
1

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Cap5 - Shared Memory

Multiprocessors

Logical design and software interactions

2

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Shared Memory Multiprocessors

Symmetric Multiprocessors (SMPs)

• Symmetric access to all of main memory from any processor

Dominate the server market

• Building blocks for larger systems; arriving to desktop

Attractive as throughput servers and for parallel programs

• Fine-grain resource sharing

• Uniform access via loads/stores

• Automatic data movement and coherent replication in caches

• Useful for operating system too

Normal uniprocessor mechanisms to access data (reads and writes)

• Key is extension of memory hierarchy to support multiple processors

pag 269

3

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Supporting Programming Models

• Address translation and protection in hardware (SAS é suportado
diretamente por HW); operações = load, store

• Message passing using shared memory buffers (intermediado por
camada intermediária de bibliotecas)

– can be very high performance since no OS involvement necessary; controle
de buffers por HW

• Focus here on supporting coherent shared address space

Multipr ogramming

Shar ed addr ess space

Message passing Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e

Physical communication medium

Har dwar e/softwar e boundary

pag 270

4

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Natural Extensions of Memory System

I/O devicesMem

P1

$ $

Pn

P1

Sw itch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection netw ork

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection netw ork

$

Pn

Mem Mem

(d) Distributed-memory

pag 270-271

5

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Caches and Cache Coherence

Caches play key role in all cases

• Reduce average data access time

• Reduce bandwidth demands placed on shared interconnect

But private processor caches create a problem

• Copies of a variable can be present in multiple caches

• A write by one processor may not become visible to others

– They’ll keep accessing stale value in their caches

• Cache coherence problem

• Need to take actions to ensure visibility

pag 272

6

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Focus: Bus-based, Centralized Memory

Shared cache

• Low-latency sharing and prefetching across processors

• Sharing of working sets

• No coherence problem (and hence no false sharing either)

• But high bandwidth needs and negative interference (e.g. conflicts)

• Hit and miss latency increased due to intervening switch and cache size

• Mid 80s: to connect couple of processors on a board (Encore, Sequent)

• Today: for multiprocessor on a chip (for small-scale systems or nodes)

Bus based shared memory: hoje popular para pequena escala

Dancehall

• No longer popular: everything is uniformly far away

Distributed memory

• Most popular way to build scalable systems, discussed later

pag 272

7

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Outline

Cap 5: foco em coerência de cache em “bus-based shared mem” (Cap

7 no caso de distributed memory)

• 5.1 – 5.3:

– Coherence and Consistency

– Snooping Cache Coherence Protocols

• 5.4 Quantitative Evaluation of Cache Coherence Protocols

• 5.5 Synchronization

• 5.6 Implications for Parallel Software

8

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.1 A Coherent Memory System: Intuition

Reading a location should return latest value written (by any process)

Easy in uniprocessors

• Except for I/O: coherence between I/O devices and processors

• But infrequent so software solutions work (soluções grosseiras mas ok)

– (a) uncacheable memory (marcar segmento da memória reservado para IO),
(b) uncacheable operations, (c) flush pages (OS limpa cache antes do IO),
(d) pass I/O data through caches (espécie de write through de IO)

Would like same to hold when processes run on different processors

• E.g. as if the processes were interleaved on a uniprocessor (problema de
coerência não existe pois há apenas uma cache)

But coherence problem much more critical in multiprocessors

• Pervasive

• Performance-critical

• Must be treated as a basic hardware design issue
pag 273-274

9

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Expl 5.1: Cache Coherence Problem

• Processors see different values for u after event 3

• With write back caches, value written back to memory depends on
happenstance (acaso) of which cache flushes or writes back value when

– Processes accessing main memory may see very stale (velho) value

– valor na memória depende do instante em que bloco é descartado e atualizado
(dirty bit)

• Unacceptable to programs, and frequent!

I/O devices

Memory

P1

$ $ $

P2 P3

1

2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

1.P1 lê Mem(u); $1

2.P3 lê Mem(u); $3

3.P3 Wr 7 -> $3(u)
e Mem(u); write
through

4.P1 lê $1 (5??)

5.P2 lê Mem(u); $2

• e se write back?

pag 273-274

10

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Problems with the Intuition

Recall: Value returned by read should be last value written

But “last” is not well-defined

Even in seq. case, last defined in terms of program order, not time

• Order of operations in the machine language presented to processor

• “Subsequent” defined in analogous way, and well defined

In parallel case, program order defined within a process, but need to
make sense of orders across processes

Must define a meaningful semantics

pag 275

11

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Some Basic Definitions
Extend from definitions in uniprocessors to those in multiprocessors

Memory operation: a single read (load), write (store) or read-modify-write access to

a memory location (cuidado com instruções complexas com múltiplos RD, WR)

• Assumed to execute atomically w.r.t each other (todos aspectos de uma
instrução são executados antes de qualquer um da próxima)

Issue: a memory operation issues when it leaves processor’s internal environment

and is presented to memory system (cache, buffer …)

Perform: operation appears to have taken place, as far as processor can tell from

other memory operations it issues

• A write performs w.r.t. the processor when a subsequent read by the
processor returns the value of that write or a later write

• A read perform w.r.t the processor when subsequent writes issued by the
processor cannot affect the value returned by the read

In multiprocessors, stay same but replace “the” by “a” processor

• Also, complete: perform with respect to all processors

• Still need to make sense of order in operations from different processes

• Problema: “last” e “subsequente” não fazem sentido em multiproc.
pag 275-6

12

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Sharpening the Intuition

Imagine a single shared memory and no caches

• Every read and write to a location accesses the same physical location

• Operation completes when it does so

Memory imposes a serial or total order on operations to the location

• Operations to the location from a given processor are in program order

• The order of operations to the location from different processors is
some interleaving that preserves the individual program orders

“Last” now means most recent in a hypothetical serial order that
maintains these properties

For the serial order to be consistent, all processors must see writes to
the location in the same order (if they bother to look, i.e. to read)

Note that the total order is never really constructed in real systems

• Don’t even want memory, or any hardware, to see all operations (na
cache, por exemplo)

But program should behave as if some serial order is enforced

• Order in which things appear to happen, not actually happen
pag 276

13

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Formal Definition of Coherence
Results of a program: values returned by its read operations (ex, RD

hipotéticos ao final da execução; ordem não importa)

A memory system is coherent if the results of any execution of a
program are such that, for each location, it is possible to construct a
hypothetical serial order of all operations to the location that is
consistent with the results of the execution and in which:

1. operations issued by any particular process occur in the order
issued by that process, and

2. the value returned by a read is the value written by the last write to
that location in the serial order

Two necessary features:

• Write propagation: value written must become visible to others

• Write serialization: writes to location seen in same order by all
– if I see w1 after w2, you should not see w2 before w1

– no need for analogous read serialization since reads not visible to
others

 pag 277

14

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.1.2 Cache Coherence Using a Bus
Built on top of two fundamentals of uniprocessor systems

• Bus transactions

• State transition diagram in cache

Uniprocessor bus transaction:

• Three phases: arbitration, command/address, data transfer

• All devices observe addresses, one is responsible

– RD: seguido pela transferência do dado

– WR: depende (dado junto com endereço ou depois?)

Uniprocessor cache states:

• Effectively, every block is a finite state machine

• Write-through, write no-allocate (em write miss, bloco não é escrito na
cache, somente na memória) has two states: valid, invalid

• Writeback caches have one more state: modified (“dirty”)

Multiprocessors extend both these somewhat to implement coherence
pag 279

15

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.1.2 Snooping-based Coherence

Basic Idea

Transactions on bus are visible to all processors

Processors or their representatives can snoop (monitor) bus and take
action on relevant events (e.g. change state) (ver fig. prox slide)

Implementing a Protocol

Cache controller now receives inputs from both sides:

• Requests from processor, bus requests/responses from snooper

In either case, takes zero or more actions

• Updates state, responds with data, generates new bus transactions

Protocol is distributed algorithm: cooperating state machines

• Set of states, state transition diagram, actions

Granularity of coherence is typically cache block

• Like that of allocation in cache and transfer to/from cache

pag 277

16

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Coherence with Write-through Caches

• Key extensions to uniprocessor: snooping, invalidating/updating caches
– no new states or bus transactions in this case

– invalidation- versus update-based protocols

• Write propagation: even in inval case, later reads will see new value
– inval causes miss on later access, and memory up-to-date via write-through

• Exemplo 5.2: efeito do bus snooping na coerência

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

17

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Write-through State Transition Diagram

• Two states per block in each cache, as in uniprocessor

– state of a block can be seen as p-vector (p= nº de caches)

• Hardware state bits associated with only blocks that are in the cache

– other blocks can be seen as being in invalid (not-present) state in that cache

• Write will invalidate all other caches (no local change of state)

– can have multiple simultaneous readers of block, but write invalidates them

Controlador de cache recebe

dois tipos de input:

• Pedidos do processador

• Eventos ocorridos em

outros processadores

(write through e também write no-

allocate; baseado em invalidação)

Pr ocessor -initiated transactions

Bus-snooper -initiated transactions

I

V

PrRd/BusRd

PrRd/—

PrW r/BusWr

BusW r/—

PrW r/BusW r Observado /

transação gerada

pag 280

18

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Is it Coherent?

Construct total order that satisfies program order, write serialization?

Assume bus transactions and memory operations are atomic

• all phases of one bus transaction complete before next one starts
(atomic bus)

• processor waits for its previous memory operation to complete before
issuing next

• with one-level cache, assume invalidations applied during bus xaction

• (we’ll relax these assumptions in more complex systems later)

• a memória executa operações na ordem em que elas apareceram no bus

All writes go to bus + atomicity

• Writes serialized by order in which they appear on bus (bus order)

• Per above assumptions, invalidations applied to caches in bus order

How to insert reads in this order?

• Important since processors see writes through reads, so determines
whether write serialization is satisfied

• But read hits may happen independently and do not appear on bus or
enter directly in bus order

pag 281

19

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Ordering Reads

Read misses: appear on bus, and will see last write in bus order

Read hits: do not appear on bus

• But value read was placed in cache by either

– most recent write by this processor, or

– most recent read miss by this processor

• In both these transactions, the source of the value appears on the bus

• So reads hits also see values as being produced in consistent bus order

pag 282

20

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Determining Orders More Generally

• A memory operation M2 is subsequent to a memory operation M1 if the operations

are issued by the same processor and M2 follows M1 in program order.

• Read is subsequent to write W if the read generates bus xaction that follows that for

W.

• Write is subsequent to read or write M if M generates bus xaction and the xaction

for the write follows that for M.

• Write is subsequent to read if the read does not generate a bus xaction (hit) and is

not already separated from the write by another bus xaction.

•Writes establish a partial order

•Doesn’t constrain ordering of reads, though bus will order read misses too

(podem haver bus xactions de read misses, desde que na ordem local)

–any order among reads between writes is fine, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

pag 282-3

21

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Problem with Write-Through

High bandwidth requirements

• Every write from every processor goes to shared bus and memory

Exemplo 5.3

• Consider 200MHz, 1 CPI processor, and 15% instrs. are 8-byte stores

• Quantos processadores seriam suportados por um bus de 1GB/s?
– Each processor generates 30M stores/sec (200E6 ciclos * 0,15)

• or 240MB data per second (30M * 8 bytes)

– 1GB/s bus can support only about 4 processors without saturating

– Write-through especially unpopular for SMPs

Write-back caches absorb most writes as cache hits
• Write hits don’t go on bus

• But now how do we ensure write propagation and serialization?

• Need more sophisticated protocols: large design space

But first, let’s understand other ordering issues

pag 282-3

22

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.2 Memory Consistency

• Intuition not guaranteed by coherence (coerência garante que todos procs vêem o
novo valor de A; o mesmo para flag; mas não se preocupa com a ordem em que
isso acontece; poderia acontecer de P2 ver a atualização do flag antes de A !!)

• Sometimes expect memory to respect order between accesses to different locations
issued by a given process

– to preserve orders among accesses to same location by different processes

• Coherence doesn’t help: pertains only to single location

Writes to a location become visible to all in the same order

But when does a write become visible

•How to establish orders between a write and a read by different procs?

–Typically use event synchronization, by using more than one location

(exemplo com dois processadores P1 e P2)

P 1 P 2

/*Assume initial value of A and flag is 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

pag 283-4

23

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Another Example of Orders

• What’s the intuition? (qual seria a intenção do programador?)

• Coerência apenas não basta

• Whatever it is, we need an ordering model for clear semantics

– across different locations as well

– so programmers can reason about what results are possible

• This is the memory consistency model

P 1 P 2

/*Assume initial values of A and B are 0*/

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

pag 284

24

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Memory Consistency Model

Specifies constraints on the order in which memory operations (from
any process) can appear to execute with respect to one another

• What orders are preserved?

• Given a load, constrains the possible values returned by it

Without it, can’t tell much about an SAS program’s execution

Implications for both programmer and system designer

• Programmer uses to reason about correctness and possible results

• System designer can use to constrain how much accesses can be
reordered by compiler or hardware

Contract between programmer and system

O modelo de consistência de memória é mais abrangente (subsumes)
que coerência de cache

pag 285

25

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Sequential Consistency

• (as if there were no caches, and a single memory)

• Total order achieved by interleaving accesses from different processes

• Maintains program order, and memory operations, from all processes, appear
to [issue, execute, complete] atomically w.r.t. others

• Programmer’s intuition is maintained

 Definição de Sequential Consistency de Lamport: “A multiprocessor is

sequentially consistent if the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order

specified by its program.” [Lamport, 1979]

Processors issuing

memory references

as per program order

P 1 P 2 P n

Memory

The “switch” is randomly
set after each memory
r eference

Aplicável a acessos

a múltiplas posições

de memória

pag 286

26

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

What Really is Program Order?

Intuitively, order in which operations appear in source code

• Straightforward translation of source code to assembly

• At most one memory operation per instruction

But not the same as order presented to hardware by compiler

So which is program order?

Depends on which layer, and who’s doing the reasoning

We assume order as seen by programmer

Para obter a consistência sequencial, não interessa a ordem em que
as operações de memória são emitidas (issued) ou completadas; o
que interessa é que elas pareçam completar de uma maneira que
satisfaça as restrições da definição (não contrarie a ordem do
programa, como vista por cada processador, na visão do
programador)

pag 286-7

27

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

SC Example

– possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2)

– we know 1a->1b and 2a->2b by program order

– A = 0 implies 2b->1a, which implies 2a->1b (2a, 2b, 1a, 1b)

– B = 2 implies 1b->2a, which leads to a contradiction (1a, 1b, 2a, 2b)

– BUT, actual execution 1b->1a->2b->2a is SC, despite not program order

• appears just like 1a->1b->2a->2b as visible from results (AB = 1,2)

– actual execution 1b->2a->2b-> is not SC (pois produziria AB =02)

What matters is order in which appears to execute, not executes

P 1 P 2

/*Assume initial values of A and B are 0*/

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

pag 287

28

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Implementing SC

Two kinds of requirements

• Program order

– memory operations issued by a process must appear to become visible (to
others and itself) in program order

• Atomicity

– in the overall total order, one memory operation should appear to complete
with respect to all processes before the next one is issued

– needed to guarantee that total order is consistent across processes

– tricky part is making writes atomic

pag 288

29

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Write Atomicity

Write Atomicity: Position in total order at which a write appears to
perform should be the same for all processes

• Nothing a process does after it has seen the new value produced by a
write W should be visible to other processes until they too have seen W

• In effect, extends write serialization to writes from multiple processes

Exemplo 5.4: 3 processos; relação SC e atomicidade

•Transitivity implies A should print as 1 under SC

•Problem if P2 leaves loop, writes B, and P3 sees new B but old

A (from its cache, say) (falta de atomicidade na escrita causa

violação de SC)

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);

print A;

pag 288

30

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

More Formally

Each process’s program order imposes partial order on set of all operations

Interleaving of these partial orders defines a total order on all operations

Many total orders may be SC (SC does not define particular interleaving)

SC Execution: An execution of a program is SC if the results it produces are
the same as those produced by some possible total order (interleaving)

SC System: A system is SC if any possible execution on that system is an SC
execution

pag 288

31

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.2.2 Sufficient Conditions for SC

1. Every process issues memory operations in program order

2. After a write operation is issued, the issuing process waits for the
write to complete before issuing its next operation

3. After a read operation is issued, the issuing process waits for the read
to complete, and for the write whose value is being returned by the
read to complete, before issuing its next operation (provides write
atomicity). Isto é, o processador vê a operação como completada mas
deve esperar que todos os demais processadores também vejam.

Sufficient, not necessary, conditions

Clearly, compilers should not reorder for SC, but they do!

• Loop transformations, register allocation (eliminates!)

Even if issued in order, hardware may violate for better performance

• Write buffers, out of order execution

Reason: uniprocessors care only about dependences to same location

• Makes the sufficient conditions very restrictive for performance

pag 289

32

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Our Treatment of Ordering

Assume for now that compiler does not reorder (o que aconteceria se
o compilador reordenasse as escritas de A e flag na transp22? Ver
conceito de volatile no expl 5.5)

Hardware needs mechanisms to detect:

• Detect write completion (read completion is easy)

• Ensure write atomicity

For all protocols and implementations, we will see

• How they satisfy coherence, particularly write serialization

• How they satisfy sufficient conditions for SC (write completion and
write atomicity)

• How they can ensure SC but not through sufficient conditions

Will see that centralized bus interconnect makes it easier (recurso é
único; gargalo fornece serialização)

pag 290

33

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

SC in Write-through Example

Exemplo de protocolo de 2 estados (transp 17)

Provides SC, not just coherence

Extend arguments used for coherence

• Writes and read misses to all locations serialized by bus into bus order

• If read obtains value of write W, W guaranteed to have completed

– since it caused a bus transaction

• When write W is performed w.r.t. any processor, all previous writes in
bus order have completed

pag 291

34

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.3 Design Space for Snooping Protocols

Vantagem (beauty) do protocolo snoopy:

 No need to change processor, main memory, cache …

• Extend cache controller and exploit bus (provides serialization)

Mas implementação inicial com write through é ineficiente (ver expl
5.3, p282)

Focus on protocols for write-back caches

Dirty state now also indicates exclusive ownership

• Exclusive: only cache with a valid copy (main memory may be too)

• Owner: responsible for supplying block upon a request for it

Design space (alternativas de projeto)

• Invalidation versus Update-based protocols

• Set of states

pag 291

35

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Invalidation-based Protocols

Exclusive means can modify without notifying anyone else

• i.e. without bus transaction

• Must first get block in exclusive state before writing into it

• Even if already in valid state, need transaction, so called a write miss

Write miss em um protocolo invalidate (mesmo que o bloco esteja no
estado válido):

Store to non-dirty data generates a read-exclusive bus transaction

• Tells others about impending write, obtains exclusive ownership
– makes the write visible, i.e. write is performed

– may be actually observed (by a read miss) only later

– write hit made visible (performed) when block updated in writer’s cache

• Only one RdX can succeed at a time for a block: serialized by bus

Read and Read-exclusive bus transactions drive coherence actions

• Writeback transactions also, but not caused by memory operation and
quite incidental to coherence protocol

– note: replaced block that is not in modified state can be dropped
pag 292

36

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Update-based Protocols

A write operation updates values in other caches

• New, update bus transaction

Advantages

• Other processors don’t miss on next access: reduced latency

– In invalidation protocols, they would miss and cause more transactions

• Single bus transaction to update several caches can save bandwidth

– Also, only the word written is transferred, not whole block

Disadvantages

• Multiple writes by same processor cause multiple update transactions

– In invalidation, first write gets exclusive ownership, others local

Detailed tradeoffs more complex

pag 292

37

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Invalidate versus Update
Basic question of program behavior

• Is a block written by one processor read by others before it is rewritten?

Invalidation:

• Yes => readers will take a miss

• No => multiple writes without additional traffic
– and clears out copies that won’t be used again

Update:

• Yes => readers will not miss if they had a copy previously
– single bus transaction to update all copies

• No => multiple useless updates, even to dead copies

Need to look at program behavior and hardware complexity

Invalidation protocols much more popular (more later)

• Some systems provide both, or even hybrid

Grosseiramente: 1 produtor e vários consumidores (update é melhor);
processamento local (invalidate é melhor)

pag 293

38

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Basic MSI Writeback Inval Protocol
States

• Invalid (I)

• Shared (S): uma ou mais caches têm valor atualizado do bloco; mem OK

• Dirty or Modified (M): one only (só esta cache tem valor atualizado)

Processor Events:

• PrRd (read)

• PrWr (write)

Bus Transactions

• BusRd: asks for copy with no intent to modify (origem: PrRd miss); uma cache

ou a Memória fornecem

• BusRdX: asks for copy with intent to modify (origem: PrWr em bloco ou não na

cache ou diferente de M);); uma cache ou a Memória fornecem; todos são inv.

• BusWB: updates memory (origem: controlador de cache precisa desocupar

bloco “M”); não afeta o processador (somente cache Mem)

Actions

• Update state, perform bus transaction, flush value onto bus (cache fornece

dado solicitado por outro processador) pag 293

39

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

State Transition Diagram

• Replacement changes state of two blocks: outgoing and incoming (I)

• Ver expl 5.6, pag 296

• Sem cache sharing

PrRd/—

PrRd/—

PrW r/BusRdX
BusRd/—

PrW r/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrRd/BusRd

PrW r/BusRdX

bus

processador
• PrRD em bloco no estado I ; BusRD ; estado I-> S ;

Se outra cache tem o dado em S, não faz nada

(memória fornece o dado); se está no estado M, esta

cache fornece o dado (flush) e M -> S; tanto a cache

solicitante quanto a memória pegam o dado

• PrWR em bloco no estado I; miss; carrega o bloco

inteiro e modifica a palavra em questão; RdX ; todas

outras cópias vão para I; a cache solicitante vai de I ->

M

• PrWR em bloco no estado S; como WR miss; RdX;

dado que retorna do RdX pode ser ignorado porque já

na cache; simplificação seria usar uma nova

transação: Bus Upgrade (BusUpgr); esta transação

também obtém exclusividade mas não causa

fornecimento de dados por ninguém

pag 294

40

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Satisfying Coherence

Write propagation is clear (tornar escrita visível a outras caches)

Write serialization?

• All writes that appear on the bus (BusRdX) ordered by the bus

– Write performed in writer’s cache before it handles other transactions, so
ordered in same way even w.r.t. writer

• Reads that appear on the bus ordered wrt these

• Write that don’t appear on the bus (diferença com write through):

– sequence of such writes between two bus xactions for the block must come
from same processor, say P (realizou a operação RdX mais recente)

– in serialization, the sequence appears between these two bus xactions

– reads by P will see them in this order w.r.t. other bus transactions

– reads by other processors separated from sequence by a bus xaction, which
places them in the serialized order w.r.t the writes

– so reads by all processors see writes in same order

pag 297

41

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Satisfying Sequential Consistency
1. Appeal to definition:

• Bus imposes total order on bus xactions for all locations

• Between xactions, procs perform reads/writes locally in program order

• So any execution defines a natural partial order

– A memory operation Mj is subsequent to Mi if

• (i) follows in program order on same processor,

• (ii) Mj generates bus xaction that follows the memory operation for Mi

• (ordem parcial semelhante à fig 5.6-T20, mas temos WR entre os RDs)

• In segment between two bus transactions, any interleaving of ops from
different processors leads to consistent total order

• In such a segment, writes observed by processor P serialized as follows

– Writes from other processors by the previous bus xaction P issued

– Writes from P by program order

2. Show sufficient conditions are satisfied

• Write completion: can detect when write appears on bus

• Write atomicity: if a read returns the value of a write, that write has already
become visible to all others already (can reason different cases)

pag 297-8

42

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Lower-level Protocol Choices

Exemplo de alternativas de projeto

BusRd observed in M state: what transitition to make?

 Na figura, “S”/Flush poderia ir direto para “I”

Depends on expectations of access patterns

• S: assumption that I’ll read again soon, rather than other will write

– good for mostly read data

– what about “migratory” data

• I read and write, then you read and write, then X reads and writes...

• better to go to I state, so I don’t have to be invalidated on your write

• Synapse transitioned to I state

• Sequent Symmetry and MIT Alewife use adaptive protocols

Choices can affect performance of memory system (later)

pag 298

43

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

MESI (4-state) Invalidation Protocol

Problem with MSI protocol

• Reading and modifying data is 2 bus xactions, even if no one sharing

– e.g. even in sequential program

– BusRd (I->S) followed by BusRdX or BusUpgr (S->M)

Add exclusive state: write locally without xaction, but not modified

(só esta cache tem o bloco; pode escrever (EM) sem avisar os
outros  sem bus xaction)

• Main memory is up to date, so cache not necessarily owner
(E=exclusive clean); cache não precisa responder se outro proc miss

• States
– invalid

– exclusive or exclusive-clean (only this cache has copy, but not modified)

– shared (two or more caches may have copies)

– modified (dirty)

• I -> E on PrRd if no one else has copy

– needs “shared” signal on bus: wired-or line asserted in response to BusRd
pag 299

44

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

MESI State Transition Diagram

• BusRd(S) means shared line asserted on BusRd transaction

• Flush’: if cache-to-cache sharing (see next), only one cache flushes data

– outras caches fazem ação normal (SS ou S  I)

• MOESI protocol: Owned state: exclusive but memory not valid

PrW r/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrW r/BusRdX

PrW r/—

PrRd/—

PrRd/—
BusRd/Flush

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush

BusRdX/Flush

BusRd/

Flush

PrW r/BusRdX

PrRd/
BusRd (S)

• Novo bloco

• S, se outra cache tem o bloco

• E: se é a única

• Na escrita, E  M, sem bus xaction

• Se outra cache precisa do bloco
ES

• Notação: BusRd(S): Bus xaction
com a presença do sinal S (shared)

pag 301

45

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Lower-level Protocol Choices

Who supplies data on miss when not in M state: memory or cache?

Original, lllinois MESI: cache, since assumed cache faster than
memory

• Cache-to-cache sharing

Not true in modern systems

• Intervening in another cache more expensive than getting from memory
(perturba o outro processador)

Cache-to-cache sharing also adds complexity

• How does memory know it should supply data (must wait for caches)

• Selection algorithm if multiple caches have valid data

But valuable for cache-coherent machines with distributed memory

• May be cheaper to obtain from nearby cache than distant memory

• Especially when constructed out of SMP nodes (Stanford DASH)

pag 300

46

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.3.3 Dragon Write-back Update Protocol

 4 states

• Exclusive-clean or exclusive (E): I and memory have it (é o mesmo de
MESI)

• Shared clean (Sc): I, others, and maybe memory, but I’m not owner

• Shared modified (Sm): I and others but not memory, and I’m the
owner (responsável por atualizar memória a partir desta cache)

– Sm and Sc can coexist in different caches, with only one Sm

• Modified or dirty (D): I and, no one else

No invalid state (o protocolo é update invalidate)
• If in cache, cannot be invalid

• If not present in cache, can view as being in not-present or invalid state

 New processor events: PrRdMiss, PrWrMiss

• Introduced to specify actions when block not present in cache

 New bus transaction: BusUpd

• Broadcasts single word written on bus; updates other relevant caches

– diferente de BusRD: linha inteira da cache

pag 302

47

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Dragon State Transition Diagram

E Sc

Sm M

PrW r/—

PrRd/—

PrRd/—

PrRd/—

PrRdMiss/BusRd(S) PrRdMiss/BusRd(S)

PrW r/—

PrW rMiss/(BusRd(S); BusUpd) PrW rMiss/BusRd(S)

PrW r/BusUpd(S)

PrW r/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrW r/BusUpd(S)

PrW r/BusUpd(S)

ver expl 5.7, pag 304

48

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Lower-level Protocol Choices

Can shared-modified state be eliminated?

• If update memory as well on BusUpd transactions (DEC Firefly) (como
o write-through ??)

• Dragon protocol doesn’t (assumes DRAM memory slow to update)

Should replacement of an Sc block be broadcast?

• Would allow last copy to go to E state and not generate updates

• Base lógica para a decisão: Replacement bus transaction is not in
critical path, later update may be

Shouldn’t update local copy on write hit before controller gets bus

• Can mess up serialization

Coherence, consistency considerations much like write-through case

In general, many subtle race conditions in protocols

But first, let’s illustrate quantitative assessment at logical level

pag 304

49

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.4 Assessing Protocol Tradeoffs
Tradeoffs affected by performance and organization characteristics

Desempenho: protocolo de coerência é crucial

• classe (invalidate ou update), estados/ações, compromissos de baixo
nível

Part art and part science

• Art: experience, intuition and aesthetics of designers

• Science: Workload-driven evaluation for cost-performance

– want a balanced system: no expensive resource heavily underutilized

Methodology (simulação para avaliar os protocolos):

• Use simulator; choose parameters per earlier methodology (default
1MB, 4-way cache, 64-byte block, 16 processors; 64K cache for some)

• Focus on frequencies, not end performance for now

– transcends architectural details, but not what we’re really after

• Use idealized memory performance model to avoid changes of
reference interleaving across processors with machine parameters

– Cheap simulation: no need to model contention

(ver Tab 5.1, pag 308) . pag 305

50

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.4.3 Impact of Protocol Optimizations

• MSI versus MESI doesn’t seem to matter for bw for these workloads

• Upgrades instead of read-exclusive helps

• Same story when working sets don’t fit for Ocean, Radix, Raytrace

(geração dos gráficos: ver exemplos 5.8, 5.9 e 5.10) .

(Computing traffic from state transitions discussed in book)

Effect of E state, and of BusUpgr instead of BusRdX

T
 r

 a
 f

 f
 i

 c

 (
 M

 B
 /

 s
)

T
 r

 a
 f

 f
 i

 c

 (
 M

 B
 /

 s
)

x

d
 l

t
 x

I
 l

 l

t

E
 x

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

D a t a b u s

A d d r e s s b u s

E

E

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

D a t a b u s

A d d r e s s b u s

B
a
rn

e
s
/I

II

B
a
rn

e
s
/3

S
t

B
a
rn

e
s
/3

S
t-

R
d
E

x

L
U

/I
II

R
a
d
ix

/3
S

t-
R

d
E

x

L
U

/3
S

t

L
U

/3
S

t-
R

d
E

x

R
a
d
ix

/3
S

t

O
c
e
a
n
/I

II

O
c
e
a
n
/3

S

R
a
d
io

s
it
y
/3

S
t-

R
d
E

x

O
c
e
a
n
/3

S
t-

R
d
E

x

R
a
d
ix

/I
II

R
a
d
io

s
it
y
/I

II

R
a
d
io

s
it
y
/3

S
t

R
a
y
tr

a
c
e
/I

II

R
a
y
tr

a
c
e

/3
S

t

R
a
y
tr

a
c
e
/3

S
t-

R
d
E

x

A
p
p
l-
C

o
d
e
/I
II

A
p
p
l-
C

o
d
e
/3

S
t

A
p
p
l-
C

o
d
e
/3

S
t-

R
d
E

x

A
p
p
l-
D

a
ta

/I
II

A
p
p
l-
D

a
ta

/3
S

t

A
p
p
l-
D

a
ta

/3
S

t-
R

d
E

x

O
S

-C
o
d
e
/I
II

O
S

-C
o
d
e
/3

S
t

O
S

-D
a
ta

/3
S

t

O
S

-D
a
ta

/I
II

O
S

-C
o
d
e
/3

S
t-

R
d
E

x

O
S

-D
a
ta

/3
S

t-
R

d
E

x

• III: MESI

• 3St: MSI

• 3St-RdEx: BusRdX em vez
de BusUpgr

•BusRdX: recebe
cópia exclusiva
para alteração

•BusUpr: também
exclusivo, mas não
alterará, portanto
não recebe cópia

pag 312

51

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.4.4 Impact of Cache Block Size
Tipos de misses em uniprocessadores: cold (primeira carga), capacity (não

cabe na cache), conflict (mapeia para o mesmo set)

Multiprocessors add new kind of miss to cold, capacity, conflict

• Coherence misses: true sharing and false sharing

– latter due to granularity of coherence being larger than a word

• Both miss rate and traffic matter

Reducing misses architecturally in invalidation protocol

• Capacity: enlarge cache; increase block size (if spatial locality)

• Conflict: increase associativity

• Cold and Coherence: only block size

Increasing block size has advantages and disadvantages

• Can reduce misses if spatial locality is good

• Can hurt too

– increase misses due to false sharing if spatial locality not good

– increase misses due to conflicts in fixed-size cache

– increase traffic due to fetching unnecessary data and due to false sharing

– can increase miss penalty and perhaps hit cost
pag 313

52

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

A Classification of Cache Misses

• Many mixed

categories

because a miss

may have multiple

causes

• miss é percebido

não quando

ocorre e sim em

RD

• (ver expl 5.11)

Miss classi cation

Reason
for miss

First reference to
memory block by processor

First access
systemwide

Yes

No

Written
before

Yes

No

Modi ed
word(s) accessed
during l i fetime

Yes

No

1. Cold

2. Cold

4. True-sharing-

3. False-sharing-

Reason for
el imination of

last copy

Replacement

Inval idation

Old copy
with state = inval id

sti l l there

YesNo

8. Pure-
7. Pure-

6. True-sharing-
inval-cap

5. False-sharing-
inval-cap

Modi ed
word(s) accessed
during l i fetime

Modi ed
word(s) accessed
during l i fetime

Yes

No YesNo

false-sharing
true-sharing

Has block
been modi ed since

replacement

No Yes

10. True-sharing-9. Pure-

12. True-sharing-11. False-sharing-

Modi ed
word(s) accessed
during l i fetime Modi ed

word(s) accessed
during l i fetime

YesNo

YesNo

capacity

Other

cold

cold

cap-inval cap-inval

capacity

• conflito tratado = capacidade

(ambos recursos)

pag 317

53

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Impact of Block Size on Miss Rate

Results shown only for default problem size: varied behavior

• (16 processadores; block size variando de 8 a 256 B)

• Cold (1, 2), capacity (9), true sharing (4,6,8,10,12), false sharing
(3,5,7,11), upgrade

• upgrades = situações em que WR encontram o bloco em shared state

•ver variação de acordo com intuição: cold, capacity, true e false sharng

•Working set doesn’t fit: impact on capacity misses much more critical

C o l d

C a p a c i t y

T r u e s h a r i n g

F a l s e s h a r i n g

U p g r a d e

8

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

C o l d

C a p a c i t y

T r u e s h a r i n g

F a l s e s h a r i n g

U p g r a d e

8

6

2

4

8

6
 8

0

2

4

6

8

1 0

1 2

M
is

s
 r

a
te

 (
%

)

B
a
rn

e
s
/8

B
a
rn

e
s
/1

6

B
a

rn
e

s
/3

2

B
a

rn
e

s
/6

4

B
a
rn

e
s
/1

2
8

B
a
rn

e
s
/2

5
6

L
u
/8

L
u
/1

6

L
u
/3

2

L
u
/6

4

L
u
/1

2
8

L
u
/2

5
6

R
a
d
io

s
it
y
/8

R
a
d
io

s
it
y
/1

6

R
a
d
io

s
it
y
/3

2

R
a
d
io

s
it
y
/6

4

R
a
d
io

s
it
y
/1

2
8

R
a
d
io

s
it
y
/2

5
6

M
is

s
 r

a
te

 (
%

)

O
c
e
a
n
/8

O
c
e
a
n
/1

6

O
c
e

a
n

/3
2

O
c
e
a
n
/6

4

O
c
e
a
n
/1

2
8

O
c
e
a
n
/2

5
6

R
a
d
ix

/8

R
a
d
ix

/1
6

R
a
d
ix

/3
2

R
a
d
ix

/6
4

R
a
d
ix

/1
2
8

R
a
d
ix

/2
5
6

R
a
y
tr

a
c
e
/8

R
a
y
tr

a
c
e
/1

6

R
a
y
tr

a
c
e
/3

2

R
a
y
tr

a
c
e
/6

4

R
a
y
tr

a
c
e
/1

2
8

R
a
y
tr

a
c
e
/2

5
6

54

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Impact of Block Size on Traffic

• Results different than for miss rate: traffic almost always increases

• When working sets fits, overall traffic still small, except for Radix

• Fixed overhead is significant component
– So total traffic often minimized at 16-32 byte block, not smaller

• Working set doesn’t fit: even 128-byte good for Ocean due to capacity

Traffic affects performance indirectly through contention

T
ra

ff
ic

 (
b
y
te

s/
in

st
ru

ct
io

n
)

T
ra

ff
ic

 (
b
y
te

s/
F

L
O

P
)

Data bus

Address bus

Data bus

Address bus

R
a
d
ix

/8

R
a
d
ix

/1
6

R
a
d
ix

/3
2

R
a
d
ix

/6
4

R
a
d
ix

/1
2
8

R
a
d
ix

/2
5
6

0

1

2

3

4

5

6

7

8

9

10

L
U

/8

L
U

/1
6

L
U

/3
2

L
U

/6
4

L
U

/1
2

8

L
U

/2
5

6

O
ce

a
n

/8

O
ce

a
n

/1
6

O
ce

a
n

/3
2

O
ce

a
n

/6
4

O
ce

a
n

/1
2
8

O
ce

a
n

/2
5
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4

2
 8

0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 . 1

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

D a t a b u s

A d d r e s s b u s

B
a
rn

e
s
/1

6

T
ra

ff
ic

 (
b
y
te

s
/i
n

s
tr

u
c
ti
o

n
s
)

B
a
rn

e
s
/8

B
a
rn

e
s
/3

2

B
a
rn

e
s
/6

4

B
a
rn

e
s
/1

2
8

B
a
rn

e
s
/2

5
6

R
a
d
io

s
it
y
/8

R
a
d
io

s
it
y
/1

6

R
a
d
io

s
it
y
/3

2

R
a
d
io

s
it
y
/6

4

R
a
d
io

s
it
y
/1

2
8

R
a
d
io

s
it
y
/2

5
6

R
a
y
tr

a
c
e
/8

R
a
y
tr

a
c
e

/1
6

R
a
y
tr

a
c
e
/3

2

R
a
y
tr

a
c
e
/6

4

R
a
y
tr

a
c
e
/1

2
8

R
a
y
tr

a
c
e
/2

5
6

pag 326

55

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Making Large Blocks More Effective

Principal problema: false sharing

Software approach

• Improve spatial locality by better data structuring (more later): (evitar
interleaving)

• Compiler techniques

Hardware approach

• Retain granularity of transfer but reduce granularity of coherence

– use subblocks: same tag but different state bits

– one subblock may be valid but another invalid or dirty

• Reduce both granularities, but prefetch more blocks on a miss (em caso
de miss, carregar mais de um bloco)

• Proposals for adjustable cache size (mas, controle complexo)

• More subtle: delay propagation of invalidations and perform all at once

– But can change consistency model: discuss later in course

• Use update instead of invalidate protocols to reduce false sharing effect
pag 328

56

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.4.5 Update versus Invalidate
Much debate over the years: tradeoff depends on sharing patterns

Intuition:

• If those that used continue to use, and writes between use are few,
update should do better

– e.g. producer-consumer pattern

• If those that use unlikely to use again, or many writes between reads,
updates not good

– “pack rat” (rato trocador) phenomenon particularly bad under process
migration

– useless updates where only last one will be used

Can construct scenarios where one or other is much better

• ruim para multiprogr.: o OS muda o programa de processador para
processador (cache ficará com dados de outro programa)

Can combine them in hybrid schemes (see text)

• E.g. competitive: observe patterns at runtime and change protocol

Let’s look at real workloads (ver expl 5.12, pag 330)
pag 329

57

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Update vs Invalidate: Miss Rates

• Mixed: melhor dos dois mundos (escolha dinâmica, ver pag. 331)

• Lots of coherence misses: updates help

• Lots of capacity misses: updates hurt (keep data in cache uselessly)

• Updates (overall) seem to help, but this ignores upgrade and update traffic

M
is

s
ra

te
 (

%
)

M
is

s
ra

te
 (

%
)

L
U

/in
v

L
U

/u
p
d

O
ce

a
n
/in

v

O
ce

a
n
/m

ix

O
ce

a
n
/u

p
d

R
a
yt

ra
ce

/in
v

R
a
yt

ra
ce

/u
p
d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
a
d
ix

/in
v

R
a
d
ix

/m
ix

R
a
d
ix

/u
p
d

0.00

0.50

1.00

1.50

2.00

2.50

pag 332

58

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Upgrade and Update Rates (Traffic)

• Update traffic is substantial

• Main cause is multiple
writes by a processor
before a read by other

– many bus transactions
versus one in invalidation
case

– could delay updates or use
merging

• Overall, trend is away
from update based
protocols as default

– bandwidth, complexity,
large blocks trend, pack rat
for process migration

• Will see later that updates
have greater problems for
scalable systems

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0
.0

0

0
.5

0

1
.0

0

1
.5

0

2
.0

0

2
.5

0

Radix/inv

Radix/mix

Radix/upd

0
.0

0

1
.0

0

2
.0

0

3
.0

0

4
.0

0

5
.0

0

6
.0

0

7
.0

0

8
.0

0

pag 333

59

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5 Synchronization

“A parallel computer is a collection of processing elements that
cooperate and communicate to solve large problems fast.”

Types of Synchronization

• Mutual Exclusion

• Event synchronization

– point-to-point

– group

– global (barriers)

pag 334

60

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

History and Perspectives

Much debate over hardware primitives over the years

Conclusions depend on technology and machine style

• speed vs flexibility

Most modern methods use a form of atomic read-modify-write

• IBM 370: included atomic compare&swap for multiprogramming

• x86: any instruction can be prefixed with a lock modifier

• High-level language advocates want hardware locks/barriers

– but it’s goes against the “RISC” flow,and has other problems

• SPARC: atomic register-memory ops (swap, compare&swap)

• MIPS, IBM Power: no atomic operations but pair of instructions

– load-locked, store-conditional

– later used by PowerPC and DEC Alpha too

Rich set of tradeoffs

pag 334

61

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5.1 Components of a Synchronization

Event
Três componentes principais em um evento de sincronização:

• Acquire method

– Acquire right to the synch (enter critical section, go past event)

• Waiting algorithm

– Wait for synch to become available when it isn’t

• Release method

– Enable other processors to acquire right to the synch

• Waiting algorithm is independent of type of synchronization

pag 335

62

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Waiting Algorithms

Blocking

• Waiting processes are descheduled (pelo OS)

• High overhead (envolve o OS para acordar o processo)

• Allows processor to do other things

Busy-waiting

• Waiting processes repeatedly test a location until it changes value

• Releasing process sets the location

• Lower overhead, but consumes processor resources

• Can cause network traffic

Busy-waiting better when

• Scheduling overhead is larger than expected wait time

• Processor resources are not needed for other tasks

• Scheduler-based blocking is inappropriate (e.g. in OS kernel)

Hybrid methods: busy-wait a while, then block

pag 335

63

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5.2 Role of System and User

User wants to use high-level synchronization operations

• Locks, barriers...

• Doesn’t care about implementation

System designer: how much hardware support in implementation?

• Speed versus cost and flexibility

• Waiting algorithm difficult in hardware, so provide support for others

Popular trend:

• System provides simple hardware primitives (atomic operations)

• Software libraries implement lock, barrier algorithms using these

• But some propose and implement full-hardware synchronization

pag 336

64

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Challenges

Same synchronization may have different needs at different times
(por exemplo:)

• Lock accessed with low (poucos processadores buscando o lock) or
high contention (muitos processadores….)

• Different performance requirements: low latency (primeiro caso) or
high throughput (segundo caso)

• Different algorithms best for each case, and need different primitives

Multiprogramming can change synchronization behavior and needs

• Process scheduling and other resource interactions

• May need more sophisticated algorithms, not so good in dedicated case

Rich area of software-hardware interactions

• Which primitives available affects what algorithms can be used

• Which algorithms are effective affects what primitives to provide

Need to evaluate using workloads

pag 336

65

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5.3 Mutual Exclusion: Hardware Locks

Separate lock lines on the bus: holder of a lock asserts the line

• Priority mechanism for multiple requestors

Inflexible, so not popular for general purpose use

– few locks can be in use at a time (one per lock line)

– hardwired waiting algorithm (normalmente busy-wait seguido de abort
depois de time-out)

Primarily used to provide atomicity for higher-level software locks

Implementação no Cray XMP: Lock registers

 Set of registers shared among processors

pag 337

66

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

First Attempt at Simple Software Lock

lock: ld register, location /* register <- location */

 cmp register, #0 /* compare with 0 */

 bnz lock /* if not 0, try again */

 st location, #1 /* store 1 to mark it locked */

 ret /* return control to caller */

and

unlock: st location, #0 /* write 0 to location */

 ret /* return control to caller */

Problem: lock needs atomicity in its own implementation

• O que acontece se dois processos iniciam “lock” ao mesmo tempo?

• Read (test) and write (set) of lock variable by a process not atomic

Solution: atomic read-modify-write or exchange instructions

• atomically test value of location and set it to another value, return success
or failure somehow

 pag 338

67

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Atomic Exchange Instruction

Specifies a location and register. In atomic operation:

• Value in location read into a register

• Another value (function of value read or not) stored into location

Many variants

• Varying degrees of flexibility in second part

Simple example: test&set

• Value in location read into a specified register

• Constant 1 stored into location

• Successful if value loaded into register is 0

• Se for 1, significa insucesso (lock ocupado) e valor escrito na posição
de memória é o mesmo que já estava lá  não precisa desfazer

• Other constants could be used instead of 1 and 0

Can be used to build locks

pag 339

68

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Simple Test&Set Lock

lock: t&s register, location

 bnz lock /* if not 0, try again */

 ret /* return control to caller */

unlock: st location, #0 /* write 0 to location */

 ret /* return control to caller */

Other read-modify-write primitives can be used too

• Swap (troca register <-> location, em vez de escrever const “1”)

• Fetch&op (exemplos: fetch & increment, ou decrement)

• Compare&swap

– Three operands: location, register to compare with, register to swap with

– Not commonly supported by RISC instruction sets

Can be cacheable or uncacheable (we assume cacheable)

pag 339

69

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

T&S Lock Microbenchmark Performance

On SGI Challenge. Code: lock; critical section (delay(c)); unlock;

Same total no. of lock calls as p increases; measure time per lock transfer

s

s

s

s

s

s

s

s

s

s

s

s

s
s

s

s

l

l

l

l
l

l

l

l

l
l

l

l

l
l

l

l

n
n n n

n

n

n

n

n

n
n

n

n
n

n

n

u
u u u u u u u u u u u u u u u

Number of processors

T
 im

e
 (

 s
)

11 13 15
0

2

4

6

8

10

12

14

16

18

20

s T est&set, c = 0

l T est&set, exponential backof f, c = 3.64

n T est&set, exponential backof f, c = 0

u Ideal

9 7 5 3

• tempo por par lock

/ unlock, excluindo

a seção crítica

• formato irregular

curva de cima =

dependência de

tempo e contenção

• Performance

degrades because

unsuccessful

test&sets generate

traffic (sempre há

operação de

escrita na variável

lock na cache na

fase de espera)

pag 341

70

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Enhancements to Simple Lock Algorithm

Reduce frequency of issuing test&sets while waiting

• Test&set lock with backoff (tempo de espera até a próxima tentativa)

• Don’t back off too much or will be backed off when lock becomes free

• Exponential backoff works quite well empirically: ith time = k1*k2
i

• (ver figura anterior com o backoff)

Busy-wait with read operations rather than test&set

• Test-and-test&set lock

• Keep testing with ordinary load

– cached lock variable will be invalidated when release occurs

• When value changes (to 0), try to obtain lock with test&set

– only one attemptor will succeed; others will fail and start testing again

pag 342

71

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Performance Criteria (T&S Lock)
(ver notas sobre objetivos)

Uncontended

• Very low if repeatedly accessed by same processor; indept. of p

Traffic

• Lots if many processors compete; poor scaling with p

• Each t&s generates invalidations, and all rush out again to t&s

Storage

• Very small (single variable); independent of p

Fairness

• Poor, can cause starvation

Test&set with backoff similar, but less traffic

Test-and-test&set: slightly higher latency, much less traffic

But still all rush out to read miss and test&set on release

• Traffic for p processors to access once each: O(p2)

Luckily, better hardware primitives as well as algorithms exist
pag 343

72

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Improved Hardware Primitives: LL-SC

Goals:

• Test with reads

• Failed read-modify-write attempts don’t generate invalidations

• Nice if single primitive can implement range of r-m-w operations

Load-Locked (or -linked), Store-Conditional

LL reads variable into register

Follow with arbitrary instructions to manipulate its value

SC tries to store back to location if and only if no one else has
written to the variable since this processor’s LL

• If SC succeeds, means all three steps happened atomically

• If fails, doesn’t write or generate invalidations (need to retry LL)

• Success indicated by condition codes; implementation later

pag 344

73

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Simple Lock with LL-SC

lock: ll reg1, location /* LL location to reg1 */

 bnz reg1, lock /* se locked, try again */

 sc location, reg2 /* SC reg2 into location*/

 beqz reg2, lock /* if failed, start again */

 ret

unlock: st location, #0 /* write 0 to location */

 ret

Can do more fancy atomic ops by changing what’s between LL & SC

• But keep it small so SC likely to succeed

• Don’t include instructions that would need to be undone (e.g. stores)

SC can fail (without putting transaction on bus) if:

• Detects intervening write even before trying to get bus

• Tries to get bus but another processor’s SC gets bus first

LL, SC are not lock, unlock respectively

• Only guarantee no conflicting write to lock variable between them

• But can use directly to implement simple operations on shared variables

pag 345

74

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

More Efficient SW Locking Algorithms
Problem with Simple LL-SC lock

• No invals on failure, but read misses by all waiters after both release
and successful SC by winner

• No test-and-test&set analog, but can use backoff to reduce burstiness

• Doesn’t reduce traffic to minimum, and not a fair lock (there are no
read-modify-write bus transactions, but traffic still increases linearly
with the number of processors (i.e., O(p) bus transactions per lock
acquisition)

• Better SW algorithms for bus (for r-m-w instructions or LL-SC)

• Only one process to try to get lock upon release

– valuable when using test&set instructions; LL-SC does it already

• Only one process to have read miss upon release

– valuable with LL-SC too

• Ticket lock achieves first

• Array-based queueing lock achieves both

• Both are fair (FIFO) locks as well pag 346

75

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Ticket Lock

Only one r-m-w (from only one processor) per acquire

Works like waiting line at deli or bank (retirar senha)

• Two counters per lock (next_ticket, now_serving)

• Acquire: fetch&inc next_ticket; wait for now_serving to equal it
– atomic op when arrive at lock, not when it’s free (so less contention)

• Release: increment now-serving

• FIFO order, low latency for low-contention if fetch&inc cacheable

• Still O(p) read misses at release, since all spin on same variable

– like simple LL-SC lock, but no inval when SC succeeds, and fair

• Can be difficult to find a good amount to delay on backoff (para
evitar múltiplos read misses no instante do release)

– exponential backoff not a good idea due to FIFO order

– backoff proportional to now-serving - next-ticket may work well

Wouldn’t it be nice to poll different locations ...

pag 347

76

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Array-based Queuing Locks

Waiting processes poll on different locations in an array of size p

• Acquire

– fetch&inc to obtain address on which to spin (next array element) (com
wraparound)

– ensure that these addresses are in different cache lines or memories

• Release

– set next location in array, thus waking up process spinning on it (somente
acorda um processo)

• O(1) traffic per acquire with coherent caches

• FIFO ordering, as in ticket lock

• But, O(p) space per lock

• Good performance for bus-based machines

• Not so great for non-cache-coherent machines with distributed memory

– array location I spin on not necessarily in my local memory (solution later)

pag 347

77

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Lock Performance on SGI Challenge

• Simple LL-SC lock does best at small p due to unfairness

– Not so with delay between unlock and next lock

– Need to be careful with backoff

• Ticket lock with proportional backoff scales well, as does array lock

• Methodologically challenging, and need to look at real workloads

Loop: lock; delay(c); unlock; delay(d); lock

l A r r a y - b a s e d

6 L L - S C

n L L - S C , e x p o n e n t i a l

u T i c k e t

s T i c k e t , p r o p o r t i o n a l

l

l

l l
l l l

l l
l
l
l
l
l l

6
6
6
6
6 6 6

6 6 6
6

6

6

6

6

n n n n n n n n n
n
n
n
n
n n

u

u
u

u
u
u
u
u
u

u u
u u

u
u

s
s

s

s s
s
s s

s
s s s

s
s s

0

1

1

3 5 7 9

1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5 1 3 5 7 9 1 1 1 3 1 5

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

l

l

l l
l l l

l

l
l
l

l
l
l
l

6

6 6 6
6 6 6 6 6

6
6

6
6

6
6

n
n n

n n n n n n n n n n n n

u

u
u u

u

u
u
u
u

u
u u u

u
u

s

s s
s
s
s
s s s

s
s s

s
s
s

l

l

l l
l l

l
l

l
l
l

l
l
l
l

6

6

6 6 6
6
6 6 6

6 6

6
6

6

6

n

n
n
n n n n n n n n n n n

n

u

u
u
u u

u
u
u

u
u
u u

u
u u

s

s
s s

s

s

s
s s

s
s
s s

s
s

(a) Null (c = 0, d = 0) (b) Critical-section (c = 3.64 s, d = 0) (c) Delay (c = 3.64 s, d = 1.29 s)

T
im

e
 (

s
)

T
im

e
 (

s
)

T
im

e
 (

s
)

Number of processors Number of processors Number of processors

pag 349

78

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5.4 Point to Point Event Synchronization

Software methods (ver exemplos no texto, para HW e SW):

• Interrupts

• Busy-waiting: use ordinary variables as flags

• Blocking: use semaphores (como em sistemas operacionais)

Full hardware support: full-empty bit with each word in memory

• Set when word is “full” with newly produced data (i.e. when written)

• Unset when word is “empty” due to being consumed (i.e. when read)

• Natural for word-level producer-consumer synchronization
– producer: write if empty, set to full; consumer: read if full; set to empty

• Hardware preserves atomicity of bit manipulation with read or write

• Problem: flexiblity
– multiple consumers, or multiple writes before consumer reads?

– needs language support to specify when to use

– composite data structures?

• Essa solução de HW não teve sucesso em máquinas comerciais

pag 352

79

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5.5 Barriers (Global event)
Software algorithms implemented using locks, flags, counters

Hardware barriers ()

• Wired-AND line separate from address/data bus (não impacta
tráfego e contenção no barramento)

• Set input high when arrive to barrier, wait for output to be high to
proceed

• In practice, multiple wires to allow reuse

• Useful when barriers are global and very frequent (por ex: loops
internos paralelizados entre processadores; sincronização frequente)

• Difficult to support arbitrary subset of processors

– even harder with multiple processes per processor

• Difficult to dynamically change number and identity of participants

– e.g. latter due to process migration

• Not common today on bus-based machines

Let’s look at software algorithms with simple hardware primitives

 pag 358

80

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

A Simple Centralized Barrier

Shared counter maintains number of processes that have arrived (à barreira); todos

devem prosseguir só quando todos chegarem; single counter, lock, flag

• increment when arrive (lock), check until reaches numprocs (p)

struct bar_type {int counter; struct lock_type lock; int

flag = 0;} bar_name;

BARRIER (bar_name, p) {

 LOCK(bar_name.lock); /* incr. counter mut. exclus.

 if (bar_name.counter == 0)

 bar_name.flag = 0; /* reset flag if first to reach*/

 mycount = bar_name.counter++; /* mycount is private */

 UNLOCK(bar_name.lock);

 if (mycount == p) { /* last to arrive */

 bar_name.counter = 0; /* reset for next barrier */

 bar_name.flag = 1; /* release waiters */

 }

 else while (bar_name.flag == 0) {}; /* busy wait for release */

}

• Problem?
pag 354

81

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

A Working Centralized Barrier
Consecutively entering the same barrier doesn’t work

• Must prevent process from entering until all have left previous instance (processo
atrasado (por ex pelo OS) pode ficar preso na 1a barreira); é retirado (esperou demais)
pelo OS (swapped), quando volta vê o flag em 0 sinalizando espera na barreira, mas já é
a barreira seguinte; deadlock na primeira barreira

• Could use another counter, but increases latency and contention

Sense reversal: wait for flag to take different value consecutive times

• Toggle this value only when all processes reach

• Valor do flag para “liberado” é alternado de 0 para 1 para 0 ……

BARRIER (bar_name, p) {

 local_sense = !(local_sense); /* toggle private sense variable */

 /*(não mais reseta o flag)*/

 LOCK(bar_name.lock);

 mycount = bar_name.counter++; /* mycount is private */

 if (bar_name.counter == p)

 UNLOCK(bar_name.lock);

 bar_name.flag = local_sense; /* release waiters*/

 else

 { UNLOCK(bar_name.lock);

 while (bar_name.flag != local_sense) {}; }

}
pag 355

82

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Centralized Barrier Performance

Latency

• Want short critical path in barrier

• Centralized has critical path length at least proportional to p

Traffic

• Barriers likely to be highly contended, so want traffic to scale well

• About 3p bus transactions in centralized

Storage Cost

• Very low: centralized counter and flag

Fairness

• Same processor should not always be last to exit barrier

• No such bias in centralized

Key problems for centralized barrier are latency and traffic

• Especially with distributed memory, traffic goes to same node

pag 356

83

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Improved Barrier Algorithms for a Bus

• Separate arrival and exit trees, and use sense reversal

• Valuable in distributed network: communicate along different paths
(caminhos físicos separados)

• On bus, all traffic goes on same bus, and no less total traffic
(barramento único)

• Higher latency (log p steps of work, and O(p) serialized bus xactions)

• Advantage on bus is use of ordinary reads/writes instead of locks

Software combining tree

•Only k processors access the same location, where k is degree of tree

Flat
Tree structured

Contention Little contention

pag 356

84

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Barrier Performance on SGI Challenge

• Centralized does quite well

– Will discuss fancier barrier algorithms for distributed machines

• Helpful hardware support: piggybacking of reads misses on bus
(processador monitora barramento; se vê um read miss que é o mesmo
que ele emitiria, não faz nada  menos tráfego no barramento)

– Also for spinning on highly contended locks

Number of processors

T
 im

e
 (

 s
)

l

l

l

l

l

l

l

l

u

u

u

u

u
u

u

u

s

s

s

s
s

s s
s

n

n

n

n

n
n

n

n

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35
l Centralized

u Combining tree

s T ournament

n Dissemination

pag 357

85

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.5.6 Synchronization Summary

Rich interaction of hardware-software tradeoffs

Must evaluate hardware primitives and software algorithms together

• primitives determine which algorithms perform well

Evaluation methodology is challenging

• Use of delays, microbenchmarks

• Should use both microbenchmarks and real workloads

Simple software algorithms with common hardware primitives do
well on bus

• Will see more sophisticated techniques for distributed machines

• Hardware support still subject of debate

Theoretical research argues for swap or compare&swap, not fetch&op

• Algorithms that ensure constant-time access, but complex

A flexibilidade de LL-SC tem tornado popular essa alternativa

pag 358

86

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5.6 Implications for Parallel Software

Looked at how software affects architecture; now do reverse

Load balance, inherent comm. and extra work issues same as before

• Also, assign so that (somente) one processor writes a set of data, at least
in a phase

• e.g. in graphics, usually partition image rather than scene

• situação comum e desejável (evitar write sharing): todos os processos
lêem de um conjunto de dados, mas escrevem em áreas separadas

– write sharing: tráfego por invalidate; e também provável proteção por
sincronização (locks, barriers)  atrasos adicionais

Structure of communication and mapping are not major issues

Key is temporal and spatial locality in orchestration step

• Reduce misses and hence both latency and traffic

• Temporal locality: keep working sets tight enough to fit in cache

• Spatial locality: reduce fragmentation and false sharing

pag 359

87

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Capacity-generated traffic
(including conflicts)

B
u

s
 t

ra
f f
ic

True sharing (inherent communication)

Cold-start (compulsory) traffic

Cache size

False sharing

Second working set

First working set

Temporal Locality
Main memory centralized, so exploit in processor caches

Specialization of general working set curve for buses

Objetivo: trabalhar com working sets que caibam na hierarquia de
cache (neste exemplo, L1 e L2)

•Techniques same as discussed earlier for general case

idem Fig 3.6,

seção 3.2.3, p140

esses 3 tipos de miss

geram tráfego mesmo

com cache infinita

pag 359

88

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Bag of Tricks for Spatial Locality

Assign tasks to reduce spatial interleaving of accesses from procs

• Contiguous rather than interleaved assignment of array elements

Structure data to reduce spatial interleaving of accesses from procs

• Higher-dimensional arrays to keep partitions contiguous

• Reduce false sharing and fragmentation as well as conflict misses

C o n t i g u i t y i n m e m o r y l a y o u t C a c h e b l o c k
s t r a d d l e s p a r t i t i o n

C a c h e b l o c k i s

w i t h i n a p a r t i tion
b o u n d a r y

(a) T w o - d i m e n s i o n a l a r r a y (b) F o u r - d i m e n s i o n a l a r r a y

P 1 P 0
P 2 P 3

P 5 P 6 P 7 P 4

P 8

P 2 P 3

P 5 P 6 P 7 P 4

P 8

P 0 P 1

pag 360

89

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Conflict Misses in a 2-D Array Grid

• Consecutive subrows of partition are not contiguous

• Especially problematic when both array and cache size is power of 2

C a c h e

e n t r i e s

P 1 P 0 P 2 P 3

P 5 P 6 P 7 P 4

P 8

Locations in subrows
and

Map to the same entries

(indices) in the same cache.

The rest of the processor’s

cache entries are not mapped

to by locations in its partition

(but would have been mapped

to by subrows

in other processor’s partitions)

and are thus wasted.

pior caso: mapeamento direto, e linha da

matriz de dados = tamanho da cache

pag 362

90

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Performance Impact

• Impact of false sharing and conflict misses with 2D arrays clear

Performance on 16-processor SGI Challenge (tráfego em função

do tamanho do bloco da cache  64, 128, 256 bytes)
A

p
p
l-
C

o
d
e
/6

4

T
ra

ff
ic

 (
b
y

te
s
/in

s
tr

u
c
tio

n
)

A
p
p
l-
C

o
d
e
/1

2
8

A
p
p
l-
C

o
d
e
/2

5
6

A
p
p
l-
D

a
ta

/6
4

A
p
p
l-
D

a
ta

/1
2
8

A
p
p
l-
D

a
ta

/2
5
6

O
S

-C
o

d
e
/6

4

O
S

-C
o

d
e
/1

2
8

O
S

-C
o

d
e
/2

5
6

O
S

-D
a

ta
/6

4

O
S

-D
a

ta
/1

2
8

O
S

-D
a

ta
/2

5
6

0

0.1

0.2

0.3

0.4

0.5

0.6

Data bus

Address bus

Figura anterior no livro mas

não apresentada nas

transparências (fig 5.25)

91

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Bag of Tricks (contd.)

Beware conflict misses more generally

• Allocate non-power-of-2 even if application needs power-of-2

• Conflict misses across data structures: ad-hoc padding/alignment

• Conflict misses on small, seemingly harmless data

Use per-processor heaps for dynamic memory allocation

Copy data to increase locality

• If noncontiguous data are to be reused a lot, e.g. blocks in 2D-array LU

• Must trade off against cost of copying

Pad (preencher com vazios) and align arrays: can have false sharing v.
fragmentation tradeoff

Organize arrays of records for spatial locality (ver fig 5.36)

• E.g. particles with fields: organize by particle or by field

• In vector programs by field for unit-stride, in parallel often by particle

• Phases of program may have different access patterns and needs

These issues can have greater impact than inherent communication

• Can cause us to revisit assignment decisions (e.g. strip v. block in grid)
pag 364

92

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Concluding Remarks

SMPs are natural extension of uniprocessors, increasingly popular

• Graceful path for parallelization

• Fine-grained sharing for multiprogramming and OS

Key technical challenge is design of extended memory hierarchy

• Many tradeoffs in bus and protocol design even at logical level

Should continue to be important

• Attractive cost-performance

• Microprocessors are multiprocessor-ready, so no time-lag

• Software technology maturing

• Attractive as nodes for larger parallel machine (cost amortization)

• Multiprocessor on a chip

Real action is at the next level of protocol and implementation

pag 366

93

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Shared Cache: Examples

Alliant FX-8

• Eight 68020s with crossbar to 512K interleaved cache

• Focus on bandwidth to shared cache and memory

Encore, Sequent

• Two processors (N32032) to a board with shared cache

• Cache-coherent bus across boards

• Amortize hardware overhead of coherence; slow processors

As transistors per chip increase, shared-cache on a chip?

94

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Shared Cache Advantages

No need for coherence!

• Only one copy of any cached block

Fine-grained sharing

• Communication latency determined by where in hierarchy paths meet

• 2-10 cycles; as opposed to 20-150 cycles at shared memory

Processors prefetch data for one another

No false-sharing (ping-ponging)

Smaller total cache requirements

• Overlapping working sets

95

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Shared Cache Disadvantages

Very high cache bandwidth requirements

Increased latency for all accesses (incl. hits!)

• Crossbar interconnect latency

• Large cache

• L1 cache hit time important determinant of processor cycle time!

Contention at cache

Negative interference (conflict or capacity)

Not currently supported by commodity microprocessors

96

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

List-based Queuing Locks

List-based locks

• build linked-lists per lock in SW

• acquire

– allocate (local) list element and enqueue on list

– spin on flag field of that list element

• release

– set flag of next element on list

• use compare&swap to manage lists

– swap is sufficient, but lose FIFO property

– FIFO

– spin locally (cache-coherent or not)

– O(1) network transactions even without consistent caches

– O(1) space per lock

– but, compare&swap difficult to implement in hardware

97

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Recent Areas of Investigation

Multi-protocol Synchronization Algorithms

• Reactive algorithms

• Adaptive waiting mechanisms

• Wait-free algorithms

Integration with OS scheduling

Multithreading

• what do you do while you wait?

– could be much longer than a memory access

98

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Implementing Atomic Ops with Caching

One possibility: Load Linked / Store Conditional (LL/SC)

• Load Linked loads the lock and sets a bit

• When “atomic” operation is done, Store Conditional succeeds only if
bit was not reset in interim

• Doesn’t need diff instructions with diff nos. of arguments

• Good for bus-based machine: SC result delivered by bus

• More complex for directory-based machine:

– wait for SC to go to directory and get ownership (long latency)

– have LL load in exclusive mode, so SC succeeds immediately if still in
exclusive mode

99

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Bottom Line for Locks

Lots of options

SW algorithms can do well given simple HW primitives
(fetch&op)

• LL/SC works well if there is locality of synch access

• Otherwise, in-memory fetch&ops are good for high contention

100

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Optimal Broadcast

Optimal single item broadcast is an unbalanced tree

 – shape determined by relative values of L, o, and g.

0

10 14 18 22

20 24 24

P0

P1 P2 P3 P5

P7 P6 P4

P0

P1

P2

P3

P4

P5

P6

P7

0 5 10 20 15 Time

o o o o

g

o

o

o

o

o

o o

o

o

o

g g

g

L

L
L

L

L

L

L

L=6, o=2, g=4, P=8

o L o

o o
g

L

time

Model: Latency, Overhead, Gap

101

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Dissemination Barrier

Goal is to allow statically allocated flags

• avoid remote spinning even without cache coherence

log p rounds of synchronization

In round k, proc i synchronizes with proc (i+2k) mod p

• can statically allocate flags to avoid remote spinning

Like a butterfly network

102

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Tournament Barrier

Like binary combining tree

But representative processor at a node chosen statically

• no fetch-and-op needed

In round k, proc i sets a flag for proc j = i - 2k (mod 2k+1)

• i then drops out of tournament and j proceeds in next round

• i waits for global flag signalling completion of barrier to be set by
root

– could use combining wakeup tree

Without coherent caches and broadcast, suffers from either
traffic due to single flag or same problem as combining trees
(for wakeup)

103

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

MCS Barrier

Modifies tournament barrier to allow static allocation in wakeup tree,
and to use sense reversal

Every processor is a node in two p-node trees

• has pointers to its parent, building a fanin-4 arrival tree

• has pointers to its children to build a fanout-2 wakeup tree

 + spins on local flag variables

 + requires O(P) space for P processors

 + theoretical minimum no. of network transactions (2P -2)

 + O(log P) network transactions on critical path

104

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Recent Directions

Adaptive tree barriers

• late arrivals should be close to the root

Pipelined Scan Operations

Hardware Support ?

105

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Space Requirements

Centralized: constant

MCS, combining tree: O(p)

Dissemination, Tournament: O(p log p)

106

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Network Transactions

Centralized, combining tree: O(p) if broadcast
 and coherent caches;

 unbounded otherwise

Dissemination: O(p log p)

Tournament, MCS: O(p)

107

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Critical Path Length

If independent parallel network paths available:

• all are O(log P) except centralized, which is O(P)

If not (e.g. shared bus):

• linear terms dominate

108

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Categorias de hierarquia de memória

Scalability
Cache

Latency

Mem.

Latency
Symmetric

Shared

Cache
- - + +

Bus Based (*) - + + +

Dance Hall + + - +

Distributed

Memory (**)
+ + + -

 (*) Comum em multiprocessadores de pequena escala

(**) Comum em multiprocessadores de larga escala

109

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Expl 5.2: coerência de cache na fig. 5.3 com

protocolo write-through e write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

1

2

34 5

u = ?u = ?

u:5

u:5

u:5

u = 7

1. P1 lê Mem(u); $1

2. P3 lê Mem(u); $3

3. P3 Wr 7 -> $3(u) e Mem(u); write through; controlador de $3 gera bus
transaction -> controlador de $1 invalida $1(u)

4. P1 lê $1 -> miss -> lê valor atualizado da memória

5. P2 lê $2 -> miss -> lê valor atualizado da memória

110

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

Objetivos de um algoritmo de locking

Objetivos de desempenho

• Baixa latência: se o lock está livre e só um processador
busca, deveria obtê-lo com a menor latência

• Baixo tráfego: se muitos processadores buscam ao mesmo
tempo, eles deveriam conseguir o lock um depois do outro
com o mínimo tráfego gerado ou transações de barramento.

• Escalabilidade: nem latência nem tráfego deveria escalar
rapidamente com o N. de processadores (na faixa razoável
de p, no caso de bus-based SMP)

• Custo baixo de armazenamento: informações necessárias
para o lock devem ocupar pouco espaço (e não escalar
rapidamente com p)

• Fairness: idealmente, obter o lock na mesma ordem em que
foi solicitado; pelo menos evitar starvation.

