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Introduction 

What is Parallel Architecture? 

Why Parallel Architecture? 

Evolution and Convergence of Parallel Architectures 

Fundamental Design Issues 
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What is Parallel Architecture? 

A parallel computer is a collection of processing elements 
that cooperate  to solve large problems fast 

Some broad issues: 

• Resource Allocation: 

– how large a collection?  

– how powerful are the elements? 

– how much memory? 

• Data access, Communication and Synchronization 

– how do the elements  cooperate and communicate? 

– how are  data transmitted between processors? 

– what are the abstractions and primitives for cooperation? 

• Performance and Scalability 

– how does it all translate into performance? 

– how does it scale? (satura o crescimento ou não) 
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1.1 Why Study Parallel Architecture? 

Role of a computer architect:   

To design and engineer the various levels of a computer system 
to maximize performance and programmability within limits of 
technology and cost. 

Parallelism: 

• Provides alternative to faster clock for performance (limitações de 
tecnologia) 

• Applies at all levels of system design (ênfase do livro: pipeline, 
cache, comunicação, sincronização) 

• Is a fascinating perspective from which to view architecture 

• Is increasingly central in information processing 
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Why Study it Today? 
 
History: diverse and innovative organizational structures, often 

tied to novel programming models 

Rapidly maturing under strong technological constraints 

• The “killer micro” is ubiquitous 

• Laptops and supercomputers are fundamentally similar! 

• Technological trends cause diverse approaches to converge 

Technological trends make parallel computing inevitable 

• In the mainstream 

Need to understand fundamental principles and design tradeoffs, 
not just taxonomies 

• Naming, Ordering, Replication (de dados), Communication 
performance 
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Inevitability of Parallel Computing 

Application demands:  Our insatiable need for computing cycles 
• Scientific computing: CFD (Computational Fluid Dynamics), Biology, 

Chemistry, Physics, ... 

• General-purpose computing: Video, Graphics, CAD, Databases, TP... 

Technology Trends 
• Number of transistors on chip growing rapidly 

• Clock rates expected to go up only slowly 

Architecture Trends 
• Instruction-level parallelism valuable but limited 

• Coarser-level parallelism, as in MPs, the most viable approach 

Economics 

Current trends: 
• Today’s microprocessors have multiprocessor support 

• Servers and workstations becoming MP: Sun, SGI, DEC, COMPAQ!... 

• Tomorrow’s microprocessors are multiprocessors (hoje multicore) 
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1.1.1 Application Trends 

Demand for cycles fuels advances in hardware, and vice-versa 

• Cycle drives exponential increase in microprocessor performance 

• Drives parallel architecture harder: most demanding applications 

Range of performance demands 

• Need range of system performance with progressively increasing cost 

• Platform pyramid  

Goal of applications in using parallel machines: Speedup 

     Speedup (p processors) = 

For a fixed problem size (input data set), performance = 1/time 

     Speedup fixed problem (p processors) =   

Performance (p processors) 

Performance (1 processor) 

Time (1 processor) 

Time (p processors) 
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Scientific Computing Demand 

Fig 1.2, pag 7: dados de 1993 
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Engineering Computing Demand 

Large parallel machines a mainstay in many industries 

• Petroleum (reservoir analysis) 

• Automotive (crash simulation, drag analysis, combustion efficiency),  

• Aeronautics (airflow analysis, engine efficiency, structural mechanics, 
electromagnetism),  

• Computer-aided design 

• Pharmaceuticals (molecular modeling) 

• Visualization  

– in all of the above 

– entertainment (films like Toy Story, centenas de SUNs) 

– architecture (walk-throughs and rendering) 

• Financial modeling (yield and derivative analysis) 

• etc. 
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Applications: Speech and Image Processing 

1980 1985 1990 1995

1 MIPS

10 MIPS

100 MIPS

1 GIPS

Sub-Band
Speech Coding

200 Words
Isolated Speech
Recognition

Speaker
Veri¼cation

CELP
Speech Coding

ISDN-CD Stereo
Receiver

5,000 Words
Continuous
Speech
Recognition

HDTV Receiver

CIF Video

1,000 Words
Continuous
Speech
RecognitionTelephone

Number
Recognition

10 GIPS

• Also CAD, Databases, . . . 

• 100 processors (hoje) gets you 10 years, 1000 (hoje) gets you 20 ! 
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Learning Curve for Parallel Applications 

• AMBER (Assisted Model Building through Energy Refinement) molecular dynamics 

simulation program 

• Starting point was vector code for Cray-1 (equiv. à versão 8; versões 9 e 12 

incorporaram otimizações no código visando a paralelização) 

• 145 MFLOP on Cray90, 406 MFLOP for final version on 128-processor Paragon, 

891 MFLOP on 128-processor Cray T3D 

Intel 

Paragon 

128 proc 
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Commercial Computing 

Also relies  on parallelism for high end 

• Scale not so large, but use much more wide-spread 

• Computational power determines scale of business that can be handled 

Databases, online-transaction processing, decision support, data 
mining, data warehousing ... 

TPC (Transaction Processing Performance Council) benchmarks 
(TPC-C order entry, TPC-D decision support) 

• Explicit scaling criteria provided 

• Size of enterprise scales with size of system 

• Problem size no longer fixed as p increases, so throughput is used as a 
performance measure (transactions per minute or tpm) 
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TPC-C Results for March 1996 

• Parallelism is pervasive 
• Small to moderate scale parallelism very important 
• Difficult to obtain snapshot to compare across vendor 

platforms (sistemas mostrados lançados em datas diferentes) 
• Ex: Tandem é mais velho que PowerPC e DEC Alpha 
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Summary of Application Trends 

Transition to parallel computing has occurred for scientific and 
engineering computing 

In rapid progress in commercial computing 

• Database and transactions as well as financial 

• Usually smaller-scale, but large-scale systems also used 

Desktop also uses multithreaded programs, which are a lot like 
parallel programs 

Demand for improving throughput on sequential workloads 

• Greatest use of small-scale multiprocessors 

Solid application demand exists and will increase 
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1.1.2 Technology Trends 

The natural building block for multiprocessors is now also about the fastest! 

P
e
rf

o
rm

a
n
ce

0.1

1
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100

1965 1970 1975 1980 1985 1990 1995

Supercomputers

Minicomputers

Mainframes

Microprocessors

32bits e cache 
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General Technology Trends 

• Microprocessor performance increases 50% - 100% per year 

• Transistor count doubles every 3 years 

• DRAM size quadruples every 3 years 

• Huge investment per generation is carried by huge commodity market 

 

 

 

 

 

 

 

 

 

• Not that single-processor performance is plateauing, but that 
parallelism is a natural way to improve it. 
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Technology: A Closer Look 

Basic advance is decreasing feature size ( ) 

• Circuits become either faster or lower in power 

Die size is growing too 

• Clock rate improves roughly proportional to improvement in 

• Number of transistors improves like (or faster) 

Performance > 100x per decade; clock rate 10x, rest transistor count 

How to use more transistors? 

• Parallelism in processing 

– multiple operations per cycle reduces CPI 

• Locality in data access 

– avoids latency and reduces CPI 

– also improves processor utilization 

• Both need resources, so tradeoff 

Fundamental issue is resource distribution, as in uniprocessors 

Proc $ 

Interconnect 
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Clock Frequency Growth Rate 

•  30% per year 
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Transistor Count Growth Rate 

• 2012: Nvidia GK110-based 7.1 Billion Transistor 

• 2012: Itanium 9500, 3.1 Billion Transistor 

• Transistor count grows much faster than clock rate 
 - 40% per year, order of magnitude more contribution in 2 decades 
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Similar Story for Storage 

Divergence between memory capacity and speed more pronounced 

• Capacity increased by 1000x from 1980-95, speed only 2x 

• Gigabit DRAM by c. 2000, but gap with processor speed much greater 

Larger memories are slower, while processors get faster 

• Need to transfer more data in parallel 

• Need deeper cache hierarchies 

• How to organize caches? 

Parallelism increases effective size of each level of hierarchy, 
without increasing access time 

Parallelism and locality within memory systems too 

• New designs fetch many bits within memory chip; follow with fast 
pipelined transfer across narrower interface 

• Buffer caches most recently accessed data 

Disks too: Parallel disks plus caching 
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1.1.3 Architectural Trends 

Architecture translates technology’s gifts to performance and 
capability 

Resolves the tradeoff between parallelism and locality 

• Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip connect 

• Tradeoffs may change with scale and technology advances 

Understanding microprocessor architectural trends  

• Helps build intuition about design issues or parallel machines 

• Shows fundamental role of parallelism even in “sequential” computers 

Four generations of architectural history: tube, transistor, IC, VLSI 

• Here focus only on VLSI generation 

Greatest delineation in VLSI has been in type of parallelism exploited 
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Architectural Trends 

Greatest trend in VLSI generation is increase in parallelism 

• Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit 

– slows after 32 bit  

– adoption of 64-bit now under way, 128-bit far (not performance issue) 

– great inflection point when 32-bit micro and cache fit on a chip (ver fig 1.1) 

• Mid 80s to mid 90s: instruction level parallelism 

– pipelining and simple instruction sets, + compiler advances (RISC) 

– on-chip caches and functional units => superscalar execution 

– greater sophistication: out of order execution, speculation, prediction 

• to deal with control transfer and latency problems 

• Next step: thread level parallelism 
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Phases in VLSI Generation 

• How good is instruction-level parallelism?  

• Thread-level needed in microprocessors? 
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Architectural Trends: ILP 

• Reported speedups for superscalar processors 

• Horst, Harris, and Jardine [1990] ...................... 1.37 

• Wang and Wu [1988] .......................................... 1.70 

• Smith, Johnson, and Horowitz [1989] ..............  2.30 

• Murakami et al. [1989] ........................................  2.55 

• Chang et al. [1991] .............................................  2.90 

• Jouppi and Wall [1989] ......................................  3.20 

• Lee, Kwok, and Briggs [1991] ...........................  3.50 

• Wall [1991] ..........................................................  5 

• Melvin and Patt [1991] .......................................   8 

• Butler et al. [1991] .............................................  17+ 

• Large variance due to difference in 
– application domain investigated (numerical versus non-numerical) 

– capabilities of processor modeled 
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ILP Ideal Potential 

• Infinite resources and fetch bandwidth, perfect branch prediction and renaming  

– real caches and non-zero miss latencies 

– Recursos ilimitados; única restrição é dependência de dados 
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Results of ILP Studies 

• Concentrate on parallelism for 4-issue machines 

• Realistic studies show only 2-fold speedup 
• Recent studies show that more ILP needs to look across threads 
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Architectural Trends: Bus-based MPs 

No. of processors in fully configured commercial shared-memory systems 

•Micro on a chip makes it natural to connect many to shared memory 
– dominates server and enterprise market, moving down to desktop 

•Faster processors began to saturate bus, then bus technology advanced 
– today, range of sizes for bus-based systems, desktop to large servers 





















 

 

 





















0

10

20

30

40

CRAY CS6400

SGI Challenge

Sequent B2100

Sequent B8000

Symmetry81

Symmetry21

Pow er

SS690MP 140 

SS690MP 120 

AS8400

HP K400AS2100

SS20

SE30

SS1000E

SS10

SE10

SS1000

P-Pro
SGI Pow erSeries

SE60

SE70

Sun E6000

SC2000ESun SC2000
SGI Pow erChallenge/XL

Sun

E10000

50

60

70

1984 1986 1988 1990 1992 1994 1996 1998

N
u
m

b
e

r 
o
f 
p
ro

c
e
s
s

o
rs

pag 19 



A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
 

28 

Bus Bandwidth 
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• muitos processadores já vêm com suporte para multiprocessador (Pentium Pro: 

ligar 4 processadores a um barramento único sem glue logic) 

• multiprocessamento de pequena escala tornou-se commodity 

pag 20 



A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
 

29 

Economics 

Commodity microprocessors not only fast but CHEAP 

• Development cost is tens of millions of dollars (5-100 typical) 

• BUT, many more are sold compared to supercomputers 

• Crucial to take advantage of the investment, and use the 
commodity building block 

• Exotic parallel architectures no more than special-purpose 

Multiprocessors being pushed by software vendors (e.g. database) 
as well as hardware vendors 

Standardization by Intel makes small, bus-based SMPs commodity 

Desktop: few smaller processors versus one larger one? 

• Multiprocessor on a chip 

 
 

pag 20 



A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
 

30 

1.1.4 Scientific Supercomputing 

Proving ground and driver for innovative architecture and techniques  

• Market smaller relative to commercial as MPs become mainstream 

• Dominated by vector machines starting in 70s 

• Microprocessors have made huge gains in floating-point performance 

– high clock rates  

– pipelined floating point units (e.g., multiply-add every cycle) 

– instruction-level parallelism 

– effective use of caches (e.g., automatic blocking) 

• Plus economics 

 

Large-scale multiprocessors replace vector supercomputers 

• Well under way already 
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Raw Uniprocessor Performance: LINPACK 

2 pontos: matriz 

100 x 100 e 

1000 x 1000 
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Raw Parallel Performance: LINPACK 

• Even vector Crays became parallel: X-MP (2-4) Y-MP (8), C-90 (16), T94 (32) 

• Since 1993, Cray produces MPPs (Massively Parallel Processors) too (T3D, T3E) 
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500 Fastest Computers 
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Summary: Why Parallel Architecture? 

Increasingly attractive 

• Economics, technology, architecture, application demand 

Increasingly central and mainstream 

Parallelism exploited at many levels 

• Instruction-level parallelism 

• Multiprocessor servers 

• Large-scale multiprocessors (“MPPs”) 

Focus of this class: multiprocessor level of parallelism 

Same story from memory system perspective 

• Increase bandwidth, reduce average latency with many local memories 

Wide range of parallel architectures make sense 

• Different cost, performance and scalability 



1.2 Convergence of Parallel Architectures 

pag 25 



A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
 

36 

History 

Application Software 

System 
   Software SIMD 

Message Passing 

Shared Memory 
Dataflow 

Systolic 
Arrays 

Architecture 

• Uncertainty of direction paralyzed parallel software development! 

Historically, parallel architectures tied to programming models  

• Divergent architectures, with no predictable  pattern of growth. 
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1.2.1 Today 

Extension of “computer architecture” to support communication 
and cooperation 

• OLD:  Instruction Set Architecture  

• NEW: Communication Architecture 

Defines  

• Critical abstractions, boundaries (HW/SW e user/system), and 
primitives (interfaces) 

• Organizational structures that implement interfaces (hw or sw) 

Compilers, libraries and OS are important bridges today 
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Modern Layered Framework 

CAD 

Multipr ogramming Shar ed 
addr ess 

Message 
passing 

Data 
parallel 

Database Scientific modeling Parallel applications 

Pr ogramming models 

Communication abstraction 
User/system boundary 

Compilation 
or library 

Operating systems support 

Communication har dwar e 

Physical communication medium 

Har dwar e/softwar e boundary 

• Distância entre um nível e o próximo indicam se o mapeamento é 
simples ou não 

• ex: acesso a uma variável  
• SAS: simplesmente ld ou st 
• Message passing: envolve library ou system call 
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Programming Model 

What programmer uses in coding applications 

Specifies communication and synchronization 

Examples: 

• Multiprogramming: no communication or synch. at program level 

• Shared address space: like bulletin board 

• Message passing: like letters or phone calls, explicit point to point 

• Data parallel: more regimented, global actions on data 

– Implemented with shared address space or message passing 
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Communication Abstraction 

User level communication primitives provided 

• Realizes the programming model 

• Mapping exists between language primitives of programming model 
and these primitives 

Supported directly by hw, or via OS, or via user sw 

Lot of debate about what to support in sw and gap between layers 

Today: 

• Hw/sw interface tends to be flat, i.e. complexity roughly uniform 

• Compilers and software play important roles as bridges today 

• Technology trends exert strong influence 

Result is convergence in organizational structure 

• Relatively simple, general purpose communication primitives 
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Communication Architecture 
=  User/System Interface + Implementation 

User/System Interface: 

• Comm. primitives exposed to user-level by hw and system-level sw 

Implementation: 

• Organizational structures that implement the primitives: hw or OS 

• How optimized are they? How integrated into processing node? 

• Structure of network 

Goals: 
• Performance 

• Broad applicability 
• Programmability 

• Scalability 

• Low Cost 
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Evolution of Architectural Models 
Historically machines tailored to programming models 

• Prog. model, comm. abstraction, and machine organization lumped 
together as the “architecture” 

Evolution helps understand convergence 

• Identify core concepts 

• Shared Address Space 

• Message Passing  

• Data Parallel 

Others:  

• Dataflow 

• Systolic Arrays 

Examine programming model, motivation, intended applications, and 
contributions to convergence 
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1.2.2 Shared Address Space Architectures 

Any processor can directly reference any memory location  

• Communication occurs implicitly as result of loads and stores 

Convenient:  

• Location transparency 

•  Similar programming model to time-sharing on uniprocessors 

– Except processes run on different processors 

– Good throughput on multiprogrammed workloads 

Naturally provided on wide range of platforms 

• History dates at least to precursors of mainframes in early 60s 

• Wide range of scale: few to hundreds of processors 

Popularly known as shared memory machines or model 

• Ambiguous:  memory may be physically distributed among processors 

SMP: shared memory multiprocessor 
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Shared Address Space Model 
Process: virtual address space plus one or more threads of 

control 

Portions of address spaces of processes are shared 

•Writes to shared address visible to other threads (in other processes too) 

•Natural extension of uniprocessors model: conventional memory 

operations for comm.; special atomic operations for synchronization 

•OS uses shared memory to coordinate processes 

 

S t o r e 

P 1 

P 2 

P n 

P 0 

L o a d 

P 0   p r i v a t e 

P 1   p r i v a t e 

P 2   p r i v a t e 

P n   p r i v a t e 

              
      

    

  
    

  
    

Virtual address spaces for a 

collection of processes communicating 

via shared addresses 

Machine physical address space 

Shared portion 

of address space 

Private portion 

of address space 

Common physical 

addresses 
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Communication Hardware 

Also natural extension of uniprocessor (estrutura apenas aumentada) 

Already have processor, one or more memory modules and I/O 
controllers connected by hardware interconnect of some sort 

Memory capacity increased by adding modules, I/O by controllers 

•Add processors for processing!  

•For higher-throughput multiprogramming, or parallel programs 

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices
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History 

P

P

C

C

I/O

I/O

M MM M

PP

C

I/O

M MC

I/O

$ $

“Mainframe” approach 

• Motivated by multiprogramming 

• Extends crossbar used for mem bw and I/O 

• Originally processor cost limited to small 
– later, cost of crossbar 

• Bandwidth scales with p 

• High incremental cost; use multistage instead 

“Minicomputer” approach 

• Almost all microprocessor systems have bus 

• Motivated by multiprogramming, TP 

• Used heavily for parallel computing 

• Called symmetric multiprocessor (SMP) 

• Latency larger than for uniprocessor 

• Bus is bandwidth bottleneck 

– caching is key: coherence problem 

• Low incremental cost 
(Ver fig. 1.16) pag 29 
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Example: Intel Pentium Pro Quad 

• All coherence and 
multiprocessing glue in 
processor module 

• Highly integrated, targeted at 
high volume 

• Low latency and bandwidth 

P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pr o
module

P-Pr o
module

P-Pr o
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-w ay
interleaved 

DRAM

P
C

I 
b
u
s

P
C

I 
b
u
sPCI

I/O
cards
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Example: SUN Enterprise 

• 16 cards of either type: processors (UltraSparc) + memory, or I/O 

• All memory accessed over bus, so symmetric 

• Higher bandwidth, higher latency bus 

Gigaplane bus (256 data, 41 addr ess, 83 MHz)

S
B

U
S

S
B

U
S

S
B

U
S

2
 F

ib
e
rC

h
a
n
n
e

l

1
0
0
b

T
, 
S

C
S

I

Bus interface

CPU/mem
cardsP

$2

$

P

$2

$

Mem ctrl

Bus interface/sw itch

I/O cards
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Scaling Up 

• Problem is interconnect: cost (crossbar) or bandwidth (bus) 

• Dance-hall:  bandwidth still scalable, but lower cost than crossbar 

– latencies to memory uniform, but uniformly large 

• Distributed memory or non-uniform memory access (NUMA) 

– Construct shared address space  out of simple message transactions 
across a general-purpose network (e.g. read-request, read-response) 

• Caching shared (particularly nonlocal) data? 

M M M

M M M

NetworkNetwork

P

$

P

$

P

$

P

$

P

$

P

$

“Dance hall” Distributed memory 
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Example (NUMA): Cray T3E 

• Scale up to 1024 processors (Alpha, 6 vizinhos), 480MB/s links 

• Memory controller generates comm. request for nonlocal references 

• No hardware mechanism for coherence (SGI Origin etc. provide this) 
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1.2.3 Message Passing Architectures  

Complete computer as building block, including I/O 

• Communication via explicit I/O operations (e não via operações de 
memória) 

Programming model: directly access only private address space 
(local memory), comm. via explicit messages (send/receive) 

High-level block diagram similar to distributed-memory SAS 

• But comm. integrated at IO level, needn’t be into memory system 

• Like networks of workstations (clusters), but tighter integration 
(não há monitor/teclado por nó) 

• Easier to build than scalable SAS 

Programming model more removed (mais distante) from basic 
hardware operations 

• Library or OS intervention 
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Message-Passing Abstraction 

• Send specifies  (local) buffer to be transmitted and receiving process 

• Recv specifies sending process and application storage to receive into 

• Memory to memory copy, but need to name processes 

• Optional tag on send and matching rule on receive 

• User process names local data and entities in process/tag space too 

• In simplest form, the send/recv match achieves pairwise synch event 

– Other variants too 

• Many overheads: copying, buffer management, protection 

Pr ocess  P Pr ocess  Q 

Addr ess  Y 

Addr ess  X 

Send  X, Q, t 

Receive  Y ,  P ,  t Match 

Local pr ocess 
addr ess space 

Local pr ocess 
addr ess space 
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Evolution of Message-Passing Machines 

Early machines (´85): FIFO on each 
link 

• Hw close to prog. Model; 
synchronous ops 

• Replaced by DMA, enabling non-
blocking ops 

– Buffered by system at destination 
until recv 

Diminishing role of topology 

• No início, topologia importante (só 
nomear processador vizinho) 

• Store&forward routing: topology 
important 

• Introduction of pipelined routing 
made it less so 

• Cost is in node-network interface 

• Simplifies programming 

000001

010011

100

110

101

111

Topologias típicas: 

• hipercubo 

• mesh 
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Example: IBM SP-2 

• Made out of 

essentially 

complete 

RS6000 

workstations 

• Network 

interface 

integrated in 

I/O bus (bw 

limited by I/O 

bus) 

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R

A
M

IBM SP-2 node

L2 $

Pow er 2
CPU

Memory
controller

4-w ay
interleaved

DRAM

General inter connection
netw ork formed f rom
8-port sw itches

NIC
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Example Intel Paragon 

Memory bus (64-bit, 50 MHz)

i860

L1 $

NI

DMA

i860

L1 $

Driver

Mem
ctrl

4-w ay
interleaved

DRAM

Intel
Paragon
node

8 bits,
175 MHz,
bidirectional2D grid netw ork

w ith processing node
attached to every sw itch

Sandia’s Intel Paragon XP/S-based Supercomputer
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1.2.4 Toward Architectural Convergence 
Evolution and role of software have blurred boundary (SAS x MP) 

• Send/recv supported on SAS machines via buffers 

• Can construct global address space on MP using hashing 

• Page-based (or finer-grained) shared virtual memory 

Hardware organization converging too 

• Tighter NI integration even for MP (low-latency, high-bandwidth) 

• At lower level, even hardware SAS passes hardware messages 

Even clusters of workstations/SMPs are parallel systems (the network is the 

computer 

• Emergence of fast system area networks (SAN) 

Programming models distinct, but organizations converging 

• Nodes connected by general network and communication assists 

• Implementations also converging, at least in high-end machines 
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1.2.5 Data Parallel Systems 
Outros nomes: processor array ou SIMD 

Programming model  

• Operations performed in parallel on each element of data structure (array ou 

vetor) 

• Logically single thread of control, performs sequential or parallel steps 

• Conceptually, a processor associated with each data element  

Architectural model 

• Array of many simple, cheap processors with little memory each 

– Processors don’t sequence through instructions 

• Attached to a control processor that issues instructions 

• Specialized and general communication, cheap  

global synchronization 

PE PE PE

PE PE PE

PE PE PE

Control
processor

Original motivations 

•Matches simple differential equation solvers 

•Centralize high cost of instruction fetch/sequencing 

(que era grande) 
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Application of Data Parallelism 

• Each PE contains an employee record with his/her salary 

If salary > 100K then 

   salary = salary *1.05 

else 

   salary = salary *1.10 

• Logically, the whole operation is  a single step 

• Some processors enabled for arithmetic operation, others disabled 

Other examples:  

• Finite differences, linear algebra, ...  

• Document searching, graphics, image processing, ... 

Some recent machines:   

• Thinking Machines CM-1, CM-2 (and CM-5) (ver fig 1.25) 

• Maspar MP-1 and MP-2,  
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Evolution and Convergence 
Rigid control structure (SIMD in Flynn taxonomy) 

• SISD = uniprocessor, MIMD = multiprocessor 

Popular when cost savings of centralized sequencer high 

• 60s when CPU was a cabinet 

• Replaced by vectors in mid-70s (grande simplificação) 
– More flexible w.r.t. memory layout and easier to manage 

• Revived in mid-80s when 32-bit datapath slices just fit on chip (32 
processadores de 1 bit em um único chip) 

• No longer true with modern microprocessors 

Other reasons for demise 

• Simple, regular applications have good locality, can do well anyway 
(cache é mais genérica e funciona tão bem como) 

• Loss of applicability due to hardwiring data parallelism 

– MIMD machines as effective for data parallelism and more general 

Prog. model converges with SPMD (single program multiple data) 

• Contributes need for fast global synchronization 

• Structured global address space, implemented with either SAS or MP 
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1.2.6 (1) Dataflow Architectures 

Represent computation as a graph of essential dependences 

• Logical processor at each node, activated by availability of operands 

• Message (tokens) carrying tag of next instruction sent to next processor 
(message token = tag (address) + data) 

• Tag compared with others in matching store; match fires execution 1 b 

a 

+   

 

 

c e 

d 

f 

Dataflow graph 

f = a    d 

Network 

T oken 
stor e 

W aiting 
Matching 

Instruction 
fetch 

Execute 

T oken queue 

Form 
token 

Network 

Network 

Pr ogram 
stor e 

a = (b +1)    (b    c) 
d = c    e 

Busca instrução 

(token) do que fazer 

na rede; se “match” 

executa e passa 

resultado adiante 
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Evolution and Convergence 

Dataflow 
• Estático: cada nó representa uma operação primitiva 
• Dinâmico: função complexa executada pelo nó  

Key characteristics 
• Ability to name operations, synchronization, dynamic scheduling 

Converged to use conventional processors and memory 
• Support for large, dynamic set of threads to map to processors 
• Typically shared address space as well 
• But separation of progr. model from hardware (like data-parallel) 

Lasting contributions: 
• Integration of communication with thread (handler) generation 
• Tightly integrated communication and fine-grained 

synchronization 
• Remained useful concept for software (compilers etc.) 
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1.2.6 (2) Systolic Architectures 

• Replace single processor with array of regular processing elements 

• Orchestrate data flow for high throughput with less memory access 

Different from pipelining 

• Nonlinear array structure, multidirection data flow, each PE may have 
(small) local instruction and data memory 

Different from SIMD: each PE may do something different 

Initial motivation: VLSI enables inexpensive special-purpose chips 

Represent algorithms directly by chips connected in regular pattern 

M

PE

M

PE PE PE
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Systolic Arrays (contd.) 

• Practical realizations (e.g. iWARP) use quite general processors 

– Enable variety of algorithms on same hardware 

• But dedicated interconnect channels 

– Data transfer directly from register to register across channel 

• Specialized, and same problems as SIMD 

– General purpose systems work well for same algorithms (locality etc.) 

y ( i ) =  w 1     x ( i ) +  w 2     x ( i  + 1) +  w 3     x ( i  + 2) +  w 4   x ( i  + 3) 

x 8 

y 3 y 2 y 1 

x 7 
x 6 

x 5 
x 4 

x 3 

w 4 

x 2 

x 

w 

x 1 

w 3 w 2 w 1 

x in 

y in 

x out 

y out 

x out =  x 

y out =  y in +  w      x in 
x  =  x in 

Example: Systolic array for 1-D convolution 
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1.2.7 Convergence: Generic Parallel Architecture 

A generic modern multiprocessor 

Node: processor(s), memory system, plus communication assist 

• Network interface and communication controller 

• Scalable network 

• Convergence allows lots of innovation, now within framework 

• Integration of assist with node, what operations, how efficiently... 

• Modelo de programação -> efeito no Communication Assist 

• Ver efeito para SAS, MP, Data Parallel e Systolic Array 

Mem

Netw ork

P

$

Communication
assist (CA)
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Understanding Parallel Architecture 
Traditional taxonomies not very useful (SIMD/MIMD) (porque multiple general 

purpose processors are dominant) 

Focusing on programming models not enough, nor hardware structures 

• Same one can be supported by radically different architectures 

Foco deve ser em: Architectural distinctions that affect software 

• Compilers, libraries, programs 

Design of user/system and hardware/software interface (Decisões) 

• Constrained from above by progr. models and below by technology 

Guiding principles provided by layers 

• What primitives are provided at communication abstraction 

• How programming models map to these 

• How they are mapped to hardware 

Communication Abstraction: interface entre o modelo de  

programação e a implem. do sistema: importância equivalente ao conjunto de 

instruções em computadores convencionais 

Modelo de  

programação 

Comm.  

abstraction 

HW 
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Fundamental Design Issues 

At any layer, interface (contrato entre HW e SW) aspect and 
performance aspects (deve permitir melhoria individual) 

Data named by threads; operations performed on named data; ordering 
among operations 

• Naming:  How are logically shared data and/or processes referenced? 

• Operations: What operations are provided on these data 

• Ordering:  How are accesses to data ordered and coordinated? 

• Replication: How are data replicated to reduce communication? 

• Communication Cost:  Latency, bandwidth, overhead, occupancy 

Understand at programming model first, since that sets requirements 

Other issues 

•   Node Granularity:  How to split between processors and memory? 

•  ... pag 53 
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Sequential Programming Model 

Contract 

• Naming:  Can name any variable in virtual address space (exemplo 
em uniprocessadores) 

– Hardware (and perhaps compilers) does translation to physical addresses 

• Operations: Loads and Stores 

• Ordering:  Sequential program order 

 

Performance (sequential programming model) 

• Rely on dependences on single location (mostly): dependence order 

• Compilers and hardware violate other orders without getting caught 

• Compiler: reordering and register allocation 

• Hardware: out of order, pipeline bypassing, write buffers 

• Transparent replication in caches 
pag 53 
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SAS Programming Model 

Naming: Any process can name any variable in shared space 

Operations: loads and stores, plus those needed for ordering 

Simplest Ordering Model:  

• Within a process/thread: sequential program order 

• Across threads: some interleaving (as in time-sharing) 

• Additional orders through synchronization 

• Again, compilers/hardware can violate orders without getting caught 

– Different, more subtle ordering models also possible (discussed later) 
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Synchronization 

Mutual exclusion (locks) 

• Ensure certain operations on certain data can be performed by 
only one process at a time 

• Room that only one person can enter at a time 

• No ordering guarantees (ordem não interessa; o importante é que 
apenas um tenha acesso por vez) 

Event synchronization  

•  Ordering of events to preserve dependences  

– Passagem de bastão 

– e.g.  producer —> consumer of data 

• 3 main types: 

– point-to-point 

– global 

– group 
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Message Passing Programming Model 

Naming: Processes can name private data directly (or can name 
other processes) (private data space <-> global process space)  

• No shared address space 

Operations: Explicit communication through send and receive 

• Send transfers data from private address space to another process 

• Receive copies data from process to private address space 

• Must be able to name processes 

Ordering:  

• Program order within a process 

• Send and receive can provide pt to pt synch between processes 

• Mutual exclusion inherent 

Can construct global address space: 

• Process number + address within process address space 

• But no direct operations on these names 
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Design Issues Apply at All Layers 

Prog. model’s position provides constraints/goals for system 

In fact, each interface between layers supports or takes a position on: 

• Naming model 

• Set of operations on names 

• Ordering model 

• Replication 

• Communication performance 

Any set of positions can be mapped to any other by software 

Let’s see issues across layers 

• How lower layers can support contracts of programming models 

• Performance issues 
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Naming and Operations 

Naming and operations in programming model can be directly 
supported by lower levels (uniforme em todos os níveis de 
abstração), or translated by compiler, libraries or OS 

Example: Shared virtual address space in programming model 

Alt1: Hardware interface supports shared (global) physical address 
space  

• Direct support by hardware through v-to-p mappings (comum para todos 
os processadores), no software layers 

Alt2: Hardware supports independent physical address spaces (cada 
processador pode acessar áreas físicas distintas) 

• Can provide SAS through OS, so in system/user interface 

– v-to-p mappings only for data that are local 

– remote data accesses incur page faults; brought in via page fault handlers 

– same programming model, different hardware requirements and cost model 
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Naming and Operations (contd) 
Example: Implementing Message Passing 

Alt1: Direct support at hardware interface 

• But match and buffering benefit from more flexibility 

Alt2: Support at sys/user interface or above in software (almost 
always) 

• Hardware interface provides basic data transport (well suited) 

• Send/receive built in sw for flexibility (protection, buffering) 

• Choices at user/system interface:  

– Alt2.1: OS each time: expensive 

– Alt2.2: OS sets up once/infrequently, then little sw involvement each 
time (setup com OS e execução com HW) 

• Alt2.3: Or lower interfaces provide SAS (virtual), and send/receive 
built on top with buffers and loads/stores (leitura/escrita em buffers 
+ sincronização) 

Need to examine the issues and tradeoffs at every layer 

• Frequencies and types of operations, costs 
pag 56 
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Ordering 

Message passing: no assumptions on orders across processes except 
those imposed by send/receive pairs 

SAS: How processes see the order of other processes’ references 
defines semantics of SAS 

• Ordering very important and subtle 

• Uniprocessors play tricks with orders to gain parallelism or locality 

• These are more important in multiprocessors 

• Need to understand which old tricks are valid, and learn new ones 

• How programs behave, what they rely on, and hardware implications 
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1.3.3 Replication 
Very important for reducing data transfer/communication 

Again, depends on naming model 

Uniprocessor: caches do it automatically 

• Reduce communication with memory 

Message Passing naming model at an interface 

• A receive replicates, giving a new name; subsequently use new name 

• Replication is explicit in software above that interface 

SAS naming model at an interface 

• A load brings in data transparently, so can replicate transparently 

• Hardware caches do this, e.g. in shared physical address space 

• OS can do it at page level in shared virtual address space, or objects 

• No explicit renaming, many copies for same name: coherence problem 

– in uniprocessors, “coherence” of copies is natural in memory hierarchy 

Obs: communication = entre processos (não equivalente a data transfer) 
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1.3.4 Communication Performance 

Performance characteristics determine usage of operations at a layer 

• Programmer, compilers etc make choices based on this (evitam 
operações custosas) 

Fundamentally, three characteristics: 

• Latency: time taken for an operation 

• Bandwidth: rate of performing operations 

• Cost: impact on execution time of program 

If processor does one thing at a time: bandwidth  1/latency (custo = 
latência * nº de operações) 

• But actually more complex in modern systems 

Characteristics apply to overall operations, as well as individual 
components of a system, however small 

We’ll focus on communication or data transfer across nodes 
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Simple Example (expl 1.2) 
Component performs an operation in 100ns (latência) 

(portanto) Simple bandwidth: 10 Mops 

Internally pipeline depth 10 => bandwidth 100 Mops 

• Rate determined by slowest stage of pipeline, not overall latency (se 
operação executada a cada 200ns -> bandwitdh = 5Mops ->pipeline não 
efetivo) 

Delivered bandwidth on application depends on initiation frequency 
(quantas vezes sequência é executada) 

Suppose application performs 100 M operations. What is cost? 

• op count * op latency gives 10 sec (upper bound) (100E6*100E-9=10) 
(se não é possível usar pipeline) 

• op count / peak op rate gives 1 sec (lower bound) (se for possível uso 
completo do pipeline -> 10x) 

– assumes full overlap of latency with useful work, so just issue cost 

• if application can do 50 ns of useful work (em média) before depending 
on result of op, cost to application is the other 50ns of latency 
(100E6*50E-9=5) 
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Linear Model of Data Transfer Latency 
Transfer time (n)  = T0 + n/B 

• T0 = startup; n= bytes; B= bandwidth 

• Model useful for message passing (T0= latência 1ºbit), memory access (T0= 
tempo de acesso) ,  bus (T0= arbitration), pipeline (T0= encher pipeline) 
vector ops etc 

As n increases, bandwidth approaches  

asymptotic rate B 

How quickly it approaches depends on T0 

Size needed for half bandwidth (half-power point): 

                 n1/2 = T0 * B    (ver errata no livro texto) 

But linear model not enough 

• When can next transfer be initiated?  Can cost be overlapped? 

• Need to know how transfer is performed 
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Communication Cost Model 

Comm Time per message= Overhead + Assist Occupancy +  

 Network Delay + Size/Bandwidth + Contention 

= ov + oc + l + n/B + Tc 

Overhead and assist occupancy may be f(n) or not 

Each component along the way has occupancy and delay 

• Overall delay is sum of delays 

• Overall occupancy (1/bandwidth) is biggest of occupancies (gargalo) 

• Próxima transferência de dados só pode começar se recursos críticos estão 
livres (assumindo que não há buffers no caminho) 

Comm Cost = frequency * (Comm time - overlap) 

General model for data transfer: applies to cache misses too 
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Summary of Design Issues 

Functional and performance issues apply at all layers 

Functional: Naming, operations and ordering 

Performance: Organization, latency, bandwidth, overhead, occupancy 

Replication and communication are deeply related 

• Management depends on naming model 

Goal of architects: design against frequency and type of operations 
that occur at communication abstraction, constrained by tradeoffs 
from above or below 

• Hardware/software tradeoffs 
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Recap 

Parallel architecture is important thread in evolution of architecture 

• At all levels 

• Multiple processor level now in mainstream of computing 

Exotic designs have contributed much, but given way to convergence 

• Push of technology, cost and application performance 

• Basic processor-memory architecture is the same 

• Key architectural issue is in communication architecture 

– How communication is integrated into memory and I/O system on node 

Fundamental design issues 

• Functional: naming, operations, ordering 

• Performance: organization, replication, performance characteristics 

Design decisions driven by workload-driven evaluation 

• Integral part of the engineering focus 
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Outline for Rest of Class 

Understanding parallel programs as workloads 
– Much more variation, less consensus and greater impact than in sequential 

• What they look like in major programming models (Ch. 2) 

• Programming for performance: interactions with architecture (Ch. 3) 

• Methodologies for workload-driven architectural evaluation (Ch. 4) 

Cache-coherent multiprocessors with centralized shared memory  

• Basic logical design, tradeoffs, implications for software (Ch 5) 

• Physical design, deeper logical design issues, case studies (Ch 6) 

Scalable systems  

• Design for scalability and realizing programming models (Ch 7) 

• Hardware cache coherence with distributed memory (Ch 8) 

• Hardware-software tradeoffs for scalable coherent SAS (Ch 9) 
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Outline (contd.) 

Interconnection networks (Ch 10) 

Latency tolerance (Ch 11) 

Future directions (Ch 12) 

Overall: conceptual foundations and engineering issues across broad 
range of scales of design, all of which are important 
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Top 500 em jun/08 (5 primeiros) 

• The new No. 1 system, built by IBM for the U.S. Department of 
Energy’s Los Alamos National Laboratory and and named 
“Roadrunner,” by LANL after the state bird of New Mexico 
achieved performance of 1.026 petaflop/s—becoming the first 
supercomputer ever to reach this milestone. At the same time, 
Roadrunner is also one of the most energy efficient systems on the 
TOP500 

• Blue Gene/L, with a performance of 478.2 teraflop/s at DOE’s 
Lawrence Livermore National Laboratory 

• IBM BlueGene/P (450.3 teraflop/s) at DOE’s Argonne National 
Laboratory,  

• Sun SunBlade x6420 “Ranger” system (326 teraflop/s) at the Texas 
Advanced Computing Center at the University of Texas – Austin 

• The upgraded Cray XT4 “Jaguar” (205 teraflop/s) at DOE’s Oak 
Ridge National Laboratory 
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Top 500 em jul/07:projeções 
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Top 500 em jul/08 
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Top 500 em jun/09 (10 primeiros) 

1 DOE/NNSA/LANL United States Roadrunner - BladeCenter QS22/LS21 

Cluster, PowerXCell 8i 3.2 Ghz / Opteron 

DC 1.8 GHz, Voltaire Infiniband 

IBM 

2 Oak Ridge National 

Laboratory 

United States Jaguar - Cray XT5 QC 2.3 GHz Cray Inc. 

3 Forschungszentrum Juelich 

(FZJ) 

Germany JUGENE - Blue Gene/P Solution IBM 

4 NASA/Ames Research 

Center/NAS 

United States Pleiades - SGI Altix ICE 8200EX, Xeon QC 

3.0/2.66 GHz 

SGI 

5 DOE/NNSA/LLNL United States BlueGene/L - eServer Blue Gene Solution IBM 

6 National Institute for 

Computational 

Sciences/University of 

Tennessee 

United States Kraken XT5 - Cray XT5 QC 2.3 GHz Cray Inc. 

7 Argonne National Laboratory United States Blue Gene/P Solution IBM 

8 Texas Advanced Computing 

Center/Univ. of Texas 

United States Ranger - SunBlade x6420, Opteron QC 2.3 

Ghz, Infiniband 

Sun 

Microsystems 

9 DOE/NNSA/LLNL United States Dawn - Blue Gene/P Solution IBM 

10 Forschungszentrum Juelich 

(FZJ) 

Germany JUROPA - Sun Constellation, NovaScale 

R422-E2, Intel Xeon X5570, 2.93 GHz, Sun 

M9/Mellanox QDR Infiniband/Partec 

Parastation 

Bull SA 
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Top 500 em jun/09 
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Projeções em jun/09 
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Top em jun/2010 
1  Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz 

2  Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla 
C2050 GPU  (China) 

3  Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2 
Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband 

4  Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz 

5  JUGENE - Blue Gene/P Solution 

6  Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 
3.0/Xeon Westmere 2.93 Ghz, Infiniband 

7  Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon 
HD 4870 2, Infiniband 

8  BlueGene/L - eServer Blue Gene Solution 

9  Intrepid - Blue Gene/P Solution 

10  Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband 
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Top 500 em jun/2010 
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Top em jun/2011 

 Site Computer 

1 RIKEN Advanced Institute for 
Computational Science (AICS)   Japan 

K computer, SPARC64 VIIIfx 2.0GHz, Tofu InterConnect        
Fujitsu 

2 National Supercomputing Center in 
Tianjin             China 

Tianhe-1A - NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA 
GPU, FT-1000 8C          NUDT 

3 DOE/SC/Oak Ridge National 
Laboratory            United States 

Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz            Cray 
Inc. 

4 National Supercomputing Centre in 
Shenzhen (NSCS)          China 

Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla 
C2050 GPU          Dawning 

5 GSIC Center, Tokyo Institute of 
Technology              Japan 

TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670, 
Nvidia GPU, Linux/Windows          NEC/HP 

6 DOE/NNSA/LANL/SNL                  
United States 

Cielo - Cray XE6 8-core 2.4 GHz                  Cray Inc. 

7 NASA/Ames Research Center/NAS                      
United States 

Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC 
3.0/Xeon 5570/5670 2.93 Ghz, Infiniband             SGI 

8 DOE/SC/LBNL/NERSC          United 
States 

Hopper - Cray XE6 12-core 2.1 GHz                  Cray Inc. 

9 Commissariat a l'Energie Atomique 
(CEA)            France 

Tera-100 - Bull bullx super-node S6010/S6030                Bull 
SA 

10 DOE/NNSA/LANL            United States Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 
3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband           IBM 
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Top 500 em jun/2011 
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Projected Performance @ 2011 



A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
 

96 

TOP500 jun/2012 

Rank Site Computer 

1 
DOE/NNSA/LLNL 

United States 

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom 

IBM 

2 

RIKEN Advanced Institute for Computational Science 

(AICS) 

Japan 

K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect 

Fujitsu 

3 
DOE/SC/Argonne National Laboratory 

United States 

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom 

IBM 

4 
Leibniz Rechenzentrum 

Germany 

SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 

2.70GHz, Infiniband FDR 

IBM 

5 
National Supercomputing Center in Tianjin 

China 

Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz, 

NVIDIA 2050 

NUDT 

6 
DOE/SC/Oak Ridge National Laboratory 

United States 

Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray 

Gemini interconnect, NVIDIA 2090 

Cray Inc. 

7 
CINECA 

Italy 

Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom 

IBM 

8 
Forschungszentrum Juelich (FZJ) 

Germany 

JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom 

IBM 

9 
CEA/TGCC-GENCI 

France 

Curie thin nodes - Bullx B510, Xeon E5-2680 8C 2.700GHz, 

Infiniband QDR 

Bull 

10 
National Supercomputing Centre in Shenzhen (NSCS) 

China 

Nebulae - Dawning TC3600 Blade System, Xeon X5650 6C 

2.66GHz, Infiniband QDR, NVIDIA 2050 

Dawning 

http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/177720
http://www.top500.org/system/177720
http://www.top500.org/system/177720
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/system/177722
http://www.top500.org/system/177722
http://www.top500.org/system/177722
http://www.top500.org/site/50414
http://www.top500.org/site/50414
http://www.top500.org/site/50414
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818


A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r 

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p
 

97 

TOP500 2012 
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TOP500 2012 - Highlights 

Sequoia, an IBM BlueGene/Q system is the No. 1 system on the TOP500. It was first delivered to the 

Lawrence Livermore National Laboratory in 2011and now full deployed with an impressive 16.32 Petaflop/s 

on the Linpack benchmark using 1,572,864 cores. Sequoia is one of the most energy efficient systems on 

the list consuming a total of 7.89. 

Fujitsu’s “K Computer” installed at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe, 

Japan, is now the No. 2 system on the TOP500 list with10.51 Pflop/s on the Linpack benchmark using 

705,024 SPARC64 processing cores. 

A second BlueGene/Q system (Mira) installed at Argonne National Laboratory is now at No. 3 with 8.15 

Petaflop/s on the Linpack benchmark using 786,432 cores. 

The most powerful system in Europe and No.4 on the List is SuperMUC, an IBM iDataplex system with Intel 

Sandybridge installed at Leibniz Rechenzentrum in Germany. 

The Chinese Tianhe-1A system, the No. 1 on the TOP500 in November 2010 is now the No. 5 with 2.57 

Pflop/s Linpack performance. 

The largest U.S. system in the previous list, the upgraded Jaguar, installed at the Oak Ridge National 

Laboratory, is holding on to the No. 6 spot with 1.94 Pflop/s Linpack performance. 

Roadrunner, the first system to break the petaflop barrier in June 2008, is now listed at No 19. 
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TOP500 2012 - Highlights 

There are 20 petaflop/s systems in the TOP500 List 

The two Chinese systems at No. 5 and No. 10 and the Japanese Tsubame 2.0 system at No. 14 are all using 

NVIDIA GPUs to accelerate computation and a total of 57 systems on the list are using Accelerator/Co-

Processor technology. 

The number of systems installed in China decreased from 74 in the previous to 68 in the current list. China 

still holds the No. 2 position as a user of HPC, ahead of Japan, UK, France, and Germany. Japan holds 

the No. 2 position in performance share. 

Intel continues to provide the processors for the largest share (74.2 percent) of TOP500 systems. 

Intel’s Westmere processors increased their presence in the list with 246 systems, (240 in 2011). 

Already 74.8 percent of the systems use processors with six or more cores. 

57 systems use accelerators or co-processors (up from 39 six month ago), 52 of these use NVIDIA chips, two 

use Cell processors, and two use ATI Radeon and a one new system with Intel MIC technology. 

IBM’s BlueGene/Q is now the most popular system in the TOP10 with 4 entries including the No. 1 and No. 3. 

Italy makes a first debut in the TOP10 with an IBM BlueGene/Q system installed at CINECA. The system is 

at position No. 7 in the List with 1.69 Pflop/s Linpack performance. 
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TOP Green jun/2012 
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Models of Shared-Memory Multiprocessors 

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices

M  M M 

Network 

P 

$ 

P 

$ 

P 

$ 

 

Network 

D 

P 

C 

D 

P 

C 

D 

P 

C 

Distributed memory or 

 Non-uniform Memory Access (NUMA) Model 

Uniform Memory Access (UMA) Model 

or Symmetric Memory Processors (SMPs).  Interconnect:   

Bus, Crossbar, Multistage network 

P:  Processor 

M: Memory 

C: Cache 

D: Cache directory 

Cache-Only Memory Architecture (COMA) 
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Performance flatlining 

Figure courtesy of 

Kunle Olukotun, 

Lance Hammond, Herb 

Sutter, and 

Burton Smith 
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Previsão de crescimento do clock 
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Previsão de crescimento do clock (ITRS) 
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Changing Conventional Wisdom 

Old Conventional Wisdom: Power is free, Transistors expensive 

New Conventional Wisdom: “Power wall” Power expensive, Xtors free  
(Can put more on chip than can afford to turn on) 

Old CW: Sufficiently increasing Instruction Level Parallelism via compilers, 
innovation (Out-of-order, speculation, VLIW, …) 

New CW: “ILP wall” law of diminishing returns on more HW for ILP  

Old CW: Multiplies are slow, Memory access is fast 

New CW: “Memory wall” Memory slow, multiplies fast  
(200 clock cycles to DRAM memory, 4 clocks for multiply) 

Old CW: Uniprocessor performance 2X / 1.5 yrs 

New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall 

• Uniprocessor performance now 2X / 5(?) yrs 

  Sea change in chip design: multiple “cores”  
 (2X processors per chip / ~ 2 years) 

– More simpler processors are more power efficient 

Fonte: Doug L Hoffman, Patterson 2008 
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Sea Change in Chip Design 

Intel 4004 (1971): 4-bit processor, 

2312 transistors, 0.4 MHz,  

10 micron PMOS, 11 mm2 chip  

• Processor is the new transistor?  

 RISC II (1983): 32-bit, 5 stage  
pipeline, 40,760 transistors, 3 MHz,  
3 micron NMOS, 60 mm2 chip 

 125 mm2 chip, 0.065 micron CMOS  
= 2312 RISC II+FPU+Icache+Dcache 

– RISC II shrinks to ~ 0.02 mm2 at 65 nm 

– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ? 

– Proximity Communication via capacitive coupling at > 1 TB/s ? 
(Ivan Sutherland @ Sun / Berkeley) 

http://www.t-ram.com/
http://www.t-ram.com/
http://www.t-ram.com/

