Capb
Snoop-based Multiprocessor Design

Design Goals

Performance and cost depend on design and implatr@ntoo

Goals
- Correctness
- High Performance
- Minimal Hardware

Often at odds (riscos......)-.
- High Performance => multiple outstanding low-legeénts
=> more complex interactions
=> more potential correctness bugs

We’'ll start simply and add concurrency to the desig

pag 377

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

6.1 Correctness | ssues

Fulfill conditions for coherence and consistency
- Write propagation, serialization; for SC: complatiatomicity

Livelock: no processor makes forward progress although
transactions are performed at hardware level
- €.g. simultaneous writes in invalidation-based grot

— each requests ownership, invalidating other, buslddsefore winning
arbitration for the bus

Deadlock: all system activity ceases - ~tn
- Cycle of resource dependences :

Sarvation: one or more processors make no forward progress
while others do.

. e.g. interleaved memory system with NACK on bangybu

- Often not completely eliminated (not likely, notastrophic)
pag 378

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

pag 380

6.2 Base Cache Coherence Design

Ate agora:
- Single-level write-back cache
- Invalidation protocol
- One outstanding memory request per processor

- Atomic memory bus transactions

- For BusRd, BusRdX no intervening transactions allowed on
bus between issuing address and receiving data

- BusWB: address and data simultaneous and sinked by memory
system before any new bus request

- Atomic operations within process
— One finishes before next in program order starts

Examine write serialization, completion, atomicity
Then add more concurrency/complexity and examienag

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

Some Design | ssues

Design of cache controller and tags
- Both processor and bus need to look up

How and when to present snoop results on bus
Dealing with write backs

Overall set of actions for memory operation notrato
. Can introduce race conditions

New issues deadlock, livelock, starvation, seradion, etc.

Implementing atomic operations (e.g. read-modifytayr

Let’s examine one by one ...

pag 381

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

6.2.1 Cache Controller and Tags

Cache controller stages components of an operation
- Itself a finite state machine (but not same asqualtstate machine)

Uniprocessor: On a miss:
- Assert request for bus
- Walit for bus grant
- Drive address and command lines
- Wait for command to be accepted by relevant device
- Transfer data

In snoop-based multiprocessor, cache controllet:mus

- Monitor bus and processor
— Can view as two controllers: bus-side, and processder{ser fig 6.3)

— With single-level cache: dual tags (not data) or-ghoated tag RAM
- must reconcile when updated, but usually only loaked

- Respond to bus transactions when necessary (nogdépsor-ready)

pag 381

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

6.2.2 Reporting Snoop Results. How?

Collective response from caches must appear on bus

Example: in MESI protocol, need to know
- Is block dirty; i.e. should memory respond or not?

« |Is block shared; i.e. transition to E or S state @l miss?

Three wired-OR signals
- Sharedasserted if any cache has a copy

- Dirty: asserted if some cache has a dirty copy

- needn’t know which, since it will do what's neceaysa

- Snoop-valid asserted when OK to check other two signals (ecemv@la um
strobe ou enable)

— actually inhibit until OK to check

lllinois MESI requires priority scheme for cache-tche transfers
- Which cache should supply data when in shared state?

- Commercial implementations allow memory to proviagadver Challenge e
Enterprise)

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

pag 382 7

pag 383

Reporting Snoop Results: When?

Memory needs to know what, if anything, to do

1 Fixed number of clocks from address appearing sn bu

- Dual tags required to reduce contention with proae®gee tem
prioridade)

- Still must be conservative (processor update bothdagwite: E ->
M; tags ficam ocupados)

- Pentium Pro, HP servers, Sun Enterprise
2 Variable delay
- Memory assumes cache will supply data till all say “sorry
- Less conservative, more flexible, more complex
- Memory can fetch data and hold just in case (SGll&ige)

3 Immediately: Bit-per-block in memory (existe blocoadificado em
alguma cache?)

- Extra hardware complexity in commodity main memsygtem

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

>

6.2.3 Writebacks

Duas transacoes: bloco buscado pelo miss e bloco enpladem(WB).,

To allow processor to continue quickly, want tovess miss first and
then process the write back caused by the misshsymously

« Need write-back buffer

- Must handle bus transactions . lAddr lcm

relevant to buffered block

P

Tags Tags
and and
state Cache data RAM state
for for
snoop P

controller

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009

>
A
[J
snoop the WB buffer gmroei
« comparador observa v
se alguém esta Tag Write-back buffer
precisando do bloco ' >
em WB, fornece o Igntroller
dado e cancela o ‘l
pedido para acesso Y
, Snoop state Addr Cmd Data buffer Addr Cmd
ao bus (alguém agora I T T
ficou com o dado) <¢ System bus Y f y y -

pag 385

6.2.5 Non-Atomic State Transitions

Nos diagramas (FSM) do Cap. 5, assumiu-se que as
transicoes de estado eram instantaneas (ou atomicas)

Memory operation involves many actions by many entities,
Including bus transactions

- Look ulo cache ta?s bus arbitration, actions by other
controllers, (transferéncia de dados, finalizacao da
transagao)

« Even if bus is atomic, overall set of actions is not

- Can have race conditions among components of different
operations

Expl 6.1: Suppose P1 and P2 attempt to write cached block A
simultaneously (ambos estao no estado S)

- Each decides to issue BusUpgr to allow S —> M
— Must handle requests for other blocks while waiting to acquire bus

— Must handle requests for this block A

. e.g. if P2 wins, P1 must invalidate copy and modify request to

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

10

pag 387

Handling Non-atomicity: Transient States

Two types of states
-Stable (e.g. MESI)
-Transient or Intermediate
(introduzidos para eventualmente
trocar o pedido em funcao
da atividade no barramento)
-Normalmente, os estados
iInstaveis ndo sao

i
s /
/

v . BusRdX/Flush
BusRd/Flush

BusGrant/

' \
BustT$ Bust/FIush\
| 1\ |
1 7\ |

BusGrant/BusRdX

codificados no estado de S
todos os blocos da cache I Bserany o
(ficam no controlador) N /i ox) Per,\
«_7 BusRd/Flush |
. Increase complexity P o
(mais dificil de garantir
a corretude), so many seek to avoid
— e.g. don't use BusUpgr, rather other mechanisms tal alaia
transfer (expl Sun Enterprise)(alguns problemas naecapar
com RdX)

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

11

6.2.6 Serialization

Processor-cache handshake must preserve ser@iizdtbus order

- €.g. on write to block in S state, mustn’t writéade block until
ownership is acquired.

— other transactions that get bus before this one may &eappear later

Write completion for SC: needn’t wait for inval totaallly happen

- Just wait till it gets bus (here, will happen befoext bus xaction) (na
precisa aguardar a conclusao do RdX, simplesmenteri@ogabus)

- Commit (ordem no bus esta estabelegidarsuscomplete

- Don’t know when inval actually inserted in destioatiprocess’s local
order, only that it's before next xaction and in saonder for all procs

- Local write hits become visible not before next bassaction

- Same argument will extend to more complex systems

- What matters is not when written data gets on tise(tvrite back), but
when subsequent reads are guaranteed to see it

Write atomicity: if a read returns value of a wWé W has already
gone to bus and therefore completed if it needed t
pag 389 12

Adaptado dos slides da editora por Mario 8rtes — IC/Unicamp — 2009s2

6.2.7, 6.2.8 Deadlock, Livelock, Starvation

Request-reply protocols can lead to protocol-lefesth deadlock
- In addition to buffer deadlock discussed earlier

- When attempting to issue requests, must serviaammyg transactions
— e.g. cache controller awaiting bus grant must snodpeaan flush blocks
— else may not respond to request that will release leastlolck

Livelock: many processors try to write same linaclkone:
- ODbtains exclusive ownership via bus transactioauy@& not in cache)
- Realizes block is in cache and tries to write it
- Livelock: | obtain ownership, but you steal it befd can write, etc.
- Solution: don'’t let exclusive ownership be takeragwefore write
Starvation: solve by using fair arbitration on lausl FIFO buffers
- May require too much buffering; If retries usedppties as heuristics

pag 390

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

13

6.2.9 Implementing Atomic Operations

Read-modify-write: read component and write compbne

- Cacheable variable, or perform read-modify-writen@mory
— cacheable has lower latency and bandwidth need®fbreacquisition
— also allows others spinning in cache without gemggataffic while waiting
— at-memory has lower lock transfer time
— usually traffic and latency considerations dominateiyise cacheable

- Natural to implement with two bus transactionsdraad write

— can lock down bus (até completar a escrita): okayttmmi bus, but not fo
split-transaction

— Mas existe sulugao melhor (better approach): get ex@usmnership, read=
modify-write, only then allow others access (consegnesso exclusivo e nao
libera até completar a escrita); melhor porgue nao bleguéiarramento paga
operacdes em outros blocos

— compare&swap more difficult in RISC machines (precisaragao: memoria,
registrador> memadaria) two registers+memory

es da edltora por Mario Cortes — IC/Unicamp — 2009s2

pag 391 14

pag 392

|mplementing LL-SC

HW Lock flag and lock address register at each processor

LL reads block, sets lock flag, puts block address in register
Incoming invalidations checked against address: if match, reset flag
- Also if block is replaced and at context switches
SC checks lock flag as indicator of intervening conflicting write
- If reset, fail; if not, succeed
Livelock considerations

- Don’t allow replacement of lock variable between LL and SC
— split (instruction and data cache) or set-assoc. (unified) cache,
— or don’t allow memory accesses between LL, SC

— (also don’t allow reordering of accesses across LL or SC) (porque isso
poderia colocar outras instrucdes entre LL e SC)

- Don't allow failing SC to generate invalidations (not an ordinary write)
(como aconteceria em um write comum)

Performance: both LL and SC can miss in cache
(2 misses no SharedState-SC x 1 miss no r-m-w)

- Prefetch block in exclusive state at LL (para evitar misses)
- But exclusive request reintroduces livelock possibility: use backoff

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

15

pag 393

6.3 Multi-level Cache Hierarchies

How to snoop with multi-level caches? (mostrar fig 6.6)

- independent bus snooping at every level?

- muito caro e inadequado ($1 on chip; precisaria pinos especiais para
monitorar barramento; tag duplicada); saida = inclusion

- maintain cache inclusion (caracteristica usual)

Requirements for Inclusion
- data in higher-level cache is subset of data in lower-level cache

- modified in higher-level (M em MESI ou Sm no Dragon) => marked
modified in lower-level

Now only need to snoop lowest-level cache
- If L2 says not present (modified), then not so in L1 too

. |If BusRd seen to block that is modified in L1, L2 itself knows this

Is inclusion automatically preserved?
- Replacements: all higher-level misses go to lower level

- Modifications (em estados, devem ser propagados cima/baixo)

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

16

Violations of | nclusion

The two caches (L1, L2) may choose to replace different block

- Differences in reference history
— set-associative first-level cache with LRU replacement (historia diferente da L2)

— example: blocks m1, m2, m3 fall in same set of L1 cache... (ver texto)

- Split higher-level caches (instruces e dados)
— instruction, data blocks go in different caches at L1, but may collide in L2

— what if L2 is set-associative?

 Differences in block size

But a common case works automatically

- L1 direct-mapped, fewer sets than in L2, and block size same

— (desde que bloco carregado em L1 também esteja presente em L2)

pag 395

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

17

Preserving Inclusion Explicitly

Em algumas configuracdes n&o é possivel garantir inclusdo sem acéo
explicita

Propagate lower-level (L2) replacements to higher-level (L1)
- Invalidate or flush (if dirty) messages
Propagate bus transactions from L2 to L1

- Propagate all transactions (nem todas sao relevantes para L1), or use
inclusion bits (indica quais blocos estdo em L1 - evita trafego L1-L2)

Propagate modified state from L1 to L2 on writes?
- Write-through L1, or modified-but-stale bit (indica que o dadoem L1 é
gue esta atualizado) per block in L2 cache
Correctness issues altered?
- Not really, if all propagation occurs correctly and is waited for (up — down)
- Writes commit when they reach the bus, acknowledged immediately
- But performance problems, so want to not wait for propagation

- Discuss after split-transaction busses

Dual cache tags less important: each cache is filter for other (ver fig 6.7)

pag 396-7

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

18

6.4 Split-Transaction Bus

Bus atomico desperdica BW: fios do barramento ficam ociosos entre:

(endereco+com->bus) e (dado - bus)

Tipos de transacao: BusRd (request / data),
BusUpgr (request / - / ack), BusRdX (request / data / ack)

Split bus transaction into request and response sub-transactions
- Separate arbitration for each phase
Other transactions may intervene
- Improves bandwidth dramatically
- Response is matched to request
- Buffering between bus and cache controllers

Reduce serialization down to the actual bus arbitration

Mem Access Delay Access Dela

A A

v

Data E Data

Address/CMD | { Address/CMD i | Address/CMD

v

Bus

pag 398 arbitration

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

19

Complications

1- New request can appear on bus before previous one serviced
- Even before snoop result obtained
- Conflicting operations to same block may be outstanding on bus
- expl 6.2: P1, P2 write block in S state at same time
— both get bus before either gets snoop result, so both think they’'ve won
- Note: different from overall non-atomicity discussed earlier

2- Buffers are small, so may need flow control (evitar encher)
3- Buffering implies revisiting snoop issues
- When and how snoop results and data responses are provided
- In order w.r.t. requests? (PPro, DEC Turbolaser: yes; SGI, Sun: no)

- Snoop and data response together or separately?
— SGI together, SUN separately

Large space, much industry innovation: let's look at one example first

pag 399

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

20

6.4.1 Example (based on SGI Challenge)

No conflicting requests for same block allowed o b
- 8 outstanding requests total, makes conflict detedtactable

Flow-control throughegative acknowledgement (NACK)
« NACK as soon as request appears on bus, requestiessr
- Separate command (incl. NACK) + address and tdgta buses

Responses may be in different order than requests
- Order of transactions determined by requests
- Snoop results presented on bus with response

Look at (proximas transparéncias)
- Bus design, and how requests and responses arkadatc
- Snoop results and handling conflicting requests
- Flow control
- Path of a request through the system

pag 400

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

21

6.4.2 Bus Design and Reg-Resp M atching

Essentially two separate buses, arbitrated indesyelyd
- “Request” bus for command and address
- “Response” bus for data

Out-of-order responses imply need for matchingresgponse
- Request gets 3-bit tag when wins arbitration ($t@unding max)
- Response includes data as well as correspondinqgeséetag
- Tags allow response to not use address bus, led\neg

Separate bus lines for arbitration, and for sn@soilts

pag 400

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

22

Bus Design (continued)

Each of request and response phase is 5 bus cycles (best case)

pag 400

- Response: 4 cycles for data (bloco = 128 bytes = 1024 bits, 256-bit bus), 1
turnaround (para a resposta)

- Request phase (pipeline uniforme, também 5 ciclos): arbitration, resolution,
address, decode, ack

- Request-response transaction takes 3 or more of these (address req, data
req, data xfer = response)
Time——»

Arb | Rslv | Addr, Dcd| Ack | Arb | Rslv Addr| Dcd Ack| Arb | Rslv | Addr| Dcd| Ack |
Addresq Addr |[Grant |Addr Addr | Addr Addr Addr
bus req ack |yeq ack
Data Data Tag Data Tag
arbitration req checki req check
Data Do |D1 |D2 |D3 Do
bus

[] Read operation 1
[] Read operation 2

Cache tags looked up in decode; extend ack cycle if not possible
» Determine who will respond, if any
» Actual response comes later, with re-arbitration

Write-backs have request phase only: arbitrate both data+addr buses
(transmite dados junto com o request)

Upgrades have only request part; ack’ed by bus on grant (commit)

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

23

Bus Design (continued)

Tracking outstanding requests and matching resgonse
- Eight-entry “request table” in each cache controller

- New request on bus added to all at same index (ad), determined
by tag

- Entry holds address, request type, state in theteca@f determined
already), ...

- All entries checked on bus or processor accessasdtrh, so fully
associative

- Entry freed when response appears, so tag carabsigaed by bus

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

pag 402 24

Bus I nterface with Reguest T able

Request + Snoop state confrontar
response from $
gueue Data to/from $
A A
I = [l
— Request
e 4 buffer
2 |82 8s v i
() © o c = (@]
o = = n S © Q.(D
@ 3 | @ = £ Issue + | &2
— S, =|=| 3£ [« >()merge QS
O > n O x s
= | SE check
—» 7
Request table
Tag Write-back buffer
c
»("Comparator < S
P To g §
control = &
< Y Yy y
noo
statep Addr + cmd Tag Data buffer Addr + cmd || Tag
' A
| Addr + cmd bus
- |
v v Data + tag bus
- |

pag 403 o5

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

6.4.3 Snoop Results and Conflicting Requests

Variable-delay snooping

Shared, dirty and inhibit (pode estender a duracéo da response
phase) wired-OR lines, as before

Snoop results presented when response appears

- Determined earlier, in request phase, and kept in request table
entry (nagquela fase ja se sabia quem forneceria o dado, mas
pode levar tempo até o dado estar pronto)

- (Also determined who will respond)

- Writebacks and upgrades don’t have data response or snoop
result (ver inicio secéo 6.4)

Avoiding conflicting requests on bus

- easy: don’t issue request for conflicting request that is in request
table

Recall (lembrar que) writes (foram) committed when request gets bus

pag 402

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

26

60.4.4 Flow Control

Not just at incoming buffers from bus to cache controller (ja visto)

Cache system’s buffer for responses to its requests

- Controller limits number of outstanding requests, so easy (usar NACK)

Mainly needed (flow control) at main memory in this design
- Each of the 8 transactions can generate a writeback

- Can happen in quick succession (no response needed) - risco de
buffer overflow

- SGI Challenge: separate NACK lines for address and data buses
— Asserted before ack phase of request (response) cycle is done
- Request (response) cancelled everywhere, and retries later
— Backoff and priorities to reduce traffic and starvation

- SUN Enterprise: destination (em vez da origem iniciar) initiates retry
when it has a free buffer

— source keeps watch for this retry

— guaranteed space will still be there, so only two “tries” needed at most
pag 404

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

27

6.4.5 Handling a Read Miss

No caso de RD miss = Need to issue BusRd

First check request table. If hit:

- 1- If prior request exists for same block, want to grab data too!
— “want to grab response” bit

- “original requestor” bit

- non-original grabber must assert sharing line so others will load
In S rather than E state

- 2- If prior request incompatible with BusRd (e.g. BusRdX)
— wait for it to complete and retry (processor-side controller)

- If no prior request (naquele instante), issue request and watch
out for race conditions

— conflicting request may win arbitration before this one, but this one
receives bus grant before conflict is apparent

- watch for conflicting request in slot before own (continuar
olhando), degrade request to “no action” and withdrawv till

conflicting request satisfied
pag 404 28

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

Upon Issuing the BusRd Reguest

All processors enter request into table, snoop for request in cache

Memory starts fetching block

Trés possibilidades:

1. Cache with dirty block responds before memory ready
- Memory aborts on seeing response
- Waiters grab data

— some may assert inhibit to extend response phase till done snooping

— memory must accept response as WB (might even have to NACK se 0
seu buffer estiver cheio)

2. Memory responds before cache with dirty block
- Cache with dirty block asserts inhibit line till done with snoop
- When done, asserts dirty, causing memory to cancel response
- Later, cache with dirty issues response, arbitrating for bus

3. No dirty block: memory responds when inhibit line released

vagd0s Assume cache-to-cache sharing not used (for non-modified data)

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

29

Handling a Write Miss

Similar to read miss, except, (se nao encontrar dadmache):
- Generate BusRdX
- Main memory does not sink response since will bdifreml again
- No other processor can grab the data

If block present in shared state, issue BusUpgeatbt
- No response needed

- If another processor was going to issue BusUp@gmgas to BusRdX a
with atomic bus

Adaptado dos slides da edit@a por Mario Cortes — IC/Unicamp — 2009s2

pag 406 30

6.4.6 Write Serialization

With split-transaction buses, usually bus ordelatermined by
order ofrequests appearing on bus

- actually, the ack phase, since requests may be NACKe
- by end of this phase, they are committed for Misybin order

A write that follows a read transaction to the saooation should
not be able to affect the value returned by thadl re

- Easy in this case, since conflicting requests (pareesma posicao
de memoria) not allowed

- Read response precedes write request on bus

Similarly, a read that follows a write transactioanit return old value

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

pag 406 31

Detecting Write Completion

Problem: invalidations don’t happen as soon asasigappears on bys
(ver exemplo 6.3) & S

- They’re buffered between bus and cache

« Commitment does not imply performing or completion
- Need additional mechanisms

@ Cortes — IC/Unicamp — 200

Key property to preserve: processor shouldn’t sae value produce
by a write before previous writes in bus ordenasle to it

1. Don't let certain types of incoming transactidwesreordered in buffer

— in particular, data reply (para RD miss ou WR comitth@aak) should not
overtake invalidation request

— okay for invalidations to be reordered: only reptyually brings data in
(nao re-ordenar reply; aplicar todas invalidactes amesiantes dos repl

2. Allow reordering in buffers, but ensure impottarders preserved at
key points

— e.g. flush incoming invalidations/updates from queunesapply before

processor completes operation that may enable ég@aew value -
pag 407

t@rn por Ma

éos slides da edi
) ——

Adaptad

Commitment of Writes (Operations)

More generally, distinguish betweparforming andcommitment of a
write w.

Performed w.r.t a processor: invalidation actually applied

Committed w.r.t a processor: guaranteed that once that processs
the new value associated with W, any subsequedtbe# will see
new values of all writes that were committed whattprocessor
before W.

Global bus serves as point of commitment, if bigffare FIFO
- benefit of a serializing broadcast medium for iatemect

Note: acks from bus to processor must logically ceraessame FIFO
- Not via some special signal, since otherwise calata ordering

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

33

Write Atomicity

Still provided naturally by broadcast nature of bus

Recall that bus implies:
 Writes commit in same order w.r.t. all processors

- read cannot see value produced by write beforewas committed
on bus and hence w.r.t. all processors

Previous techniques allow substitution of “compgléte “commit”
In above statements

- that’s write atomicity

Wil discuss deadlock, livelock, starvation afteultievel caches
plus split transaction bus

pag 409

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

34

0.4.7 Alter natives: I n-order Responses

FIFO request table suffices (ainda é necessario buigaatsoc. para
bloquear pedidos conflitantes)

Dirty cache does not release inhibit line tillatready to supply data
- No deadlock problem since does not rely on anydse e

But performance problems possible at interleaveohong
- Major motivation for allowing out-of-order respomsse

In-order responses allow conflicting requests nea&ly

- Two BusRdX requests one after the other on busdaimresblock
— latter controller invalidates its block, as before
— but earlier requestor sees later request before itdatenresponse
— with out-of-order response, not known which responfieappear first
— with in-order, known, and actually can use perforceamptimization
— earlier controller responds to latter request byngpotinat latter is pending

— when its response arrives, updates word, short-cot& black on to bus,
iInvalidates its copy (reduces ping-pong latency)

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

pag 409 35

Other Alternatives

Fixed delay from request to snoop result also méalessier
- Can have conflicting requests even if data respgoneein order

- e.g. SUN Enterprise
— 64-byte line and 256-bit bus => 2 cycle data transfe
— S0 2-cycle request phase used too, for uniform pipeline
— too little time to snoop and extend request phase
— snoop results presented 5 cycles after address (unlessadhi
— by later data response arrival, conflicting requedtomsv what to do

Don’t even need request to go on same bus, asa®ogder is well-
defined

« SUN SparcCenter2000 had 2 ST busses, Cray 6400 §adousses
- Multiple requests go on bus (um para cada bus) iresamle
- Priority order established among them is logicdkeor

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

pag 410 36

Multi-L evel Cacheswith ST Bus

Key new problem: many cycles to propagate throughahchy N
» Must let others propagate too for bandwidth, seugs between levels
* (ver sequencia de passos — RDMiss — a na legenda da fidihp 6

Processor Processor

l Processor request

j T
P P
+ :

Response

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2

G o —
baiiing et o ®)
from L, to Ly T * from L, to Ly f
T L2 $ L2 $
A" L X
Response/ * + Request/response * *
request @ @ to l?LlJJs i @ @
from bus * * + +
=% g

Introduces deadlock and serialization problems

pag 411 37

Deadlock Consider ations (with multi-level
caches + ST bus)

Fetch deadlock:
« Must buffer incoming requests/responses while request outstanding

- One outstanding request per processor (nao precisa de buffer entre Proc
e L1) => need space to hold p requests plus one reply (latter is essential)

- If smaller (or if multiple o/s requests), may need to NACK

- Then need priority mechanism in bus arbiter to ensure progress (evitar
deadlock) (reservar no minimo um slot para resposta)

Buffer deadlock:
- L1 to L2 queue filled with read requests, waiting for response from L2
- L2 to L1 queue filled with bus requests waiting for response from L1
- Latter condition only when cache closer than lowest level is write back
- Could provide enough buffering, or general solutions discussed later

If max outstanding bus transactions smaller than total o/s cache misses,
response from cache must get bus before new requests from it allowed

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

- Queues may need to support bypassing (passar na frente na fila)
pag 411 38

Seguential Consistency (with multi-level
caches + ST bus)

Separation of commitment from completion even gneabw
- More performance-critical that commitment replaoenpletion
Fortunately techniques for single-level cache ahd&s extend
- Just use them at each level

- I.e. either don’t allow certain reorderings of tracsons at any level

- Or don’t let outgoing operation proceed past ldefbre incoming
iInvalidations/updates at that level are applied

pag 413

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

39

6.4.9 M ultiple Outstanding Processor
Reguests

So far assumed only 1 OS / processor: not true of modern processors
Danger: operations from same processor can complete out of order
. e.g. write buffer: until serialized by bus, should not be visible to others

- Uniprocessors use write buffer to insert multiple writes in succession
— multiprocessors usually can’t do this while ensuring consistent serialization

— exception: writes are to same block, and no intervening ops in program
order

Key question: who should wait to issue next op till previous completes
- Key to high performance: processor needn’t do it (so can overlap)

- Queues/buffers/controllers can ensure writes not visible to external
world and reads don’t complete (even if back) until allowed (more later)

Other requirement: caches must be lockup free (ver texto) to be effective

- Merge operations to a block, so rest of system sees only one o/s to
block

All needed mechanisms for correctness available (deeper queues for
performance)

pag 413

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

40

6.5 Case Studies of Bus-based M achines

SGI Challenge, with Powerpath bus

SUN Enterprise, with Gigaplane bus
- Take very different positions on the design isslissussed above

Overview
For each system:
- Bus design
« Processor and Memory System
- Input/Output system
- Microbenchmark memory access results

Application performance and scaling (SGI Challenge)

pag 415

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

41

SGI Challenge Overwew

VME-64
Graphics

SCSI-2

HPPI

|
1

R4400 CPU |
and caches Interleaved
memory:
| I | I | I | I 16 GB maximum
I/O subsy

y "r._. . i ".
s
(a) A four-processor board < Powerpath-2 bus (256 data| 40 address, 47.6 MHz) >

(b) Machine organization

36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) aviIESS
R8000 (peak 5.4 GFLOPS, 2 per board)

8-way Iinterleaved memory (up to 16 GB)

4 1/0 busses of 320 MB/s each

1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots,si@®als
128 Bytes lines (1 + 4 cycles): 128B*8bit =1Kbit

Split-transaction with up to 8 outstanding reads

- all transactions take five cycles
pag 415

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

SUN Enterprise Overview

AR ER

Pl p cPUMem |2z [|g % o

$||$ Cards S %

l I 1 o

$ || %2 | mem e ,%.

| IE I [,EI . |I I us Interrace — I/O Cards
TV v 'y
GigaplanéM bus (256 data, 41 address, 83 MHz)

Up to 30 UltraSPARC processors (peak 9 GFLOPS)
GigaplanéM bus has peak bw 2.67 GB/s; upto 30GB memory

16 bus slots, for processing or I/O boards

- 2 CPUs and 1GB memory per board

— memory distributed, unlike Challenge, but protoceats as centralize
(acessada via barramento, portanto acesso uniforme)

« Each I/0O board has 2 64-bit 25Mhz SBUSes

pag 416 43

A%ptado dos slides da editora por Mario Cortes — IC/Unicamp — 2009s2

Bus Design | ssues

Multiplexed versus non-multiplexed (separate addlrdata lines)
Wide versus narrow data busses

Bus clock rate
- Affected by signaling technology, length, numbeslofs...

Split transaction versus atomic

Flow control strategy

pag 417

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

44

6.5.1 SGI Powerpath-2 Bus

Non-multiplexed, 256-data/48-address (+cmd), 47.6 MHz, split transaction
supporting 8 o/s requests

Wide => more interface chips so higher latency, but more bw at slower clock
Large block size also calls for wider bus
Uses lllinois MESI protocol (cache-to-cache sharing)

More detail in chapter (ver 16+16+16 bits e urgent bit lines para prevenir
starvation)

Na auséncia de transacoes, maquina de espera (2 estados)

At least one
requestor
No

requestors

1. Arbitration
5. Acknowledge

4. Decode

pag 417

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

45

Bus Timing (detalhamento fig. 6.8)

requestors

1. Arbitration
5. Acknowledge)=

| Arb |Rs|v | Addr | Decodq Ack| Arb | Rslv | Addr| Decodp Ack|

I |
bus arb ack arb ack
Address “Address aM (Address /Data ackyAddress a%\ (Address m
bus Data arb \\ State / \ Data arb / State

Data
<Inhib><|nhib

4. Decode

resource
and inhibit
bus

pag 419

resource

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

46

4 MIPS R4400 processors per board share A and D chips

A-chip has address bus interface, request table (8 linhas), control logic
CC (cache coherence) chip per processor has duplicate set of tags
Processor requests go from CC chip to A chip to bus

6.5.2 Processor and Memory Systems

L $ L, $ L, $ L, $
I I I I
MIPS MIPS MIPS MIPS
R4400 R4400 R4400 R4400
[| T | T | T |
I~ I~ S S
s} . S) . o . O .
S n — CC-chip S n |— CC-chip S v — CC-chip = » |~ CC-chip
=5 O =5 O =5 O =5 O
aps]] _ [a g Ags
| \\
o D-chip D-chip D-chip D-chip
A-chip slice 1 slice 2 slice 3 slice 4

Powerpath-2 bus

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

4 bit-sliced D chips interface CC chip to bus (4*64=256 bits); algum buffering

pag 420

a7

Memory Access L atency

Largura da memoria 512 bits + ECC: linha da cache (1Kb)
carregada na memoaria em 2 ciclos

Memoria € 2-way interleaved em cada placa (satura o bus)
250ns (12 ciclos) access time from address onddata on bus

But overall latency (L2 miss) seen by processd0@0ns!
« 300 ns for request to get from processor to bus
— down through cache hierarchy, CC chip and A chip

-« 400ns later, data gets to D chips

— 3 bus cycles to address phase of request transactitmat2ess main
memory, 5 to deliver data across bus to D chips

- 300ns more for data to get to processor chip

— up through D chips, CC chip, and 64-bit wide integféo processor
chip, load data into primary cache, restart pipeline

pag 421

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

48

6.5.3 Challenge | /O Subsystem
bt SS9

HIO HIO HIO HIO HIO Personality
Periphera SCsSl VME HPPI graphics ASICs
[[[[I
HIO bus (320 MB/s)
Address J«—] Address map Datapath _System bus to HIO bus
interface

System address bus

System data bus (1.2 GB/s)

Multiple I/O cards on system bus, each has 320MB/s HIO bus
- Personality ASICs connect these to devices (standard (Ethernet, SCSI, VME
etc) and graphics)
Proprietary HIO bus
- 64-bit multiplexed address/data, same clock as system bus
- Split read transactions, up to 4 per device
- Pipelined, but centralized arbitration, with several transaction lengths

- Comunicacao via DMA: address translation via mapping RAM in system bus
interface

Why the decouplings? (Why not connect directly to system bus?) (HIO € menor
64 do que system bus 256)

I/O board acts like a processor to memory system

pag 422

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

6.5.4 Challenge Memory System Perfor mance

Read microbenchmark with various strides (afastaoeas leituras
sucessivas ou amplitudo do enderecamento) and anes Si

1,500

TLB

MEM == W ——— - ——

1,000

8M
4 M
2M
1M

Time (ns)

512 K
256 K
128 K

500

64 K
32K
—=— 16K

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

16 64 256 1K 4K 16 K 64 K 256 K 1M 4 M
Stride (bytes)

Ping-pong flag-spinning microbenchmark: round-tnpe 6.2ps.

pag 424 50

6.5.5 Sun Gigaplane Bus

Non-multiplexed, split-transaction, 256-data/41+&dd, 83.5 MHz
 Plus 32 ECC lines, 7 tag, 18 arbitration, etc.al'888.

Cards plug in on both sides: 8 per side (totalplagas)

112 outstanding transactions, up to 7 from eacindo@&16)

- Designed for multiple outstanding transactionsgrecessor (lockup
free caches)

Emphasis on reducing latency, unlike Challenge

- Speculative arbitration (collision based) if ad@rbas not scheduled
from prev. cycle

- Else regular 1-cycle arbitration, and 7-bit taggssd in next cycle
Snoop result associated with request phase (5<iatier)

Main memory can stake claim to data bus 3 cyclestins, and start
memory access speculatively

- Two cycles later, asserts tag bus to inform otbéco®ming transfer

MOESI protocol (owned state for cache-to-cacheisgar
pag 424 51

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

G_gaplane Bus Tlmlng

7 8 9 10 12 13 14

Address

’Q\—-@ OE)

Arbitration ,_ 2 < \ (7)
é -
D

Tag

Tag Tag

Status

<Cance|‘(
Data \< Do >< D1) —

» Duas operacOes BusRd (branco e cinza)

» Convencoes: AD AD AD = address e dados; 1,2,3 etc = numero da Board
envolvida na transacao; setas: caminho do 1o. BusRd

* Snoop signal nas linhas state: shared, owned, mapped , ignore.

e Boardl inicia com fast arbitration (ja coloca o endere co); bem sucedida,;
Board2 responde (3) antes do resultado do snoop (5);

» Segundo BusRd: colisao entre 4 e 5; Board4 ganha; B oard6 arbitra (7) pelo
data bus e cancela em seguida (12) porque resultado snoop indica outra
cache tem o dado; Board7 responde com o dado (11)

pag 426

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

52

6.5.6 Enterprise Processor and Memory System

2 procs per board, external L2 caches, 2 mem banks with x-bar

Data lines buffered through UDB to drive internal 1.3 GB/s UPA bus

Wide path to memory so full 64-byte (512b) line in 1 mem cycle (2 bus cyc)
Dtags = duplicate tags para a cache L2

Addr controller adapts proc and bus protocols, does cache coherence
- its tags keep a subset of states needed by bus (e.g. no M/E distinction)

Memory (16~ 72-bit SIMMS)

A
Lb$ |Tags Lb$ [Tags
| | | |
»| UltraSparg UltraSparg
A : i //
: 1444 Y576
D-tags [1 Address controller Data controller (crossbar
Control# #Address Datat 288

Gigaplane connector |

pag 427

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

6.5.7 Enterprise /O System

I/O board has same bus interface
ASICs as processor boards

But internal bus half as wide, and no
memory path

Only cache block sized
transactions, like processing
boards

- Uniformity simplifies design

- ASICs implement single-block
cache, follows coherence
protocol

SyslO é percebido pelo barramento
como uma linha de cache

Performance and cost of I/O scale
with no. of I/O boards

pag 429

Two independent 64-bit, 25 MHz Sbuses

« One for two dedicated
FiberChannel modules connected

to disk

« One for Ethernet and fast wide

SCSI

- Can also support three SBUS
interface cards for arbitrary

peripherals
FiberChannel 10/100
module (2) SBUS slots Ethernet
— | — Fast wide
SCSI
SBUS ° t :— J-FAL
25MHzZ y 64
SyslO SyslO
—3 ' 72

Address

controller

Data controller (crossbar

Control t

#Address

Datat 288

Gigaplane connector

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

54

6.0.8 Memory Access L atency
300ns read miss latency
11 cycle min bus protocol at 83.5 Mhz is 130ns «f time

Rest is path through caches and the DRAM access
TLB misses add 340 ns

700

8M
am
2M

600

SERRAS

1M
512K

500 — 256 K / ‘ ‘ ‘ \
128 K
2 64 K
_. 400 32K
2 :
[}
£ Z
F 300 p—n— \

B4 i Gl ! g —

0 L I
4 16 64 256 1K 4K 16 K 64 K 256 K 1M 4M
Stride (bytes)

bits

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

Ping-pong microbenchmark is 1ug round-trip (5 mem accesses)
pag 430 55

6.5.9 Application Speedups (Challenge)

16
14
12
10

Speedup

o N B~ OO

—— LU:n=1,024
—8— |LU:n =2,048
—— Raytrace: balls
—&— Raytrace: car
—=— Radiosity: room
—&— Radiosity: large room

L1
12345678 910111213141516

Number of processors

Speedup

16
14
12
10

o N b~ O 0

—4— Barnes-Hut: 16-K particles
—8— Barnes-Hut: 512-K particles
—+— Ocean: n =130

—#— Ocean: n = 1,024

—=— Radix: 1-M keys

—&— Radix: 4-M keys

= —— = 2
L
12345678 910111213141516

Number of processors

tado dos slides da editora por Mario Cortes — IC/Unicamp — 2009s2

 Problem in Ocean with small problem: communicafaod barrier costg

 Problem in Radix: contention on bus due to venhtirgffic
— also leads to high imbalances and barrier wait time

pag 431

56

Application Scaling under Other Models

PC: problem-constrained

TC: time-constrained

MC: memory-constrained

pag 432

Number of bodies Work (instructions)

Speedup

| | | | | | | | | | J
1 3 5 7 9 11 13 15
Number of processors

Barnes— Hut

10,000
9.000 H —e— Naive TC
' — — Naive MC
8,000 TC
7,000 — —e— MC
6,000
5,000
4,000 F /
3,000
2,000 F /
1,000 =]
OM’% TS R TR S T S N N |
1 3 5 7 9 11 13 15
Number of processors
300
—e— Naive TC
250 (— — Naive MC ¢
—— TC
200 -| —— MC /-
150 /
100
/
50
“
o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 5 7 9 11 13 15
Number of processors
16 | —e— Naive TC
14 | — — Naive MC
—— TC
12 | e mC
10 —=— PC
8
6
4
2
0

Number of points per grid

Work (instructions)

600 -

—e— Naive TC
500 Al — Naive MC
400 —- MC
300
200 -
100

o.uénéEEE’

1 3 5 7 9 11 13 15
Number of processors

1,200,000
—e— Naive TC
1,000,000 21— — Naive MC
800,000 —— MC
600,000
400,000
200,000 // ——*
00 T T T T 1 1 1 [l | | I“I
1 3 5 7 9 11 13 15
Number of processors
16 - | —e— Naive TC
14 | — — Naive MC 4
12 - | — ™MC
10 | —=— PC

1 3 5 7 9 11 13 15
Number of processors

Oceal

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

57

Expl 6.3 pag 407 1

Cache 1 nivel, split transaction (multiple O/S), reordenacao de buffers
processador/cache/bus é permitida, A e B = zero inicialmente. Que
resultados séo proibidos sob SC? Como podem acontecer?

P1 P2 P1 P2
A=1 rd B A=1 B=1
B=1 rd A rd B rd A

Proibido = AB = (0,1)
P1 WR A commits (bus)

P1 inicia WR em B (sem esperar,
condicOes estendidas de SC)

Invalidagcbes em P2 séo

Proibido = AB = (0,0)

P1 Wr A commits (bus)
Continua e |1é B=0 (velho, OK)
P2 Wr B commits (bus)

P2 prossegue e |€ A

reordenadas (B antes de A) . Wr de B entra no bus depois do Wr
P2 tem Rd miss em B e |é novo de A (bus order) e P2 deveria ler o
valor B=1 novo valor de A

Quando P2 executa rd A, - Mas a invalidacdo de P1 (Wr A)
invalidagéo ainda no buffer ainda esta no buffer de entrada de

P2 tem Rd Hitem A e |é A=0 (valor $2

Adaptado dos slides da editora por Mario Coértes — IC/Unicamp — 2009s2

antigo « P2tem Rd Hitem A e |lé A=0 (veIhog8

