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Cap5 - Shared Memory 

Multiprocessors 

Logical design and software interactions 
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Shared Memory Multiprocessors 

Symmetric Multiprocessors (SMPs) 

• Symmetric access to all of main memory from any processor 

Dominate the server market 

• Building blocks for larger systems; arriving to desktop 

Attractive as throughput servers and for parallel programs 

• Fine-grain resource sharing 

• Uniform access via loads/stores 

• Automatic  data movement and coherent replication in caches 

• Useful for operating system too 

Normal uniprocessor mechanisms to access data (reads and writes) 

• Key is extension of memory hierarchy to support multiple processors 
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Supporting Programming Models 

• Address translation and protection in hardware (SAS é suportado 
diretamente por HW); operações = load, store 

• Message passing using shared memory buffers (intermediado por 
camada intermediária de bibliotecas) 

– can be very high performance since no OS involvement necessary; controle 
de buffers por HW 

• Focus here on supporting coherent shared address space 

Multipr ogramming 

Shar ed addr ess space 

Message passing Pr ogramming models 

Communication abstraction 
User/system boundary 

Compilation 
or library 

Operating systems support 

Communication har dwar e 

Physical communication medium 

Har dwar e/softwar e boundary 
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Natural Extensions of Memory System 

I/O devicesMem

P1

$ $

Pn

P1

Sw itch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection netw ork

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection netw ork

$

Pn

Mem Mem

(d) Distributed-memory
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Caches and Cache Coherence 

Caches play key role in all cases 

• Reduce average data access time 

• Reduce bandwidth demands placed on shared interconnect 

But private processor caches create a problem 

• Copies of a variable can be present in multiple caches  

• A write by one processor may not become visible to others 

– They’ll keep accessing stale value in their caches 

• Cache coherence problem 

• Need to take actions to ensure visibility 
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Focus: Bus-based, Centralized Memory 

Shared cache 

• Low-latency sharing and prefetching across processors 

• Sharing of working sets 

• No coherence problem (and hence no false sharing either) 

• But high bandwidth needs and negative interference (e.g. conflicts) 

• Hit and miss latency increased due to intervening switch and cache size 

• Mid 80s: to connect couple of processors on a board (Encore, Sequent) 

• Today: for multiprocessor on a chip (for small-scale systems or nodes) 

Bus based shared memory: hoje popular para pequena escala 

Dancehall  

• No longer popular: everything is uniformly far away 

Distributed memory 

• Most popular way to build scalable systems, discussed later 
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Outline 

Cap 5: foco em coerência de cache em “bus-based shared mem” (Cap 

7 no caso de distributed memory) 

• 5.1 – 5.3:  

– Coherence and Consistency 

– Snooping Cache Coherence Protocols 

• 5.4 Quantitative Evaluation of Cache Coherence Protocols 

• 5.5 Synchronization 

• 5.6 Implications for Parallel Software 
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5.1 A Coherent Memory System: Intuition 

Reading a location should return latest value written (by any process) 

Easy in uniprocessors 

• Except for I/O: coherence between I/O devices and processors 

• But infrequent so software solutions work (soluções grosseiras mas ok) 

– (a) uncacheable memory (marcar segmento da memória reservado para IO), 
(b) uncacheable operations, (c) flush pages (OS limpa cache antes do IO), 
(d) pass I/O data through caches (espécie de write through de IO) 

Would like same to hold when processes run on different processors  

• E.g. as if the processes were interleaved on a uniprocessor (problema de 
coerência não existe pois há apenas uma cache) 

But coherence problem much more critical in multiprocessors 

• Pervasive 

• Performance-critical 

• Must be treated as a basic hardware design issue 
pag 273-274 
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Expl 5.1: Cache Coherence Problem 

• Processors see different values for u after event 3 

• With write back caches, value written back to memory depends on 
happenstance (acaso) of which cache flushes or writes back value when 

– Processes accessing main memory may see very stale (velho) value 

– valor na memória depende do instante em que bloco é descartado e atualizado 
(dirty bit) 

• Unacceptable to programs, and frequent! 

I/O devices

Memory

P1

$ $ $

P2 P3

1

2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

1.P1 lê Mem(u); $1 

2.P3 lê Mem(u); $3 

3.P3 Wr 7 -> $3(u) 
e Mem(u); write 
through 

4.P1 lê $1 (5??) 

5.P2 lê Mem(u); $2 

• e se write back? 
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Problems with the Intuition 

Recall: Value returned by read should be last value written  

But “last” is not well-defined 

Even in seq. case, last defined in terms of program order, not time 

• Order of operations in the machine language presented to processor 

• “Subsequent” defined in analogous way, and well defined 

In parallel case, program order defined within a process, but need to 
make sense of orders across processes 

Must define a meaningful semantics 
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Some Basic Definitions 
Extend from definitions in uniprocessors to those in multiprocessors 

Memory operation: a single read (load), write (store) or read-modify-write access to 

a memory location (cuidado com instruções complexas com múltiplos RD, WR) 

• Assumed to execute atomically w.r.t each other (todos aspectos de uma 
instrução são executados antes de qualquer um da próxima) 

Issue: a memory operation issues when it leaves processor’s internal environment 

and is presented to memory system (cache, buffer …) 

Perform: operation appears to have taken place, as far as processor can tell from 

other memory operations it issues 

• A write performs w.r.t. the processor when a subsequent read by the 
processor returns the value of that write or a later write 

• A read perform w.r.t the processor when subsequent writes issued by the 
processor cannot affect the value returned by the read 

In multiprocessors, stay same but replace “the” by “a” processor 

• Also, complete: perform with respect to all processors 

• Still need to make sense of order in operations from different processes 

• Problema: “last” e “subsequente” não fazem sentido em multiproc. 
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Sharpening the Intuition 

Imagine a single shared memory and no caches 

• Every read and write to a location accesses the same physical location 

• Operation completes when it does so 

Memory imposes a serial or total order on operations to the location 

• Operations to the location from a given processor are in program order 

• The order of operations to the location from different processors is 
some interleaving that preserves the individual program orders 

“Last” now means most recent in a hypothetical serial order that 
maintains these properties 

For the serial order to be consistent, all processors must see writes to 
the location in the same order (if they bother to look, i.e. to read) 

Note that the total order is never really constructed in real systems 

• Don’t even want memory, or any hardware, to see all operations (na 
cache, por exemplo) 

But program should behave as if some serial order is enforced 

• Order in which things appear to happen, not actually happen 
pag 276 
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Formal Definition of Coherence 
Results of a program: values returned by its read operations (ex, RD 

hipotéticos ao final da execução; ordem não importa) 

A memory system is coherent if the results of any execution of a 
program are such that, for each location, it is possible to construct a 
hypothetical serial order of all operations to the location that is 
consistent with the results of the execution and in which: 

1. operations issued by any particular process occur in the order 
issued by that process, and 

2. the value returned by a read is the value written by the last write to 
that location in the serial order 

Two necessary features: 

• Write propagation: value written must become visible to others  

• Write serialization: writes to location seen in same order by all 
– if I see w1 after w2, you should not see w2 before w1 

– no need for analogous read serialization since reads not visible to 
others 
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5.1.2 Cache Coherence Using a Bus 
Built on top of two fundamentals of uniprocessor systems 

• Bus transactions 

• State transition diagram in cache 

Uniprocessor bus transaction: 

• Three phases: arbitration, command/address, data transfer 

• All devices observe addresses, one is responsible 

– RD: seguido pela transferência do dado 

– WR: depende (dado junto com endereço ou depois?) 

Uniprocessor cache states: 

• Effectively, every block is a finite state machine 

• Write-through, write no-allocate (em write miss, bloco não é escrito na 
cache, somente na memória) has two states: valid, invalid 

• Writeback caches have one more state: modified (“dirty”) 

Multiprocessors extend both these somewhat to implement coherence 
pag 279 
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5.1.2 Snooping-based Coherence 

Basic Idea 

Transactions on bus are visible to all processors 

Processors or their representatives can snoop (monitor) bus and take 
action on relevant events (e.g. change state) (ver fig. prox slide) 

Implementing a Protocol 

Cache controller now receives  inputs from both sides:  

• Requests from processor, bus requests/responses from snooper 

In either case, takes zero or more actions 

• Updates state, responds with data, generates new bus transactions 

Protocol is distributed algorithm: cooperating state machines 

• Set of states, state transition diagram, actions  

Granularity of coherence is typically cache block 

• Like that of allocation in cache and transfer to/from cache 
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Coherence with Write-through Caches 

• Key extensions to uniprocessor: snooping, invalidating/updating caches 
– no new states or bus transactions in this case 

– invalidation- versus update-based protocols 

• Write propagation: even in inval case, later reads will see new value 
– inval causes miss on later access, and memory up-to-date via write-through 

• Exemplo 5.2: efeito do bus snooping na coerência 

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction
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Write-through State Transition Diagram 

• Two states per block in each cache, as in uniprocessor 

– state of a block can be seen as p-vector  (p= nº de caches) 

• Hardware state bits associated with only blocks that are in the cache  

– other blocks can be seen as being in invalid (not-present) state in that cache 

• Write will invalidate all other caches (no local change of state) 

– can have multiple simultaneous readers of block, but write invalidates them 

Controlador de cache recebe 

dois tipos de input: 

• Pedidos do processador 

• Eventos ocorridos em 

outros processadores 

(write through e também write no-

allocate; baseado em invalidação) 

Pr ocessor -initiated transactions 

Bus-snooper -initiated transactions 

I 

V 

PrRd/BusRd 

PrRd/— 

PrW r/BusWr 

BusW r/— 

PrW r/BusW r Observado / 

transação gerada 
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Is it Coherent? 

Construct total order that satisfies program order, write serialization? 

Assume bus transactions and memory operations are atomic  

• all phases of one bus transaction complete before next one starts 
(atomic bus) 

• processor waits for its previous memory operation to complete before 
issuing next 

• with one-level cache, assume invalidations applied during bus xaction 

• (we’ll relax these assumptions in more complex systems later) 

• a memória executa operações na ordem em que elas apareceram no bus 

All writes go to bus + atomicity 

• Writes serialized by order in which they appear on bus (bus order) 

• Per above assumptions, invalidations applied to caches in bus order 

How to insert reads in this order? 

• Important since processors see writes through reads, so determines 
whether write serialization is satisfied 

• But read hits may happen independently and do not appear on bus or 
enter directly in bus order 
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Ordering Reads 

Read misses: appear on bus, and will see last write in bus order 

Read hits: do not appear on bus 

• But value read was placed in cache by either 

– most recent write by this processor, or 

– most recent read miss by this processor 

• In both these transactions, the source of the value appears on the bus 

• So reads hits also see values as being produced in consistent bus order 
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Determining Orders More Generally 

• A memory operation M2 is subsequent to a memory operation M1 if the operations 

are issued by the same processor and M2 follows M1 in program order.  

• Read is subsequent to write W if the read generates bus xaction that follows that for 

W. 

• Write is subsequent to read or write M if  M generates bus xaction and the xaction 

for the write follows that for M. 

• Write is subsequent to read if the read does not generate a bus xaction (hit) and is 

not already separated from the write by another bus xaction. 

•Writes establish a partial order 

•Doesn’t constrain ordering of reads, though bus will order read misses too 

(podem haver bus xactions de read misses, desde que na ordem local) 

–any order among reads between writes is fine, as long as in program order 

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:
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Problem with Write-Through 

High bandwidth requirements 

• Every write from every processor goes to shared bus and memory 

Exemplo 5.3 

• Consider 200MHz, 1 CPI processor, and 15% instrs. are 8-byte stores 

• Quantos processadores seriam suportados por um bus de 1GB/s? 
– Each processor generates 30M stores/sec (200E6 ciclos * 0,15) 

•  or 240MB data per second (30M * 8 bytes) 

– 1GB/s bus can support only about 4 processors without saturating 

– Write-through especially unpopular for SMPs 

Write-back caches absorb most writes as cache hits 
• Write hits don’t go on bus 

• But now how do we ensure write propagation and serialization? 

• Need more sophisticated protocols: large design space 

But first, let’s understand other ordering issues 
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5.2 Memory Consistency 

• Intuition not guaranteed by coherence (coerência garante que todos procs vêem o 
novo valor de A; o mesmo para flag; mas não se preocupa com a ordem em que 
isso acontece; poderia acontecer de P2 ver a atualização do flag antes de A !!) 

• Sometimes expect memory to respect order between accesses to different locations 
issued by a given process 

– to preserve orders among accesses to same location by different processes 

• Coherence doesn’t help: pertains only to single location 

Writes to a location become visible to all in the same order 

But when does a write become visible 

•How to establish orders between a write and a read by different procs? 

–Typically use event synchronization, by using more than one location 

(exemplo com dois processadores P1 e P2) 

P 1 P 2 

/*Assume initial value of A and flag is 0*/ 

A = 1; while (flag == 0);  /*spin idly*/ 

flag = 1; print A; 
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Another Example of Orders 

• What’s the intuition? (qual seria a intenção do programador?) 

• Coerência apenas não basta 

• Whatever it is, we need an ordering model for clear semantics 

– across different locations as well 

– so programmers can reason about what results are possible 

•   This is the memory consistency model 

P 1 P 2 

/*Assume initial values of A and B are  0*/ 

(1a) A = 1; (2a) print B; 

(1b) B = 2; (2b) print A; 
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Memory Consistency Model 

Specifies constraints on the order in which memory operations (from 
any process) can appear to execute with respect to one another 

• What orders are preserved? 

• Given a load, constrains the possible values returned by it 

Without it, can’t tell much about an SAS program’s execution 

Implications for both programmer and system designer 

• Programmer uses to reason about correctness and possible results 

• System designer can use to constrain how much accesses can be 
reordered by compiler or hardware 

Contract between programmer and system 

O modelo de consistência de memória é mais abrangente (subsumes) 
que coerência de cache 
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Sequential Consistency 

• (as if there were no caches, and a single memory) 

• Total order achieved by interleaving accesses from different processes 

• Maintains program order, and memory operations, from all processes, appear 
to [issue, execute, complete] atomically w.r.t. others 

• Programmer’s intuition is maintained 

 Definição de Sequential Consistency de Lamport: “A multiprocessor is 

sequentially consistent if the result of any execution is the same as if the 

operations of all the processors were executed in some sequential order, and the 

operations of each individual processor appear in this sequence in the order 

specified by its program.” [Lamport, 1979] 

Processors issuing 

memory references 

as per program order 

P 1 P 2 P n 

Memory 

The “switch” is randomly  
set after each memory 
r eference 

Aplicável a acessos 

a múltiplas posições 

de memória 
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What Really is Program Order? 

Intuitively, order in which operations appear in source code 

• Straightforward translation of source code to assembly 

• At most one memory operation per instruction 

But not the same as order presented to hardware by compiler 

So which is program order? 

Depends on which layer, and who’s doing the reasoning 

We assume order as seen by programmer 

Para obter a consistência sequencial, não interessa a ordem em que 
as operações de memória são emitidas (issued) ou completadas; o 
que interessa é que elas pareçam completar de uma maneira que 
satisfaça as restrições da definição (não contrarie a ordem do 
programa, como vista por cada processador, na visão do 
programador) 
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SC Example 

– possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2) 

– we know 1a->1b and 2a->2b by program order 

– A = 0 implies 2b->1a, which implies 2a->1b (2a, 2b,  1a, 1b) 

– B = 2 implies 1b->2a, which leads to a contradiction (1a, 1b,  2a, 2b) 

– BUT, actual execution 1b->1a->2b->2a is SC, despite not program order 

• appears just like 1a->1b->2a->2b as visible from results (AB = 1,2) 

– actual execution 1b->2a->2b-> is not SC (pois produziria AB =02) 

What matters is order in which appears to execute, not executes 

P 1 P 2 

/*Assume initial values of A and B are 0*/ 

(1a) A = 1; (2a) print B; 

(1b) B = 2; (2b) print A; 
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Implementing SC 

Two kinds of requirements 

• Program order 

– memory operations issued by a process must appear to become visible (to 
others and itself) in program order 

• Atomicity 

– in the overall total order, one memory operation should appear to complete 
with respect to all processes before the next one is issued 

– needed to guarantee that total order is consistent across processes  

– tricky part is making writes atomic 
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Write Atomicity 

Write Atomicity: Position in total order at which a write appears to 
perform should be the same for all processes 

• Nothing a process does after it has seen the new value produced by a 
write W should be visible to other processes until they too have seen W 

• In effect, extends write serialization to writes from multiple processes 

Exemplo 5.4: 3 processos; relação SC e atomicidade 

•Transitivity implies A should print as 1 under SC 

•Problem if P2 leaves loop, writes B, and P3 sees new B but old 

A (from its cache, say) (falta de atomicidade na escrita causa 

violação de SC) 

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);

print A;
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More Formally 

Each process’s program order imposes partial order on set of all operations 

Interleaving of these partial orders defines a total order on all operations 

Many total orders may be SC (SC does not define particular interleaving) 

SC Execution: An execution of a program is SC if the results it produces are 
the same as those produced by some possible total order (interleaving) 

SC System: A system is SC if any possible execution on that system is an SC 
execution 
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5.2.2 Sufficient Conditions for SC 

1. Every process issues memory operations in program order 

2. After a write operation is issued, the issuing process waits for the 
write to complete before issuing its next operation 

3. After a read operation is issued, the issuing process waits for the read 
to complete, and for the write whose value is being returned by the 
read to complete, before issuing its next operation (provides write 
atomicity). Isto é, o processador vê a operação como completada mas 
deve esperar que todos os demais processadores também vejam. 

Sufficient, not necessary, conditions 

Clearly, compilers should not reorder for SC, but they do! 

• Loop transformations, register allocation (eliminates!) 

Even if issued in order, hardware may violate for better performance 

• Write buffers, out of order execution 

Reason: uniprocessors care only about dependences to same location 

• Makes the sufficient conditions very restrictive for performance 
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Our Treatment of Ordering 

Assume for now that compiler does not reorder (o que aconteceria se 
o compilador reordenasse as escritas de A e flag na transp22? Ver 
conceito de volatile no expl 5.5) 

Hardware needs mechanisms to detect: 

• Detect write completion (read completion is easy) 

• Ensure write atomicity 

For all protocols and implementations, we will see 

• How they satisfy coherence, particularly write serialization 

• How they satisfy sufficient conditions for SC (write completion and 
write atomicity) 

• How they can ensure SC but not through sufficient conditions 

Will see that centralized bus interconnect makes it easier (recurso é 
único; gargalo fornece serialização) 
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SC in Write-through Example 

Exemplo de protocolo de 2 estados (transp 17) 

 

Provides SC, not just coherence 

Extend arguments used for coherence 

• Writes and read misses to all locations serialized by bus into bus order 

• If read obtains value of write W, W guaranteed to have completed 

– since it caused a bus transaction 

• When write W is performed w.r.t. any processor, all previous writes in 
bus order have completed  
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5.3 Design Space for Snooping Protocols 

Vantagem (beauty) do protocolo snoopy: 

 No need to change processor, main memory, cache … 

• Extend cache controller and exploit bus (provides serialization) 

Mas implementação inicial com write through é ineficiente (ver expl 
5.3, p282) 

Focus on protocols for write-back caches 

Dirty state now also indicates exclusive ownership 

• Exclusive: only cache with a valid copy (main memory may be too) 

• Owner: responsible for supplying block upon a request for it 

Design space (alternativas de projeto) 

•   Invalidation versus Update-based protocols 

•   Set of states 
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Invalidation-based Protocols 

Exclusive means can modify without notifying anyone else 

• i.e. without bus transaction 

• Must first get block in exclusive state before writing into it 

• Even if already in valid state, need transaction, so called a write miss 

Write miss em um protocolo invalidate (mesmo que o bloco esteja no 
estado válido): 

Store to non-dirty data generates a read-exclusive bus transaction 

• Tells others about impending write, obtains exclusive ownership 
– makes the write visible, i.e. write is performed 

– may be actually observed (by a read miss) only later 

– write hit made visible (performed) when block updated in writer’s cache 

• Only one RdX can succeed at a time for a block: serialized by bus 

Read and Read-exclusive bus transactions drive coherence actions 

• Writeback transactions also, but not caused by memory operation and 
quite incidental to coherence protocol 

– note: replaced block that is not in modified state can be dropped  
pag 292 
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Update-based Protocols 

A write operation updates values in other caches 

• New, update bus transaction 

Advantages 

• Other processors don’t miss on next access: reduced latency 

– In invalidation protocols, they would miss and cause more transactions 

• Single bus transaction to update several caches can save bandwidth 

– Also, only the word written is transferred, not whole block 

Disadvantages 

• Multiple writes by same processor cause multiple update transactions 

– In invalidation, first write gets exclusive ownership, others local 

Detailed tradeoffs more complex 
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Invalidate versus Update 
Basic question of program behavior 

• Is a block written by one processor read by others before it is rewritten? 

Invalidation: 

• Yes   =>  readers will take a miss 

• No    =>  multiple writes without additional traffic 
– and clears out copies that won’t be used again 

Update: 

• Yes   =>  readers will not miss if they had a copy previously 
– single bus transaction to update all copies 

• No  =>  multiple useless updates, even to dead copies 

Need to look at program behavior and hardware complexity 

Invalidation protocols much more popular (more later) 

• Some systems provide both, or even hybrid 

Grosseiramente: 1 produtor e vários consumidores (update é melhor); 
processamento local (invalidate é melhor) 
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Basic MSI Writeback Inval Protocol 
States 

• Invalid (I) 

• Shared (S): uma ou mais caches têm valor atualizado do bloco; mem OK 

• Dirty or Modified (M): one only (só esta cache tem valor atualizado) 

Processor Events:   

• PrRd (read) 

• PrWr (write) 

Bus Transactions 

• BusRd: asks for copy with no intent to modify (origem: PrRd miss); uma cache 

ou a Memória fornecem 

• BusRdX: asks for copy with intent to modify (origem: PrWr em bloco ou não na 

cache ou diferente de M); ); uma cache ou a Memória fornecem; todos são inv. 

• BusWB: updates memory (origem: controlador de cache precisa desocupar 

bloco “M”); não afeta o processador (somente cache  Mem) 

Actions 

• Update state, perform bus transaction, flush value onto bus (cache fornece 

dado solicitado por outro processador) pag 293 
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State Transition Diagram 

• Replacement changes state of two blocks: outgoing and incoming ( I) 

• Ver expl 5.6, pag 296 

• Sem cache sharing 

PrRd/— 

PrRd/— 

PrW r/BusRdX 
BusRd/— 

PrW r/— 

S 

M 

I 

BusRdX/Flush 

BusRdX/— 

BusRd/Flush 

PrRd/BusRd 

PrW r/BusRdX 

bus 

processador 
• PrRD em bloco no estado I ; BusRD ;  estado I-> S ; 

Se outra cache tem o dado em S, não faz nada 

(memória fornece o dado); se está no estado M, esta 

cache fornece o dado (flush) e M -> S; tanto a cache 

solicitante quanto a memória pegam o dado 

 

• PrWR em bloco no estado I; miss; carrega o bloco 

inteiro e modifica a palavra em questão; RdX ; todas 

outras cópias vão para I; a cache solicitante vai de I -> 

M 

 

• PrWR em bloco no estado S; como WR miss; RdX; 

dado que retorna do RdX pode ser ignorado porque já 

na cache; simplificação seria usar uma nova 

transação: Bus Upgrade (BusUpgr); esta transação 

também obtém exclusividade mas não causa 

fornecimento de dados por ninguém 
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Satisfying Coherence 

Write propagation is clear (tornar escrita visível a outras caches) 

Write serialization? 

• All writes that appear on the bus (BusRdX) ordered by the bus 

– Write performed in writer’s cache before it handles other transactions, so 
ordered in same way even w.r.t. writer 

• Reads that appear on the bus ordered wrt these 

• Write that don’t appear on the bus (diferença com write through): 

– sequence of such writes between two bus xactions for the block must come 
from same processor, say P (realizou a operação RdX mais recente) 

– in serialization, the sequence appears between these two bus xactions 

– reads by P will see them in this order w.r.t. other bus transactions 

– reads by other processors separated from sequence by a bus xaction, which 
places them in the serialized order w.r.t the writes 

– so reads by all processors see writes in same order 
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Satisfying Sequential Consistency 
1. Appeal to definition: 

• Bus imposes total order on bus xactions for all locations 

• Between xactions, procs perform reads/writes locally in program order 

• So any execution defines a natural partial order 

– A memory operation Mj is subsequent to Mi if  

• (i) follows in program order on same processor,   

• (ii) Mj generates bus xaction that follows the memory operation for Mi 

• (ordem parcial semelhante à fig 5.6-T20, mas temos WR entre os RDs) 

• In segment between two bus transactions, any interleaving of ops from 
different processors leads to consistent total order 

• In such a segment, writes observed by processor P serialized as follows 

– Writes from other processors by the previous bus xaction P issued 

– Writes from P by program order 

2. Show sufficient conditions are satisfied 

• Write completion: can detect when write appears on bus 

• Write atomicity: if a read returns the value of a write, that write has already 
become visible to all others already (can reason different cases) 
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Lower-level Protocol Choices 

Exemplo de alternativas de projeto 

BusRd observed in M state: what transitition to make? 

 Na figura, “S”/Flush poderia ir direto para “I” 

Depends on expectations of access patterns 

• S: assumption that I’ll read again soon, rather than other will write 

– good for mostly read data 

– what about “migratory” data 

• I read and write, then you read and write, then X reads and writes... 

• better to go to I state, so I don’t have to be invalidated on your write 

•   Synapse transitioned to I state 

•   Sequent Symmetry and MIT Alewife use adaptive protocols 

Choices can affect performance of memory system (later) 
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MESI (4-state) Invalidation Protocol 

Problem with MSI protocol 

• Reading and modifying data is 2 bus xactions, even if no one sharing 

– e.g. even in sequential program 

– BusRd (I->S) followed by BusRdX or BusUpgr (S->M) 

Add exclusive state: write locally without xaction, but not modified 

(só esta cache tem o bloco; pode escrever (EM) sem avisar os 
outros  sem bus xaction) 

• Main memory is up to date, so cache not necessarily owner 
(E=exclusive clean); cache não precisa responder se outro proc miss 

• States 
– invalid 

– exclusive or exclusive-clean (only this cache has copy, but not modified) 

– shared (two or more caches may have copies) 

– modified (dirty) 

• I -> E on PrRd if no one else has copy 

– needs “shared” signal on bus: wired-or line asserted in response to BusRd 
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MESI State Transition Diagram 

• BusRd(S) means shared line asserted on BusRd transaction 

• Flush’: if cache-to-cache sharing (see next), only one cache flushes data 

– outras caches fazem ação normal (SS ou S  I) 

• MOESI protocol: Owned state: exclusive but memory not valid 

PrW r/— 

BusRd/Flush 

PrRd/  

BusRdX/Flush 

PrW r/BusRdX 

PrW r/— 

PrRd/— 

PrRd/— 
BusRd/Flush  

E 

M 

I 

S 

PrRd 

BusRd(S) 

BusRdX/Flush  

BusRdX/Flush 

BusRd/ 

Flush 

PrW r/BusRdX 

PrRd/ 
BusRd (S )  

• Novo bloco 

• S, se outra cache tem o bloco 

• E: se é a única 

• Na escrita, E  M, sem bus xaction 

• Se outra cache precisa do bloco 
ES 

• Notação: BusRd(S): Bus xaction 
com a presença do sinal S (shared) 
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Lower-level Protocol Choices 

Who supplies data on miss when not in M state: memory or cache? 

Original, lllinois MESI: cache, since assumed cache faster than 
memory 

• Cache-to-cache sharing 

Not true in modern systems 

• Intervening in another cache more expensive than getting from memory 
(perturba o outro processador) 

Cache-to-cache sharing also adds complexity 

• How does memory know it should supply data (must wait for caches) 

• Selection algorithm if multiple caches have valid data 

But valuable for cache-coherent machines with distributed memory 

• May be cheaper to obtain from nearby cache than distant memory 

• Especially when constructed out of SMP nodes (Stanford DASH) 
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5.3.3 Dragon Write-back Update Protocol 

  4 states 

• Exclusive-clean or exclusive (E): I and memory have it (é o mesmo de 
MESI) 

• Shared clean (Sc):  I, others, and maybe memory, but I’m not owner 

• Shared modified (Sm): I and others but not memory, and I’m the 
owner (responsável por atualizar memória a partir desta cache) 

– Sm and Sc can coexist in different caches, with only one Sm 

• Modified or dirty (D): I and, no one else 

No invalid state (o protocolo é update  invalidate) 
• If in cache, cannot be invalid 

• If not present in cache, can view as being in not-present or invalid state 

  New processor events: PrRdMiss, PrWrMiss 

• Introduced to specify actions when block not present in cache 

  New bus transaction: BusUpd 

• Broadcasts single word written on bus; updates other relevant caches 

– diferente de BusRD: linha inteira da cache 
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Dragon State Transition Diagram 

E Sc 

Sm M 

PrW r/— 

PrRd/— 

PrRd/— 

PrRd/— 

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S) 

PrW r/— 

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S) 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 

BusRd/— 

BusRd/Flush 

PrRd/— BusUpd/Update 

BusUpd/Update 

BusRd/Flush 

PrW r/BusUpd(S) 

PrW r/BusUpd(S) 

ver expl 5.7, pag 304 
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Lower-level Protocol Choices 

Can shared-modified state be eliminated? 

• If update memory as well on BusUpd transactions (DEC Firefly) (como 
o write-through ??) 

• Dragon protocol doesn’t (assumes DRAM memory slow to update) 

Should replacement of an Sc block be broadcast? 

• Would allow last copy to go to E state and not generate updates 

• Base lógica para a decisão: Replacement bus transaction is not in 
critical path, later update may be 

Shouldn’t update local copy on write hit before controller gets bus 

• Can mess up serialization 

Coherence, consistency considerations much like write-through case 

In general, many subtle race conditions in protocols 

But first, let’s illustrate quantitative assessment at logical level 
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5.4 Assessing Protocol Tradeoffs 
Tradeoffs affected by performance and organization characteristics 

Desempenho: protocolo de coerência é crucial 

• classe (invalidate ou update), estados/ações, compromissos de baixo 
nível 

Part art and part science 

• Art: experience, intuition and aesthetics of designers 

• Science: Workload-driven evaluation for cost-performance 

– want a balanced system: no expensive resource heavily underutilized 

Methodology (simulação para avaliar os protocolos): 

• Use simulator; choose parameters per earlier methodology (default 
1MB, 4-way cache, 64-byte block, 16 processors; 64K cache for some) 

• Focus on frequencies, not end performance for now 

– transcends architectural details, but not what we’re really after 

• Use idealized memory performance model to avoid changes of 
reference interleaving across processors with machine parameters 

– Cheap simulation: no need to model contention 

(ver Tab 5.1, pag 308)       . pag 305 
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5.4.3 Impact of Protocol Optimizations 

• MSI versus MESI doesn’t seem to matter for bw for these workloads 

• Upgrades instead of read-exclusive helps 

• Same story when working sets don’t fit for Ocean, Radix, Raytrace 

(geração dos gráficos: ver exemplos 5.8, 5.9 e 5.10)     . 

(Computing traffic from state transitions discussed in book) 

Effect of E state, and of BusUpgr instead of BusRdX 
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•  III: MESI 

•  3St: MSI 

•  3St-RdEx: BusRdX em vez 
de BusUpgr 

•BusRdX: recebe 
cópia exclusiva 
para alteração 

•BusUpr: também 
exclusivo, mas não 
alterará, portanto 
não recebe cópia 
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5.4.4 Impact of Cache Block Size 
Tipos de misses em uniprocessadores: cold (primeira carga), capacity (não 

cabe na cache), conflict (mapeia para o mesmo set) 

Multiprocessors add new kind of miss to cold, capacity, conflict 

• Coherence misses: true sharing and false sharing 

– latter due to granularity of coherence being larger than a word 

• Both miss rate and traffic matter 

Reducing misses architecturally in invalidation protocol 

• Capacity: enlarge cache; increase block size (if spatial locality) 

• Conflict: increase associativity 

• Cold and Coherence: only block size 

Increasing block size has advantages and disadvantages 

• Can reduce misses if spatial locality is good 

• Can hurt too 

– increase misses due to false sharing if spatial locality not good 

– increase misses due to conflicts in fixed-size cache 

– increase traffic due to fetching unnecessary data and due to false sharing 

– can increase miss penalty and perhaps hit cost 
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A Classification of Cache Misses 

• Many mixed 

categories 

because a miss 

may have multiple 

causes 

• miss é percebido 

não quando 

ocorre e sim em 

RD 

• (ver expl 5.11) 

Miss classi cation

Reason
for miss

First reference to
memory block by processor

First access
systemwide

Yes

No

Written
before

Yes

No

Modi ed 
word(s) accessed
during l i fetime

Yes

No

1. Cold

2. Cold

4. True-sharing-

3. False-sharing-

Reason for
el imination of

last copy

Replacement

Inval idation

Old copy
with state = inval id 

sti l l  there

YesNo

8. Pure-
7. Pure-

6. True-sharing-
inval-cap

5. False-sharing- 
inval-cap

Modi ed 
word(s) accessed
during l i fetime

Modi ed 
word(s) accessed
during l i fetime

Yes

No YesNo

false-sharing
true-sharing

Has block
been modi ed since

replacement

No Yes

10. True-sharing-9. Pure-

12. True-sharing-11. False-sharing-

Modi ed 
word(s) accessed
during l i fetime Modi ed 

word(s) accessed
during l i fetime

YesNo

YesNo

capacity

Other

cold

cold

cap-inval cap-inval

capacity

• conflito tratado  = capacidade 

(ambos recursos) 

pag 317 



53 

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
  

Impact of Block Size on Miss Rate 

Results shown only for default problem size: varied behavior 

• (16 processadores; block size variando de 8 a 256 B) 

• Cold (1, 2), capacity (9), true sharing (4,6,8,10,12), false sharing 
(3,5,7,11), upgrade 

• upgrades = situações em que WR encontram o bloco em shared state 

 

•ver variação de acordo com intuição: cold, capacity, true e false sharng 

•Working set doesn’t fit: impact on capacity misses much more critical 
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Impact of Block Size on Traffic 

• Results different than for miss rate: traffic almost always increases 

• When working sets fits, overall traffic still small, except for Radix 

• Fixed overhead is significant component 
– So total traffic often minimized at 16-32 byte block, not smaller 

• Working set doesn’t fit: even 128-byte good for Ocean due to capacity 

Traffic affects performance indirectly through contention 
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Making Large Blocks More Effective 

Principal problema: false sharing 

Software approach 

• Improve spatial locality by better data structuring (more later): (evitar 
interleaving) 

• Compiler techniques 

Hardware approach 

• Retain granularity of transfer but reduce granularity of coherence 

– use subblocks: same tag but different state bits 

– one subblock may be valid but another invalid or dirty 

• Reduce both granularities, but prefetch more blocks on a miss (em caso 
de miss, carregar mais de um bloco) 

• Proposals for adjustable cache size (mas, controle complexo) 

• More subtle: delay propagation of invalidations and perform all at once 

– But can change consistency model: discuss later in course 

• Use update instead of invalidate protocols to reduce false sharing effect 
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5.4.5 Update versus Invalidate 
Much debate over the years: tradeoff depends on sharing patterns 

Intuition: 

• If those that used continue to use, and writes between use are few, 
update should do better 

– e.g. producer-consumer pattern 

• If those that use unlikely to use again, or many writes between reads, 
updates not good 

– “pack rat” (rato trocador) phenomenon particularly bad under process 
migration 

– useless updates where only last one will be used 

Can construct scenarios where one or other is much better 

• ruim para multiprogr.: o OS muda o programa de processador para 
processador (cache ficará com dados de outro programa) 

Can combine them in hybrid schemes (see text) 

• E.g. competitive: observe patterns at runtime and change protocol 

Let’s look at real workloads                       (ver expl 5.12, pag 330) 
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Update vs Invalidate: Miss Rates 

• Mixed: melhor dos dois mundos (escolha dinâmica, ver pag. 331) 

• Lots of coherence misses: updates help 

• Lots of capacity misses: updates hurt (keep data in cache uselessly) 

• Updates (overall) seem to help, but this ignores upgrade and update traffic 
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Upgrade and Update Rates (Traffic) 

• Update traffic is substantial 

• Main cause is multiple 
writes by a processor 
before a read by other 

– many bus transactions 
versus one in invalidation 
case 

– could delay updates or use 
merging  

• Overall, trend is away 
from update based 
protocols as default 

– bandwidth, complexity, 
large blocks trend, pack rat 
for process migration 

• Will see later that updates 
have greater problems for 
scalable systems 
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5.5 Synchronization 

 

 

“A parallel computer is a collection of processing elements that 
cooperate and communicate to solve large problems fast.”  

 

Types of Synchronization 

• Mutual Exclusion 

• Event synchronization 

– point-to-point 

– group 

– global (barriers) 
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History and Perspectives 

Much debate over hardware primitives over the years 

Conclusions depend on technology and machine style 

• speed vs flexibility  

Most modern methods use a form of atomic read-modify-write 

• IBM 370: included atomic compare&swap for multiprogramming 

• x86: any instruction can be prefixed with a lock modifier 

• High-level language advocates want hardware locks/barriers 

– but it’s goes against the “RISC” flow,and has other problems 

• SPARC: atomic register-memory ops (swap, compare&swap) 

• MIPS, IBM Power: no atomic operations but pair of instructions 

– load-locked, store-conditional 

– later used by PowerPC and DEC Alpha too 

Rich set of tradeoffs 
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5.5.1 Components of a Synchronization 

Event 
Três componentes principais em um evento de sincronização: 

• Acquire method 

– Acquire right to the synch (enter critical section, go past event) 

• Waiting algorithm 

– Wait for synch to become available when it isn’t 

• Release method 

– Enable other processors to acquire right to the synch 

• Waiting algorithm is independent of type of synchronization 
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Waiting Algorithms 

Blocking 

• Waiting processes are descheduled (pelo OS) 

• High overhead (envolve o OS para acordar o processo) 

• Allows processor to do other things 

Busy-waiting 

• Waiting processes repeatedly test a location until it changes value 

• Releasing process sets the location 

• Lower overhead, but consumes processor resources 

• Can cause network traffic 

Busy-waiting better when 

• Scheduling overhead is larger than expected wait time 

• Processor resources are not needed for other tasks 

• Scheduler-based blocking is inappropriate (e.g. in OS kernel) 

Hybrid methods:  busy-wait a while, then block 
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5.5.2 Role of System and User 

User wants to use high-level synchronization operations 

• Locks, barriers... 

• Doesn’t care about implementation 

System designer: how much hardware support in implementation? 

• Speed versus cost and flexibility 

• Waiting algorithm difficult in hardware, so provide support for others 

Popular trend: 

• System provides simple hardware primitives (atomic operations) 

• Software libraries implement lock, barrier algorithms using these 

• But some propose and implement full-hardware synchronization 
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Challenges 

Same synchronization may have different needs at different times 
(por exemplo:) 

• Lock accessed with low (poucos processadores buscando o lock) or 
high contention (muitos processadores….) 

• Different performance requirements: low latency (primeiro caso) or 
high throughput (segundo caso) 

• Different algorithms best for each case, and need different primitives 

Multiprogramming can change synchronization behavior and needs 

• Process scheduling and other resource interactions 

• May need more sophisticated algorithms, not so good in dedicated case 

Rich area of software-hardware interactions 

• Which primitives available affects what algorithms can be used 

• Which algorithms are effective affects what primitives to provide 

Need to evaluate using workloads 
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5.5.3 Mutual Exclusion: Hardware Locks 

Separate lock lines on the bus: holder of a lock asserts the line 

• Priority mechanism for multiple requestors 

Inflexible, so not popular for general purpose use 

– few locks can be in use at a time (one per lock line) 

– hardwired waiting algorithm (normalmente busy-wait seguido de abort 
depois de time-out) 

Primarily used to provide atomicity for higher-level software locks 

Implementação no Cray XMP: Lock registers  

  Set of registers shared among processors 
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First Attempt at Simple Software Lock 

lock:  ld register, location  /* register <- location */ 

   cmp  register, #0   /* compare with 0 */ 

   bnz lock                  /* if not 0, try again */ 

   st location, #1 /* store 1 to mark it locked */ 

   ret    /* return control to caller */ 

and 

unlock: st  location, #0 /* write 0 to location */ 

   ret    /* return control to caller */ 

Problem: lock needs atomicity in its own implementation 

• O que acontece se dois processos iniciam “lock” ao mesmo tempo? 

• Read (test) and write (set) of lock variable by a process not atomic 

Solution: atomic read-modify-write or exchange instructions 

• atomically test value of location and set it to another value, return success 
or failure somehow 
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Atomic Exchange Instruction 

Specifies a location and register.  In atomic operation: 

• Value in location read into a register 

• Another value (function of value read or not) stored into location 

Many variants 

• Varying degrees of flexibility in second part 

Simple example:  test&set 

• Value in location read into a specified register 

• Constant 1 stored into location 

• Successful if value loaded into register is 0 

• Se for 1, significa insucesso (lock ocupado) e valor escrito na posição 
de memória é o mesmo que já estava lá  não precisa desfazer 

• Other constants could be used instead of 1 and 0 

Can be used to build locks 
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Simple Test&Set Lock 

lock:  t&s register, location   

   bnz lock    /* if not 0, try again */ 

   ret    /* return control to caller */ 

unlock: st  location, #0  /* write 0 to location */ 

   ret    /* return control to caller */ 

 

Other read-modify-write primitives can be used too 

• Swap (troca register <-> location, em vez de escrever const “1”) 

• Fetch&op (exemplos: fetch & increment, ou decrement) 

• Compare&swap 

– Three operands: location, register to compare with, register to swap with 

– Not commonly supported by RISC instruction sets 

Can be cacheable or uncacheable (we assume cacheable) 
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T&S Lock Microbenchmark Performance 

On SGI Challenge. Code:        lock; critical section (delay(c)); unlock; 

Same total no. of lock calls as p increases; measure time per lock transfer 
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• tempo por par lock 

/ unlock, excluindo 

a seção crítica 

• formato irregular 
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dependência de 
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• Performance 
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Enhancements to Simple Lock Algorithm 

Reduce frequency of issuing test&sets while waiting 

• Test&set lock with backoff (tempo de espera até a próxima tentativa) 

• Don’t back off too much or will be backed off when lock becomes free 

• Exponential backoff works quite well empirically: ith time =  k1*k2
i  

• (ver figura anterior com o backoff) 

Busy-wait with read operations rather than test&set 

• Test-and-test&set lock 

• Keep testing with ordinary load 

– cached lock variable will be invalidated when release occurs 

• When value changes (to 0), try to obtain lock with test&set 

– only one attemptor will succeed; others will fail and start testing again 
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Performance Criteria (T&S Lock) 
(ver notas sobre objetivos                 ) 

Uncontended 

• Very low if repeatedly accessed by same processor; indept. of p 

Traffic 

• Lots if many processors compete; poor scaling with p 

• Each t&s generates invalidations, and all rush out again to t&s 

Storage 

• Very small (single variable); independent of p 

Fairness 

• Poor, can cause starvation 

Test&set with backoff similar, but less traffic 

Test-and-test&set: slightly higher latency, much less traffic 

But still all rush out to read miss and test&set on release 

• Traffic for p processors to access once each: O(p2) 

Luckily, better hardware primitives as well as algorithms exist 
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Improved Hardware Primitives: LL-SC 

Goals:  

• Test with reads 

• Failed read-modify-write attempts don’t generate invalidations 

• Nice if single primitive can implement range of r-m-w operations 

Load-Locked (or -linked), Store-Conditional 

LL reads variable into register 

Follow with arbitrary instructions to manipulate its value 

SC tries to store back to location if and only if no one else has 
written to the variable since this processor’s LL 

• If SC succeeds, means all three steps happened atomically 

• If fails, doesn’t write or generate invalidations (need to retry LL) 

• Success indicated by condition codes; implementation later 
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Simple Lock with LL-SC 

lock:   ll reg1, location /* LL location to reg1 */ 

   bnz reg1, lock  /* se locked, try again */ 

   sc location, reg2 /* SC reg2 into location*/ 

   beqz reg2, lock  /* if failed, start again */ 

   ret     

unlock:  st  location, #0 /* write 0 to location */ 

   ret     

Can do more fancy atomic ops by changing what’s between LL & SC 

• But keep it small so SC likely to succeed 

• Don’t include instructions that would need to be undone (e.g. stores) 

SC can fail (without putting transaction on bus) if: 

• Detects intervening write even before trying to get bus 

• Tries to get bus but another processor’s SC gets bus first 

LL, SC are not lock, unlock respectively 

• Only guarantee no conflicting write to lock variable between them 

• But can use directly to implement simple operations on shared variables 
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More Efficient SW Locking Algorithms 
Problem with Simple LL-SC lock 

• No invals on failure, but read misses by all waiters after both release 
and successful SC by winner 

• No test-and-test&set analog, but can use backoff to reduce burstiness 

• Doesn’t reduce traffic to minimum, and not a fair lock (there are no 
read-modify-write bus transactions, but traffic still increases linearly 
with the number of processors (i.e., O(p) bus transactions per lock 
acquisition) 

• Better SW algorithms for bus (for r-m-w instructions or LL-SC) 

• Only one process to try to get lock upon release 

– valuable when using test&set instructions; LL-SC does it already 

• Only one process to have read miss upon release 

– valuable with LL-SC too 

• Ticket lock achieves first 

• Array-based queueing lock achieves both 

• Both are fair (FIFO) locks as well pag 346 
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Ticket Lock 

Only one r-m-w (from only one processor) per acquire 

Works like waiting line at deli or bank (retirar senha) 

• Two counters per lock (next_ticket, now_serving) 

• Acquire: fetch&inc next_ticket; wait for  now_serving to equal it 
– atomic op when arrive at lock, not when it’s free (so less contention) 

• Release: increment now-serving 

• FIFO order, low latency for low-contention if fetch&inc cacheable 

• Still O(p) read misses at release, since all spin on same variable 

– like simple LL-SC lock, but no inval when SC succeeds, and fair 

• Can be difficult to find a good amount to delay on backoff (para 
evitar múltiplos read misses no instante do release) 

– exponential backoff not a  good idea due to FIFO order 

– backoff proportional to now-serving - next-ticket may work well 

Wouldn’t it be nice to poll different locations ... 
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Array-based Queuing Locks 

Waiting processes poll on different locations in an array of size p 

• Acquire 

– fetch&inc to obtain address on which to spin (next array element) (com 
wraparound) 

– ensure that these addresses are in different cache lines or memories 

• Release 

– set next location in array, thus waking up process spinning on it (somente 
acorda um processo) 

• O(1) traffic per acquire with coherent caches 

• FIFO ordering, as in ticket lock 

• But, O(p) space per lock 

• Good performance for bus-based machines 

• Not so great for non-cache-coherent machines with distributed memory 

– array location  I spin on not necessarily in my local memory (solution later) 
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Lock Performance on SGI Challenge 

• Simple LL-SC lock does best at small p due to unfairness 

– Not so with delay between unlock and next lock 

– Need to be careful with backoff 

• Ticket lock with proportional backoff scales well, as does array lock 

• Methodologically challenging, and need to look at real workloads 

Loop: lock; delay(c); unlock; delay(d); lock 
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5.5.4 Point to Point Event Synchronization 

Software methods (ver exemplos no texto, para HW e SW): 

• Interrupts 

• Busy-waiting: use ordinary variables as flags 

• Blocking: use semaphores (como em sistemas operacionais) 

Full hardware support: full-empty bit with each word in memory 

• Set when word is “full” with newly produced data (i.e. when written) 

• Unset when word is “empty” due to being consumed (i.e. when read) 

• Natural for word-level producer-consumer synchronization 
– producer: write if empty, set to full; consumer: read if full; set to empty 

• Hardware preserves atomicity of bit manipulation with read or write 

• Problem: flexiblity 
– multiple consumers, or multiple writes before consumer reads? 

– needs language support to specify when to use 

– composite data structures? 

• Essa solução de HW não teve sucesso em máquinas comerciais 
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5.5.5 Barriers (Global event) 
Software algorithms implemented using locks, flags, counters 

Hardware barriers () 

• Wired-AND line separate from address/data bus (não impacta 
tráfego e contenção no barramento) 

• Set input high when arrive to barrier, wait for output to be high to 
proceed 

• In practice, multiple wires to allow reuse 

• Useful when barriers are global and very frequent (por ex: loops 
internos paralelizados entre processadores; sincronização frequente) 

• Difficult to support arbitrary subset of processors 

– even harder with multiple processes per processor 

• Difficult to dynamically change number and identity of participants 

– e.g. latter due to process migration 

• Not common today on bus-based machines 

Let’s look at software algorithms with simple hardware primitives 
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A Simple Centralized Barrier 

Shared counter maintains number of processes that have arrived (à barreira); todos 

devem prosseguir só quando todos chegarem; single counter, lock, flag 

• increment when arrive (lock), check until reaches numprocs (p) 

struct bar_type {int counter; struct lock_type lock; int 

flag = 0;} bar_name; 

BARRIER (bar_name, p) { 

 LOCK(bar_name.lock);               /* incr. counter mut. exclus.  

 if (bar_name.counter == 0)  

  bar_name.flag = 0;   /* reset flag if first to reach*/ 

 mycount = bar_name.counter++; /* mycount is private */ 

 UNLOCK(bar_name.lock); 

 if (mycount == p) {   /* last to arrive */  

  bar_name.counter = 0;  /* reset for next barrier */ 

  bar_name.flag = 1;  /* release waiters */ 

 } 

 else while (bar_name.flag == 0) {};  /* busy wait for release */ 

} 

• Problem? 
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A Working Centralized Barrier 
Consecutively entering the same barrier doesn’t work 

• Must prevent process from entering until all have left previous instance (processo 
atrasado (por ex pelo OS) pode ficar preso na 1a barreira); é retirado (esperou demais) 
pelo OS (swapped), quando volta vê o flag em 0 sinalizando espera na barreira, mas já é 
a barreira seguinte; deadlock na primeira barreira 

• Could use another counter, but increases latency and contention 

Sense reversal: wait for flag to take different value consecutive times 

• Toggle this value only when all processes reach 

• Valor do flag para “liberado” é alternado de 0 para 1 para 0 …… 

BARRIER (bar_name, p) { 

 local_sense = !(local_sense); /* toggle private sense variable */ 

     /*(não mais reseta o flag)*/ 

 LOCK(bar_name.lock); 

 mycount = bar_name.counter++; /* mycount is private */ 

 if (bar_name.counter == p)  

  UNLOCK(bar_name.lock);  

  bar_name.flag = local_sense; /* release waiters*/ 

 else 

    { UNLOCK(bar_name.lock); 

  while (bar_name.flag != local_sense) {}; } 

} 
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Centralized Barrier Performance 

Latency 

• Want short critical path in barrier 

• Centralized has critical path length at least proportional to p 

Traffic 

• Barriers likely to be highly contended, so want traffic to scale well 

• About  3p bus transactions in centralized  

Storage Cost 

• Very low: centralized counter and flag 

Fairness 

• Same processor should not always be last to exit barrier 

• No such bias in centralized 

Key problems for centralized barrier are latency and traffic 

• Especially with distributed memory, traffic goes to same node 
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Improved Barrier Algorithms for a Bus 

• Separate arrival and exit trees, and use sense reversal 

• Valuable in distributed network: communicate along different paths 
(caminhos físicos separados) 

• On bus, all traffic goes on same bus, and no less total traffic 
(barramento único) 

• Higher latency (log p steps of work, and O(p) serialized bus xactions) 

• Advantage on bus is use of ordinary reads/writes instead of locks 

 

Software combining tree 

•Only k processors access the same location, where k is degree of tree 

Flat 
Tree structured

Contention Little contention
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Barrier Performance on SGI Challenge 

• Centralized does quite well 

– Will discuss fancier barrier algorithms for distributed machines 

• Helpful hardware support: piggybacking of reads misses on bus 
(processador monitora barramento; se vê um read miss que é o mesmo 
que ele emitiria, não faz nada  menos tráfego no barramento) 

– Also for spinning on highly contended locks 
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5.5.6 Synchronization Summary 

Rich interaction of hardware-software tradeoffs 

Must evaluate hardware primitives and software algorithms together 

• primitives determine which algorithms perform well 

Evaluation methodology is challenging 

• Use of delays, microbenchmarks 

• Should use both microbenchmarks and real workloads 

Simple software algorithms with common hardware primitives do 
well on bus 

• Will see more sophisticated techniques for distributed machines 

• Hardware support still subject of debate 

Theoretical research argues for swap or compare&swap, not fetch&op 

• Algorithms that ensure constant-time access, but complex 

A flexibilidade de LL-SC tem tornado popular essa alternativa 
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5.6 Implications for Parallel Software 

Looked at how software affects architecture; now do reverse 

Load balance, inherent comm. and extra work issues same as before 

• Also, assign so that (somente) one processor writes a set of data, at least 
in a phase 

• e.g. in graphics, usually partition image rather than scene 

• situação comum e desejável (evitar write sharing): todos os processos 
lêem de um conjunto de dados, mas escrevem em áreas separadas 

– write sharing: tráfego por invalidate; e também provável proteção por 
sincronização (locks, barriers)  atrasos adicionais 

Structure of communication and mapping are not major issues 

Key is temporal and spatial locality in orchestration step 

• Reduce misses and hence both latency and traffic 

• Temporal locality: keep working sets tight enough to fit in cache 

• Spatial locality: reduce fragmentation and false sharing 
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Capacity-generated traffic 
(including conflicts) 

B
u

s
 t

ra
f f
ic

 

True sharing (inherent communication) 

Cold-start (compulsory) traffic 

Cache size 

False sharing 

Second working set 

First working set 

Temporal Locality 
Main memory centralized, so exploit in processor caches 

Specialization of general working set curve for buses 

Objetivo: trabalhar com working sets que caibam na hierarquia de 
cache (neste exemplo, L1 e L2) 

•Techniques same as discussed earlier for general case 

idem Fig 3.6, 

seção 3.2.3, p140 

esses 3 tipos de miss 

geram tráfego mesmo 

com cache infinita 
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Bag of Tricks for Spatial Locality 

Assign tasks to reduce spatial interleaving of accesses from procs 

• Contiguous rather than interleaved assignment of array elements 

Structure data to reduce spatial interleaving of accesses from procs 

• Higher-dimensional arrays to keep partitions contiguous 

• Reduce false sharing and fragmentation as well as conflict misses 

C o n t i g u i t y   i n   m e m o r y   l a y o u t C a c h e   b l o c k 
s t r a d d l e s   p a r t i t i o n 

C a c h e   b l o c k   i s 

w i t h i n   a   p a r t i tion 
b o u n d a r y 

( a )   T w o - d i m e n s i o n a l   a r r a y ( b )   F o u r - d i m e n s i o n a l   a r r a y 

P 1 P 0 
P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

P 0 P 1 
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Conflict Misses in a 2-D Array Grid 

• Consecutive subrows of partition are not contiguous 

• Especially problematic when both array and cache size is power of 2 

C a c h e 

e n t r i e s 

P 1 P 0 P 2 P 3 

P 5 P 6 P 7 P 4 

P 8 

    

        
    

      
    

          
    

    
      
      

Locations in subrows 
and 

Map to the same entries 

(indices) in the same cache. 

The rest of the processor’s 

cache entries are not mapped 

to by locations in its partition 

(but would have been mapped 

to by subrows 

in other processor’s partitions) 

and are thus wasted. 

pior caso: mapeamento direto, e linha da 

matriz de dados = tamanho da cache 
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Performance Impact 

• Impact of false sharing and conflict misses with 2D arrays clear 

Performance on 16-processor SGI Challenge (tráfego em função  

do tamanho do bloco da cache  64, 128, 256 bytes) 
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Figura anterior no livro mas 

não apresentada nas 

transparências (fig 5.25)  
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Bag of Tricks (contd.) 

Beware conflict misses more generally 

• Allocate non-power-of-2 even if application needs power-of-2 

• Conflict misses across data structures: ad-hoc padding/alignment 

• Conflict misses on small, seemingly harmless data 

Use per-processor heaps for dynamic memory allocation 

Copy data to increase locality 

• If noncontiguous data are to be reused a lot, e.g. blocks in 2D-array LU 

• Must trade off against cost of copying 

Pad (preencher com vazios) and align arrays: can have false sharing v. 
fragmentation tradeoff 

Organize arrays of records for spatial locality (ver fig 5.36) 

• E.g. particles with fields: organize by particle or by field 

• In vector programs by field for unit-stride, in parallel often by particle 

• Phases of program may have different access patterns and needs 

These issues can have greater impact than inherent communication 

• Can cause us to revisit assignment decisions (e.g. strip v. block in grid) 
pag 364 
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Concluding Remarks 

SMPs are natural extension of uniprocessors, increasingly popular 

• Graceful path for parallelization 

• Fine-grained sharing for multiprogramming and OS 

Key technical challenge is design of extended memory hierarchy 

• Many tradeoffs in bus and protocol design even at logical level 

Should continue to be important 

• Attractive cost-performance 

• Microprocessors are multiprocessor-ready, so no time-lag 

• Software technology maturing 

• Attractive as nodes for larger parallel machine (cost amortization) 

• Multiprocessor on a chip 

Real action is at the next level of protocol and implementation 

pag 366 
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Shared Cache: Examples 

Alliant FX-8 

• Eight 68020s with crossbar to 512K interleaved cache 

• Focus on bandwidth to shared cache and memory 

Encore, Sequent 

• Two processors (N32032) to a board with shared cache 

• Cache-coherent bus across boards 

• Amortize hardware overhead of coherence; slow processors 

As transistors per chip increase, shared-cache on a chip? 
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Shared Cache Advantages 

No need for coherence! 

• Only one copy of any cached block 

Fine-grained sharing 

• Communication latency determined by where in hierarchy paths meet 

• 2-10 cycles; as opposed to 20-150 cycles at shared memory 

Processors prefetch data for one another 

No false-sharing  (ping-ponging) 

Smaller total cache requirements 

• Overlapping working sets 
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Shared Cache Disadvantages 

Very high cache bandwidth requirements 

Increased latency for all accesses (incl. hits!) 

• Crossbar interconnect latency 

• Large cache 

• L1 cache hit time important determinant of processor cycle time! 

Contention at cache 

Negative interference (conflict or capacity) 

Not currently supported by commodity microprocessors 
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List-based Queuing Locks 

List-based locks 

• build linked-lists per lock in SW 

• acquire 

– allocate (local) list element and enqueue on list 

– spin on flag field of that list element 

• release 

– set flag of next element on list 

• use compare&swap to manage lists 

– swap is sufficient, but lose FIFO property 

– FIFO 

– spin locally (cache-coherent or not) 

– O(1) network transactions even without consistent caches 

– O(1) space per lock 

– but, compare&swap difficult to implement in hardware 
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Recent Areas of Investigation 

 

Multi-protocol Synchronization Algorithms 

• Reactive  algorithms 

• Adaptive waiting mechanisms 

• Wait-free algorithms 

 

Integration with OS scheduling 

 

Multithreading 

• what do you do while you wait? 

– could be much longer than a memory access 
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Implementing Atomic Ops with Caching 
 

One possibility:  Load Linked / Store Conditional (LL/SC) 

• Load Linked loads the lock and sets a bit 

• When “atomic” operation is done, Store Conditional succeeds only if 
bit was not reset in interim 

• Doesn’t need diff instructions with diff nos. of arguments 

• Good for bus-based machine:  SC result delivered by bus 

• More complex for directory-based machine: 

– wait for SC to go to directory and get ownership (long latency) 

– have LL load in exclusive mode, so SC succeeds immediately if still in 
exclusive mode 
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Bottom Line for Locks 

 

 

Lots of options 

 

 

SW algorithms can do well given simple HW primitives 
(fetch&op) 

• LL/SC works well if there is locality of synch access 

• Otherwise, in-memory fetch&ops are good for high contention 
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Optimal Broadcast 

Optimal single item broadcast is an unbalanced tree 

 – shape determined by relative values of L, o, and g. 
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Dissemination Barrier 

 

Goal is to allow statically allocated flags 

• avoid remote spinning even without cache coherence 

 

 

log p rounds of synchronization 

In round k, proc i synchronizes with proc (i+2k) mod p 

• can statically allocate flags to avoid remote spinning 

Like a butterfly network 
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Tournament Barrier 

 

Like binary combining tree 

But representative processor at a node chosen statically 

• no fetch-and-op needed 

In round k, proc i sets a flag for proc j = i - 2k (mod 2k+1) 

• i then drops out of tournament and j proceeds in next round 

• i waits for global flag signalling completion of barrier to be set by 
root 

– could use combining wakeup tree 

 

Without coherent caches and broadcast, suffers from either 
traffic due to single flag or same problem as combining trees 
(for wakeup) 



103 

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
  

MCS Barrier 

 

Modifies tournament barrier to allow static allocation in wakeup tree, 
and to use sense reversal 

Every processor is a node in two p-node trees 

• has pointers to its parent, building a fanin-4 arrival tree 

• has pointers to its children to build a fanout-2 wakeup tree 

 

 + spins on local flag variables 

 + requires O(P) space for P processors 

 + theoretical minimum no. of network transactions (2P -2) 

 + O(log P) network transactions on critical path 
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Recent Directions 

 

 

Adaptive tree barriers 

• late arrivals should be close to the root 

 

Pipelined Scan Operations 

 

Hardware Support ? 
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Space Requirements 

 

 

 

Centralized:    constant 

 

MCS, combining tree:   O(p) 

 

Dissemination, Tournament:  O(p log p) 
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Network Transactions 

 

 

Centralized, combining tree:  O(p) if broadcast   
                and coherent caches; 

      unbounded otherwise 

 

Dissemination:   O(p log p) 

 

Tournament, MCS:   O(p) 
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Critical Path Length 

 

 

If independent parallel network paths available: 

• all are O(log P) except centralized, which is O(P) 

 

 

If not (e.g. shared bus): 

• linear terms dominate 
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Categorias de hierarquia de memória 

Scalability 
Cache 

Latency 

Mem. 

Latency 
Symmetric 

Shared 

Cache 
- - + + 

Bus Based (*) - + + + 

Dance Hall + + - + 

Distributed 

Memory (**) 
+ + + - 

 (*) Comum em multiprocessadores de pequena escala 

(**) Comum em multiprocessadores de larga escala 
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Expl 5.2: coerência de cache na fig. 5.3 com 

protocolo write-through e write invalidate 

I/O devices

Memory

P1

$ $ $

P2 P3

1

2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

1. P1 lê Mem(u); $1 

2. P3 lê Mem(u); $3 

3. P3 Wr 7 -> $3(u) e Mem(u); write through; controlador de $3 gera bus 
transaction -> controlador de $1 invalida $1(u) 

4. P1 lê $1 -> miss -> lê valor atualizado da memória 

5. P2 lê $2 -> miss -> lê valor atualizado da memória 
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Objetivos de um algoritmo de locking 

Objetivos de desempenho 

• Baixa latência: se o lock está livre e só um processador 
busca, deveria obtê-lo com a menor latência 

• Baixo tráfego: se muitos processadores buscam ao mesmo 
tempo, eles deveriam conseguir o lock um depois do outro 
com o mínimo tráfego gerado ou transações de barramento. 

• Escalabilidade: nem latência nem tráfego deveria escalar 
rapidamente com o N. de processadores (na faixa razoável 
de p, no caso de bus-based SMP) 

• Custo baixo de armazenamento: informações necessárias 
para o lock devem ocupar pouco espaço (e não escalar 
rapidamente com p) 

• Fairness: idealmente, obter o lock na mesma ordem em que 
foi solicitado; pelo menos evitar starvation. 

 


