity between ranked
lists, and (ii) the reciprocal neighborhood.

The ranked lists define relationships not only between
pairs of images (as distance functions), but also among all
images found in a ranked list [32]. In this sense, the ranked
lists represent, by itself, a description of images with regard
to the whole dataset and a relevant source of contextual in-
formation. In addition, a set of similar images tends to ap-
pear at top positions of the high-effective ranked lists and,
therefore, those lists can be considered as a reliable tool to
compare images.

On the other hand, the k-reciprocal nearest neighborhood
relationship is a much stronger indicator of similarity than
the unidirectional nearest neighborhood [33]. In this way,
the k-reciprocal nearest neighborhood mitigates the risk of
false positives at top positions of ranked lists. Given two
similar images, an image descriptor is expected to produce
ranked lists which present reciprocal references at the begin-
ning of their ranked lists. When an image does not refer to
the other image at the top positions of its ranked list, this
behavior indicates a low confidence in the similarity between
them.

The Reciprocal kNN Distance combines these two concepts
for distance learning, which represents the main novelty of
this work. The proposed distance is computed by modeling
the similarity between ranked lists in terms of the amount
of reciprocal references.

4.1 Reciprocal Neighborhood
Given a query image imgq, we can define a neighbor-

hood set that contains the k most similar images to imgq
as N (q, k). For the k-nearest neighbor query, we have
|N (q, k)| = k, which is formally defined as follows:

N (q, k) = {S ⊆ C, |S| = k ∧ ∀imgi ∈ S, imgj ∈ C − S :

τq(i) < τq(j)}.
(1)

The nearest neighbor relationships are not symmetric [16,
33], since imgi ∈ N (q, k) does not imply imgq ∈ N (i, k).
The set of k-reciprocal nearest neighbors of image imgq can
be defined [33] as:

Nr(q, k) = {imgi ∈ N (q, k) ∧ imgq ∈ N (i, k)}. (2)

Based on the reciprocal neighborhood set Nr(q, k), we de-
fine a binary function fr : C × C → {0, 1} which determines
if two images imgq, imgi ∈ C are reciprocal neighbors:

fr(q, i) = |Nr(q, k) ∩ {imgi}|. (3)

The function fr returns 1 if imgq and imgi are reciprocal
neighbors, and 0 otherwise.

4.2 Reciprocal kNN Distance
Given two images imgq, imgi ∈ C and their respective

ranked lists τq, τi ∈ R, the Reciprocal kNN Distance be-
tween them is computed based on the number of reciprocal
neighbors at top positions of ranked lists. In addition, for
each pair of reciprocal neighbors, a weight is computed pro-
portionally to their position in the ranked lists τq and τi.
The motivation consists in considering more relevant the in-
cidence of reciprocal neighbors at top positions of ranked

lists. The score based on the number of reciprocal neigh-
bors and its respectively weights are given by the function
nr(q, i), defined as follows:

nr(q, i) =

∑
j∈N (q,k)

∑
l∈N (i,k) fr(j, l)× wr(q, j)× wr(i, l)

k4
,

(4)

While the function fr determines if a pair of images (imgj ,
imgl) are reciprocal neighbors, the weight is computed based
on position of these images in ranked lists τq and τi, accord-
ing to the function wr, defined as follows:

wr(q, j) = k + 1− τq(j). (5)

The value of wr is linearly decreasing, ranging from k as-
signed to the first position to 1, at the kth position. Notice
that the divisor k4 in Equation 4 is defined considering the
maximum value of reciprocal neighbors (k2) and the maxi-
mum values of wr.

The Reciprocal kNN Distance is defined as the inverse of
the number of reciprocal neighbors nr, as follows:

ρr(q, i) =
1

1 + nr(q, i)
. (6)

Finally, we introduce a parameter L aiming at reducing
the computational efforts needed to compute the distance
learning procedure. Since the top positions of ranked lists
are expected to contain the most relevant images related
to the query image, the distance learning can be performed
considering only the beginning of the ranked lists without
significant loss of effectiveness (as detailed discussion in Sec-
tion 5.1). From the L position to the end, the ranked lists
remain the same. Therefore, we redefine ρr as follows:

ρr(q, i) =

{ 1
1+nr(q,i)

, if τq(i) ≤ L,
τq(i), otherwise.

(7)

4.3 Reciprocal kNN Distance Fusion
Different image descriptors and their respective distance

functions may focus on different aspects of the images, which
are often complementary to each other [3]. In this way,
we aim at exploiting the unsupervised learning procedure
based on the Reciprocal kNN Distance to combine different
distance measures.

The proposed distance fusion approach is divided into in
two main steps: (i) first, the sets of ranked lists computed
by different descriptors are combined into a single set Rf

through an intermediary distance ρf ; (ii) next, the set Rf is
used by the conventional Reciprocal kNN Distance presented
in the previous section aiming at computing a final distance
ρrf .

A traditional challenge in fusion tasks is to estimate the
quality of each descriptor being combined. The main novelty
of our fusion approach is the use of the number of reciprocal
neighgors score nr as an unsupervised estimation of quality
of the descriptor for a given image. The main idea consists
in considering the score nr(q, q) for a single ranked list of an
image imgq

1.
The motivation of this approach is based on the conjec-

ture that high-effective ranked lists are expected to present
1
Repeated pairs of images are not considered for the computation of

nr score in this case, and therefore the divisor is equal to k4/2.



a high number of similar images, and therefore, reciprocal
neighbors are found at their top positions. Given a descrip-
tor Dj and its corresponding computed set of ranked lists
Rj , we aim at estimating the capability of the descriptor
determine the distance between imgq and imgi. Thus, we
propose a quality estimation score ej(q, i):

ej(q, i) = (1 + nr(q, q))× (1 + nr(i, i)). (8)

The intermediary distance is computed by a multiplica-
tive approach that considers, for each descriptor, the posi-
tion from which on images imgq and imgi become reciprocal
neighbors (max(τjq (i), τji(q))) according to the set of ranked
lists Rj . The relevance of the position computed by each
descriptor for the combined distance function is determined
by the quality estimation score ej(q, i). The intermediary
function ρf is defined as follows:

ρf (q, i) =

d∏
j=1

max(τjq (i), τji(q))
ej(q,i). (9)

Finally, the intermediary function ρf is used to compute
the set Rf with the combined ranked lists which is submit-
ted to the Reciprocal kNN Distance learning procedure as a
single descriptor.

5. EXPERIMENTAL EVALUATION
This section presents a set of conducted experiments for

assessing the effectiveness of the proposed method. We an-
alyzed and compared our method under several aspects.
Section 5.1 discusses the impact of parameter values. Sec-
tions 5.2, 5.3, and 5.4 present the experimental results for
the proposed approach considering various shape, color, and
texture descriptors respectively. Section 5.5 discusses the
use of our method for combining different descriptors. Sec-
tion 5.6 presents the experimental results for object retrieval
tasks, while Section 5.7 presents the results for multimodal
image retrieval tasks. Finally, experiments aiming at com-
paring our results to state-of-the-art related methods are
presented in Section 5.8.

5.1 Impact of Parameters
The computation of Reciprocal kNN Distance considers

only two parameters: (i) k: the size of the neighborhood
set; and (ii) L: the position at which the ranked lists are
considered in the distance learning procedure.

To evaluate the impact of different parameter settings on
the effectiveness of the method and for determining the best
parameters values, we conducted two experiments consider-
ing the MPEG-7 [21] dataset. The MPEG-7 [21] dataset is
a well-known shape dataset, composed of 1400 shapes di-
vided in 70 classes. The Mean Average Precision (MAP)
was considered as effectiveness measure.

In the first experiment, we fixed the value of L = 200 and
varied the parameter k in the interval [5, 50], considering
the recently proposed Articulation-Invariant Representation
(AIR) [13] shape descriptor. Figure 1 illustrates the results
of MAP scores for different values of k.

A quickly grow of retrieval scores can be observed for the
beginning of the curve, with 5 ≤ k ≤ 15. However, be-
tween k = 15 and k = 20, no further improvements are ob-
tained and the observed MAP scores is approximately 97%.
Therefore, we set the parameter value as k = 20 for other
experiments.
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Figure 1: Impact of parameter k on MAP scores.

In the second experiment, we aim at measuring the im-
pact of parameter L on effectiveness scores. As discussed
before, the parameter L represents a trade-off between effec-
tiveness and efficiency. In this, way evaluate three shape de-
scriptors with different effectiveness: Contour Features De-
scriptor (CFD) [29], Aspect Shape Context (ASC) [25], and
Articulation-Invariant Representation (AIR) [13]. We fixed
the value of k = 20 varied the parameter L in the interval
[1, 1400]. Figure 2 illustrates the variation of MAP score
according to different values of L. Again, we can observe
a quickly grow of retrieval scores in the beginning of the
curve. As it can be observed, from L = 400 obtained MAP
scores are maximum for all descriptors. We use k = 20 and
L = 400 for most of our experimental evaluation.
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Figure 2: Impact of parameter L on MAP scores.

5.2 Shape Descriptors
We evaluate the use of our method for shape retrieval

using the MPEG-7 [21] dataset, described in Section 5.1.
Six shape descriptors were considered: Segment Saliences
(SS) [9], Beam Angle Statistics (BAS) [1], Inner Distance
Shape Context (IDSC) [24], Contour Features Descrip-
tor (CFD) [29], Aspect Shape Context (ASC) [25], and
Articulation-Invariant Representation (AIR) [13].

For evaluation, the so-called bull’s eye score commonly
used for this dataset was considered. This score counts
all matching objects within the 40 most similar candidates.
Since each class consists of 20 objects, the retrieved score
is normalized with the highest possible number of hits and
is equivalent to Recall@40. Table 1 presents results con-
sidering the bull’s eye score for shape descriptors on the
MPEG-7 [21] dataset.

We also consider the more strict accuracy score on the
MPEG-7 [21] dataset, which counts all matching objects
within the 20 most similar candidates. Table 2 presents



Table 1: Reciprocal kNN Distance on the MPEG-
7 [21] dataset considering the Bull’s eye score.

Shape Bull’s Reciprocal Gain
Descriptor Eye kNN

Score Distance

SS [9] 43.99% 52.95% +20.37%
BAS [1] 75.20% 80.74% +7.37%
IDSC [24] 85.40% 90.75% +6.26%
CFD [29] 84.43% 92.43% +9.48%
ASC [25] 88.39% 93.05% +5.27%
AIR [13] 93.67% 100% +6.76%

Table 2: Reciprocal kNN Distance on the MPEG-
7 [21] dataset considering the Accuracy score.

Shape Accuracy Reciprocal Gain
Descriptor Score kNN

Distance

SS [9] 35.50% 43.48% +22.47%
BAS [1] 67.33% 71.09% +5.58%
IDSC [24] 77.21% 83.67% +8.37%
CFD [29] 75.59% 85.94% +13.69%
ASC [25] 80.66% 86.21% +6.81%
AIR [13] 88.17% 94.05% +6.67%

Table 3: Reciprocal kNN Distance for various retrieval tasks.

Descriptor Type Dataset Score
(MAP)

Reciprocal
kNN

Gain

Distance

SS [9] Shape MPEG-7 37.67% 46.55% +23.57%
BAS [1] Shape MPEG-7 71.52% 75.59% +5.69%
IDSC [24] Shape MPEG-7 81.70% 87.13% +6.65%
CFD [29] Shape MPEG-7 80.71% 89.23% +10.56%
ASC [25] Shape MPEG-7 85.28% 89.62% +5.09%
AIR [13] Shape MPEG-7 89.39% 97.85% +9.46%

GCH [37] Color Soccer 32.24% 34.86% +8.13%
ACC [15] Color Soccer 37.23% 45.73% +22.83%
BIC [36] Color Soccer 39.26% 46.32% +17.98%

LBP [28] Texture Brodatz 48.40% 48.31% -0.19%
CCOM [19] Texture Brodatz 57.57% 62.92% +9.29%
LAS [38] Texture Brodatz 75.15% 77.46% +3.07%

Table 4: Initial MAP scores for visual and
textual retrieval on the UW dataset.

Descriptor Type Score
(MAP)

GCH [37] Visual - Color 31.75%
BIC [36] Visual - Color 43.46%
JAC [44] Visual - Color 52.26%
QCCH [14] Visual - Texture 17.81%
LAS [38] Visual - Texture 20.44%
HTD [46] Visual - Texture 22.61%

DICE [23] Textual 50.73%
OKAPI [35] Textual 51.68%
COS [2] Textual 41.80%
JACKARD [23] Textual 50.29%
TF-IDF [2] Textual 49.25%

the results for this measure. We can observe very significant
gains in relation to the results observed for each descriptor
initially, ranging from +5.27% to +20.37% for the bull’s eye
score and ranging from +5.58% to +22.47% for the accuracy
measure. Notice that the accuracy gains are slightly greater,
which indicates that the distance learning gains are mainly
located on top positions of ranked lists.

We also evaluated the shape descriptors considering the
MAP (Mean Average Precision) score. Results are presented
in Table 3, along with the evaluation of other visual proper-
ties (color and texture). Positive gains can also be observed
for all shape descriptors ranging from +5.09% to +23.57%.

5.3 Color Descriptors
We conducted experiments aiming at evaluating the Re-

ciprocal kNN Distance for color descriptors. The experi-
ments were conducted on a dataset [41] composed of im-
ages from 7 soccer teams, containing 40 images per class.
Three color descriptors were considered: Border/Interior
Pixel Classification (BIC) [36], Auto Color Correlograms
(ACC) [15], and Global Color Histogram (GCH) [37]. Ta-
ble 3 presents the experimental results considering MAP as
score. We can observe a positive gain for all color descriptors
ranging from +8.13% to +22.83%.

5.4 Texture Descriptors
The experiments considering texture descriptors were con-

ducted on the Brodatz [5] dataset, a popular dataset for
texture descriptors evaluation. The Brodatz [5] dataset is
composed of 111 different textures. Each texture is di-
vided into 16 blocks, such that 1,776 images are considered.
We consider three well-known texture descriptors: Local

Binary Patterns (LBP) [28], Color Co-Occurrence Matrix
(CCOM) [19], and Local Activity Spectrum (LAS) [38]. Re-
sults considering MAP scores are presented in Table 3. We
can observe positive gains ranging from +3.07% to +9.29%,
except for LBP [28] descriptor, which presents a slightly loss.
This case represents extreme situations, in which the visual
descriptor completely confuse different classes of images and
there are not enough information for the unsupervised learn-
ing approach.

5.5 Distance Fusion
We also evaluate the use of Reciprocal kNN Distance for

distance fusion, aiming at combining different CBIR descrip-
tors. We selected three shape descriptors with highest re-
trieval scores in distance learning tasks and evaluated the
different combinations between them. Table 5 presents the
fusion results. Besides MAP scores, we also present the ac-
curacy and the bull’s eye score on the MPEG-7 [21] dataset.
Notice that the combination of CFD [29]+AIR [13] presents
retrieval scores of 100% for the three considered measures,
which means perfect retrieval results.

We also selected two color and texture descriptors, with
the highest MAP scores in distance learning tasks. Table 6
presents results of MAP score of these descriptors. We can
observe that significant gains are obtained when compared
with the results of descriptors in isolation. For color descrip-
tors, for example, the fusion score achieves a MAP score of
47.40%, while the best descriptor in isolation yields only
39.26%.

5.6 Object Retrieval
We also evaluate the Reciprocal kNN Distance for ob-



Table 5: Reciprocal kNN Distance for distance fu-
sion on the MPEG-7 dataset.

Descriptor Bull’s
eye

MAP Accuracy

score

CFD [29] 84.43% 80.71% 75.59%
ASC [25] 88.39% 85.28% 80.66%
AIR [13] 93.67% 89.39% 88.17%

CFD+ASC 99.74% 99.18% 98.60%
CFD+AIR 100% 100% 100%
ASC+AIR 100% 99.99% 99.96%

Table 6: Reciprocal kNN Distance for distance fu-
sion for color and texture descriptors.

Descriptor Type Dataset Score
(MAP)

ACC [15] Color Soccer 37.23%
BIC [36] Color Soccer 39.26%
BIC+ACC Color Soccer 47.40%

CCOM [19] Texture Brodatz 57.57%
LAS [38] Texture Brodatz 75.15%
LAS+CCOM Texture Brodatz 82.84%

ject retrieval tasks. The experiments were conducted on the
ETH-80 [22] dataset, which is composed of 3,280 color im-
ages. Each image contains one single object, like tomatoes,
cars, and cups, for example. The objects appear in many
variations of rotation. For instance, a car was photographed
from different angles. This dataset is equally divided into
8 classes where each class represents a different object, and
all images have 128 × 128 pixels.

We evaluate our method considering four color descrip-
tors: Border/Interior Pixel Classification (BIC) [36], Auto
Color Correlograms (ACC) [15], Global Color Histogram
(GCH) [37] and Color Structure Descriptor (CSD) [27]. Ta-
ble 7 presents results considering the MAP scores. Positive
gains were obtained for all considered descriptors ranging
from +1.54% to +6.77%.

Table 7: Reciprocal kNN Distance for Object Re-
trieval on ETH-80 [22] dataset.

Descriptor Score Reciprocal Gain
(MAP) kNN

Distance

BIC [36] 49.72% 53.08% +6.76%
ACC [15] 48.50% 51.59% +6.37%
CSD [27] 48.46% 51.74% +6.77%
GCH [37] 41.62% 42.26% +1.54%

5.7 Multimodal Retrieval
The UW dataset [11] was created at the University of

Washington and consists of a roughly categorized collection
of 1,109 images. The images include vacation pictures from
various locations. These images are partly annotated using
keywords. On the average, for each image the annotation
contains 6 words. The maximum number of words per image
is 22 and the minimum is 1. There are 18 categories, ranging
from 22 images to 255 images per category.

The experiments consider eleven descriptors, which are
listed below.

Visual Color Descriptors: we considered three color
descriptors on experiments: Border/Interior Pixel Classifi-
cation (BIC) [36], Global Color Histogram (GCH) [37] (both
already used on Section 5.3), and the Joint Autocorrelogram
(JAC) [44].

Visual Texture Descriptors: for texture we used the
Homogeneous Texture Descriptor (HTD) [46], Quantized
Compound Change Histogram (QCCH) [14], and Local Ac-
tivity Spectrum (LAS) [38] (the last also considered in Sec-
tion 5.4).

Textual Descriptors: five well-known text similarity
measures are considered for textual retrieval, like the Cosine

similarity measure (COS), Term Frequency - Inverse Docu-
ment Frequency (TF-IDF), and the Dice coefficient (DICE).

Table 4 presents the MAP scores for each descriptor iso-
lated. Experiments were conducted considering different
scenarios: using all descriptors of each modality; using only
the best descriptors. Two baselines are also considered in
the experiments: the traditional Borda [50] method and
the recently proposed Reciprocal Rank Fusion [7]. Table 8
presents the MAP results the Reciprocal kNN Distance.

It can be observed that, except for the combination of
all visual descriptors, all the remaining results overcome the
best individual descriptor (52.26%). The best multimodal
retrieval result (74.75%) presents a very significant gain of
+43.04% over the best individual descriptor in isolation.

Figure 3 presents example results obtained by visual and
textual descriptors in isolation and using the Reciprocal
kNN Distance in distance fusion tasks.The gains can also
be observed in Figure 4, which illustrates the Precision ×
Recall curve for the considered descriptors and for the Re-
ciprocal kNN Distance.
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Figure 4: Precision × Recall curve for multimodal
retrieval on UW dataset [11].

5.8 Comparison with Other Approaches
Finally, we also evaluate our method in comparison with

other state-of-the-art post-processing methods. We use the
MPEG-7 [21] dataset commonly used for post-processing
methods evaluation and comparison. We first considered
the bull’s eye score, often used for comparisons. Table 9
presents results of the proposed Reciprocal kNN Distance in
comparison with several other post-processing methods re-
cently proposed in the literature. We report the two best
results of our approach and for each of most recent meth-
ods. Note that the results for distance learning and distance
fusion presents better effectiveness performance when com-



Table 8: Reciprocal kNN Distance on multimodal retrieval tasks (MAP as score).
Retrieval Task Descriptors Reciprocal Borda [50] Reciprocal

kNN Distance Fusion [7]

Visual All visual descriptors 47.91% 40.29% 43.29%
Textual All textual descriptors 63.74% 53.07% 53.14%
Multimodal All descriptors 70.09% 54.89% 59.34%

Visual BIC [36]+JAC [44] 74.05% 52.54% 53.00%
Textual DICE [23]+OKAPI [35] 64.35% 54.57% 54.31%
Multimodal BIC [36]+JAC [44]+DICE [23]+OKAPI [35] 74.75% 61.91% 63.67%

Figure 3: Example of results for a multimodal image retrieval task considering a query image of class “Japan”
(first column). Each line presents the retrieved images by visual and textual descriptors (BIC [36], JAC [44],
DICE [23], and OKAPI [35] respectively), with green and red borders for relevant and non-relevant images.
The last line presents the results of the proposed Reciprocal kNN Distance.

pared to various recently proposed methods. The Reciprocal
kNN Distance achieves a bull’s eye score of 100% for the
AIR [13] shape descriptor.

We also considered the accuracy score, a more strict mea-
sure used recently due to the saturation of the bull’s eye
score. Table 10 presents the results for the accuracy mea-
sure. Note that the Reciprocal kNN Distance applied to the
combination of only two descriptors CFD [29] + AIR [13]
reached a perfect retrieval score, obtained by other state-of-
the-art method only combining three descriptors.

6. CONCLUSIONS
In this work, we have presented a novel unsupervised

learning approach called Reciprocal kNN Distance aiming
at improving the effectiveness of distance measures on im-
age retrieval tasks. The main idea consists in computing
the similarity among ranked lists by analyzing the recipro-
cal references at top positions of ranked lists.

A large set of experiments was conducted considering
different descriptors and datasets. Experimental results
demonstrated the applicability of our method on different
scenarios, considering visual image retrieval (shape, color,
and texture descriptors), object retrieval and multimodal
retrieval (visual and textual descriptors). In addition, the
proposed approach also achieves very high effectiveness per-
formance when compared with recent state-of-the-art meth-
ods on well-known datasets.

Future work focuses on: (i) using our distance fusion ap-
proach for combining local and global descriptors; and (ii)
the implementation of the proposed distance learning ap-
proach by considering parallel architectures.
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