

Cap 1

Introduction

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

2

Introduction

What is Parallel Architecture?

Why Parallel Architecture?

Evolution and Convergence of Parallel Architectures

Fundamental Design Issues

pag 1

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

3

What is Parallel Architecture?

A parallel computer is a collection of processing elements
that cooperate to solve large problems fast

Some broad issues:

• Resource Allocation:

– how large a collection?

– how powerful are the elements?

– how much memory?

• Data access, Communication and Synchronization

– how do the elements cooperate and communicate?

– how are data transmitted between processors?

– what are the abstractions and primitives for cooperation?

• Performance and Scalability

– how does it all translate into performance?

– how does it scale? (satura o crescimento ou não)

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

4

1.1 Why Study Parallel Architecture?

Role of a computer architect:

To design and engineer the various levels of a computer system
to maximize performance and programmability within limits of
technology and cost.

Parallelism:

• Provides alternative to faster clock for performance (limitações de
tecnologia)

• Applies at all levels of system design (ênfase do livro: pipeline,
cache, comunicação, sincronização)

• Is a fascinating perspective from which to view architecture

• Is increasingly central in information processing

pag 4

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

5

Why Study it Today?

History: diverse and innovative organizational structures, often

tied to novel programming models

Rapidly maturing under strong technological constraints

• The “killer micro” is ubiquitous

• Laptops and supercomputers are fundamentally similar!

• Technological trends cause diverse approaches to converge

Technological trends make parallel computing inevitable

• In the mainstream

Need to understand fundamental principles and design tradeoffs,
not just taxonomies

• Naming, Ordering, Replication (de dados), Communication
performance

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

6

Inevitability of Parallel Computing

Application demands: Our insatiable need for computing cycles
• Scientific computing: CFD (Computational Fluid Dynamics), Biology,

Chemistry, Physics, ...

• General-purpose computing: Video, Graphics, CAD, Databases, TP...

Technology Trends
• Number of transistors on chip growing rapidly

• Clock rates expected to go up only slowly

Architecture Trends
• Instruction-level parallelism valuable but limited

• Coarser-level parallelism, as in MPs, the most viable approach

Economics

Current trends:
• Today’s microprocessors have multiprocessor support

• Servers and workstations becoming MP: Sun, SGI, DEC, COMPAQ!...

• Tomorrow’s microprocessors are multiprocessors (hoje multicore)

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

7

1.1.1 Application Trends

Demand for cycles fuels advances in hardware, and vice-versa

• Cycle drives exponential increase in microprocessor performance

• Drives parallel architecture harder: most demanding applications

Range of performance demands

• Need range of system performance with progressively increasing cost

• Platform pyramid

Goal of applications in using parallel machines: Speedup

 Speedup (p processors) =

For a fixed problem size (input data set), performance = 1/time

 Speedup fixed problem (p processors) =

Performance (p processors)

Performance (1 processor)

Time (1 processor)

Time (p processors)

pag 6

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

8

Scientific Computing Demand

Fig 1.2, pag 7: dados de 1993

pag 7

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

9

Engineering Computing Demand

Large parallel machines a mainstay in many industries

• Petroleum (reservoir analysis)

• Automotive (crash simulation, drag analysis, combustion efficiency),

• Aeronautics (airflow analysis, engine efficiency, structural mechanics,
electromagnetism),

• Computer-aided design

• Pharmaceuticals (molecular modeling)

• Visualization

– in all of the above

– entertainment (films like Toy Story, centenas de SUNs)

– architecture (walk-throughs and rendering)

• Financial modeling (yield and derivative analysis)

• etc.

pag 8

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

10

Applications: Speech and Image Processing

1980 1985 1990 1995

1 MIPS

10 MIPS

100 MIPS

1 GIPS

Sub-Band
Speech Coding

200 Words
Isolated Speech
Recognition

Speaker
Veri¼cation

CELP
Speech Coding

ISDN-CD Stereo
Receiver

5,000 Words
Continuous
Speech
Recognition

HDTV Receiver

CIF Video

1,000 Words
Continuous
Speech
RecognitionTelephone

Number
Recognition

10 GIPS

• Also CAD, Databases, . . .

• 100 processors (hoje) gets you 10 years, 1000 (hoje) gets you 20 !

pag 9

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

11

Learning Curve for Parallel Applications

• AMBER (Assisted Model Building through Energy Refinement) molecular dynamics

simulation program

• Starting point was vector code for Cray-1 (equiv. à versão 8; versões 9 e 12

incorporaram otimizações no código visando a paralelização)

• 145 MFLOP on Cray90, 406 MFLOP for final version on 128-processor Paragon,

891 MFLOP on 128-processor Cray T3D

Intel

Paragon

128 proc

pag 9

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

12

Commercial Computing

Also relies on parallelism for high end

• Scale not so large, but use much more wide-spread

• Computational power determines scale of business that can be handled

Databases, online-transaction processing, decision support, data
mining, data warehousing ...

TPC (Transaction Processing Performance Council) benchmarks
(TPC-C order entry, TPC-D decision support)

• Explicit scaling criteria provided

• Size of enterprise scales with size of system

• Problem size no longer fixed as p increases, so throughput is used as a
performance measure (transactions per minute or tpm)

pag 10

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

13

TPC-C Results for March 1996

• Parallelism is pervasive
• Small to moderate scale parallelism very important
• Difficult to obtain snapshot to compare across vendor

platforms (sistemas mostrados lançados em datas diferentes)
• Ex: Tandem é mais velho que PowerPC e DEC Alpha

T
h
ro

u
g
h
p
u
t
(t

p
m

C
)

Number of processors

0

5,000

10,000

15,000

20,000

25,000

0 20 40 60 80 100 120

 Tandem Himalaya

 DEC Alpha

 SGI Pow erChallenge

 HP P A

 IBM Pow erPC

 Other

pag 10-12

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

14

Summary of Application Trends

Transition to parallel computing has occurred for scientific and
engineering computing

In rapid progress in commercial computing

• Database and transactions as well as financial

• Usually smaller-scale, but large-scale systems also used

Desktop also uses multithreaded programs, which are a lot like
parallel programs

Demand for improving throughput on sequential workloads

• Greatest use of small-scale multiprocessors

Solid application demand exists and will increase

pag 12

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

15

1.1.2 Technology Trends

The natural building block for multiprocessors is now also about the fastest!

P
e
rf

o
rm

a
n
ce

0.1

1

10

100

1965 1970 1975 1980 1985 1990 1995

Supercomputers

Minicomputers

Mainframes

Microprocessors

32bits e cache

pag 15 e 4-5

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

16

General Technology Trends

• Microprocessor performance increases 50% - 100% per year

• Transistor count doubles every 3 years

• DRAM size quadruples every 3 years

• Huge investment per generation is carried by huge commodity market

• Not that single-processor performance is plateauing, but that
parallelism is a natural way to improve it.

0

20

40

60

80

100

120

140

160

180

1987 1988 1989 1990 1991 1992

Integer FP

Sun 4

260

MIPS

M/120

IBM

RS6000

540
MIPS

M2000

HP 9000

750

DEC

alpha

SPEC

Linpack

DRAM de ´80 a ´95

Tamanho 1000x

Tempo de acesso 2x

pag 13

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

17

Technology: A Closer Look

Basic advance is decreasing feature size ()

• Circuits become either faster or lower in power

Die size is growing too

• Clock rate improves roughly proportional to improvement in

• Number of transistors improves like (or faster)

Performance > 100x per decade; clock rate 10x, rest transistor count

How to use more transistors?

• Parallelism in processing

– multiple operations per cycle reduces CPI

• Locality in data access

– avoids latency and reduces CPI

– also improves processor utilization

• Both need resources, so tradeoff

Fundamental issue is resource distribution, as in uniprocessors

Proc $

Interconnect

pag 12

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

18

Clock Frequency Growth Rate

• 30% per year

0.1

1

10

100

1,000

1970
1975

1980
1985

1990
1995

2000
2005

C
lo

c
k
 r

a
te

 (
M

H
z
)

i4004
i8008

i8080

i8086 i80286
i80386

Pentium100

R10000

pag 13

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

19

Transistor Count Growth Rate

• 2012: Nvidia GK110-based 7.1 Billion Transistor

• 2012: Itanium 9500, 3.1 Billion Transistor

• Transistor count grows much faster than clock rate
 - 40% per year, order of magnitude more contribution in 2 decades

T
ra

n
si

st
o
rs

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970
1975

1980
1985

1990
1995

2000
2005

i4004
i8008

i8080

i8086

i80286
i80386

R2000

Pentium

R10000

R3000

pag 13

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

20

Similar Story for Storage

Divergence between memory capacity and speed more pronounced

• Capacity increased by 1000x from 1980-95, speed only 2x

• Gigabit DRAM by c. 2000, but gap with processor speed much greater

Larger memories are slower, while processors get faster

• Need to transfer more data in parallel

• Need deeper cache hierarchies

• How to organize caches?

Parallelism increases effective size of each level of hierarchy,
without increasing access time

Parallelism and locality within memory systems too

• New designs fetch many bits within memory chip; follow with fast
pipelined transfer across narrower interface

• Buffer caches most recently accessed data

Disks too: Parallel disks plus caching

pag 14

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

21

1.1.3 Architectural Trends

Architecture translates technology’s gifts to performance and
capability

Resolves the tradeoff between parallelism and locality

• Current microprocessor: 1/3 compute, 1/3 cache, 1/3 off-chip connect

• Tradeoffs may change with scale and technology advances

Understanding microprocessor architectural trends

• Helps build intuition about design issues or parallel machines

• Shows fundamental role of parallelism even in “sequential” computers

Four generations of architectural history: tube, transistor, IC, VLSI

• Here focus only on VLSI generation

Greatest delineation in VLSI has been in type of parallelism exploited

pag 14

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

22

Architectural Trends

Greatest trend in VLSI generation is increase in parallelism

• Up to 1985: bit level parallelism: 4-bit -> 8 bit -> 16-bit

– slows after 32 bit

– adoption of 64-bit now under way, 128-bit far (not performance issue)

– great inflection point when 32-bit micro and cache fit on a chip (ver fig 1.1)

• Mid 80s to mid 90s: instruction level parallelism

– pipelining and simple instruction sets, + compiler advances (RISC)

– on-chip caches and functional units => superscalar execution

– greater sophistication: out of order execution, speculation, prediction

• to deal with control transfer and latency problems

• Next step: thread level parallelism

pag 15-17

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

23

Phases in VLSI Generation

• How good is instruction-level parallelism?

• Thread-level needed in microprocessors?

T
ra

n
si

s
to

rs

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Bit-level parallelism Instruction-level Thread-level (?)

i4004

i8008

i8080

i8086

i80286

i80386

R2000

Pentium

R10000

R3000

pag 16

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

24

Architectural Trends: ILP

• Reported speedups for superscalar processors

• Horst, Harris, and Jardine [1990] 1.37

• Wang and Wu [1988] .. 1.70

• Smith, Johnson, and Horowitz [1989] 2.30

• Murakami et al. [1989] .. 2.55

• Chang et al. [1991] ... 2.90

• Jouppi and Wall [1989] 3.20

• Lee, Kwok, and Briggs [1991] 3.50

• Wall [1991] .. 5

• Melvin and Patt [1991] 8

• Butler et al. [1991] ... 17+

• Large variance due to difference in
– application domain investigated (numerical versus non-numerical)

– capabilities of processor modeled

pag 19

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

25

ILP Ideal Potential

• Infinite resources and fetch bandwidth, perfect branch prediction and renaming

– real caches and non-zero miss latencies

– Recursos ilimitados; única restrição é dependência de dados

0 1 2 3 4 5 6+
0

5

10

15

20

25

30

0 5 10 15
0

0.5

1

1.5

2

2.5

3

F
ra

c
tio

n
 o

f
to

ta
l c

y
c
le

s
 (

%
)

Number of instructions issued

S
p
e
e
d
u
p

Instructions issued per cycle

pag 18

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

26

Results of ILP Studies

• Concentrate on parallelism for 4-issue machines

• Realistic studies show only 2-fold speedup
• Recent studies show that more ILP needs to look across threads

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

27

Architectural Trends: Bus-based MPs

No. of processors in fully configured commercial shared-memory systems

•Micro on a chip makes it natural to connect many to shared memory
– dominates server and enterprise market, moving down to desktop

•Faster processors began to saturate bus, then bus technology advanced
– today, range of sizes for bus-based systems, desktop to large servers

0

10

20

30

40

CRAY CS6400

SGI Challenge

Sequent B2100

Sequent B8000

Symmetry81

Symmetry21

Pow er

SS690MP 140

SS690MP 120

AS8400

HP K400AS2100

SS20

SE30

SS1000E

SS10

SE10

SS1000

P-Pro
SGI Pow erSeries

SE60

SE70

Sun E6000

SC2000ESun SC2000
SGI Pow erChallenge/XL

Sun

E10000

50

60

70

1984 1986 1988 1990 1992 1994 1996 1998

N
u
m

b
e

r
o
f
p
ro

c
e
s
s

o
rs

pag 19

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

28

Bus Bandwidth
S

h
a
re

d
 b

u
s

b
a

n
d
w

id
th

 (
M

B
/s

)

10

100

1,000

10,000

100,000

1984 1986 1988 1990 1992 1994 1996 1998

Sequent
B8000

SGI
Pow erCh

XL

Sequent B2100

Symmetry81/21

SS690MP 120

SS690MP 140
SS10/
SE10/
SE60

SE70/SE30
SS1000 SS20

SS1000E

AS2100
SC2000E
HPK400

SGI Challenge

Sun E6000

AS8400

P-Pro

Sun E10000

SGI Pow erSeries

SC2000

Pow er

CS6400

• muitos processadores já vêm com suporte para multiprocessador (Pentium Pro:

ligar 4 processadores a um barramento único sem glue logic)

• multiprocessamento de pequena escala tornou-se commodity

pag 20

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

29

Economics

Commodity microprocessors not only fast but CHEAP

• Development cost is tens of millions of dollars (5-100 typical)

• BUT, many more are sold compared to supercomputers

• Crucial to take advantage of the investment, and use the
commodity building block

• Exotic parallel architectures no more than special-purpose

Multiprocessors being pushed by software vendors (e.g. database)
as well as hardware vendors

Standardization by Intel makes small, bus-based SMPs commodity

Desktop: few smaller processors versus one larger one?

• Multiprocessor on a chip

pag 20

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

30

1.1.4 Scientific Supercomputing

Proving ground and driver for innovative architecture and techniques

• Market smaller relative to commercial as MPs become mainstream

• Dominated by vector machines starting in 70s

• Microprocessors have made huge gains in floating-point performance

– high clock rates

– pipelined floating point units (e.g., multiply-add every cycle)

– instruction-level parallelism

– effective use of caches (e.g., automatic blocking)

• Plus economics

Large-scale multiprocessors replace vector supercomputers

• Well under way already

pag 21

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

31

Raw Uniprocessor Performance: LINPACK

2 pontos: matriz

100 x 100 e

1000 x 1000

pag 22

L
IN

P
 A

C
K

 (
M

F
L
O

P
S

)

1

10

100

1,000

10,000

1975 1980 1985 1990 1995 2000

 CRA Y n = 100

 CRA Y n = 1,000

 Micro n = 100
 Micro n = 1,000

CRA Y 1s

Xmp/14se

Xmp/416
Ymp

C90

T94

DEC 8200

IBM Power2/990

MIPS R4400

HP9000/735
DEC Alpha

DEC Alpha AXP
HP 9000/750

IBM RS6000/540

MIPS M/2000

MIPS M/120

Sun 4/260

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

32

Raw Parallel Performance: LINPACK

• Even vector Crays became parallel: X-MP (2-4) Y-MP (8), C-90 (16), T94 (32)

• Since 1993, Cray produces MPPs (Massively Parallel Processors) too (T3D, T3E)

pag 24

L
IN

P
 A

C
K

 (
G

F
L
O

P
S

)

 CRA Y peak

 MPP peak

Xmp /416(4)

Ymp/832(8)
nCUBE/2(1024)
iPSC/860

CM-2
CM-200

Delta

Paragon XP/S

C90(16)

CM-5

ASCI Red

T932(32)

T3D

Paragon XP/S MP
(1024)

Paragon XP/S MP
(6768)

0.1

1

10

100

1,000

10,000

1985 1987 1989 1991 1993 1995 1996

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

33

500 Fastest Computers

N
u

m
b

e
r

o
f
s
y
s
te

m
s

11/93 11/94 11/95 11/96
0

50

100

150

200

250

300

350

 PVP
 MPP

 SMP

319

106

284

239

63

187

313

198

110

106

73

MPP: Massively Parallel Processors

PVP: Parallel Vector Processors

SMP: Symmetric Shared Memory Multiprocessors

Ver http://www.top500.org/

pag 24

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

34

Summary: Why Parallel Architecture?

Increasingly attractive

• Economics, technology, architecture, application demand

Increasingly central and mainstream

Parallelism exploited at many levels

• Instruction-level parallelism

• Multiprocessor servers

• Large-scale multiprocessors (“MPPs”)

Focus of this class: multiprocessor level of parallelism

Same story from memory system perspective

• Increase bandwidth, reduce average latency with many local memories

Wide range of parallel architectures make sense

• Different cost, performance and scalability

1.2 Convergence of Parallel Architectures

pag 25

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

36

History

Application Software

System
 Software SIMD

Message Passing

Shared Memory
Dataflow

Systolic
Arrays

Architecture

• Uncertainty of direction paralyzed parallel software development!

Historically, parallel architectures tied to programming models

• Divergent architectures, with no predictable pattern of growth.

pag 25

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

37

1.2.1 Today

Extension of “computer architecture” to support communication
and cooperation

• OLD: Instruction Set Architecture

• NEW: Communication Architecture

Defines

• Critical abstractions, boundaries (HW/SW e user/system), and
primitives (interfaces)

• Organizational structures that implement interfaces (hw or sw)

Compilers, libraries and OS are important bridges today

pag 25

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

38

Modern Layered Framework

CAD

Multipr ogramming Shar ed
addr ess

Message
passing

Data
parallel

Database Scientific modeling Parallel applications

Pr ogramming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication har dwar e

Physical communication medium

Har dwar e/softwar e boundary

• Distância entre um nível e o próximo indicam se o mapeamento é
simples ou não

• ex: acesso a uma variável
• SAS: simplesmente ld ou st
• Message passing: envolve library ou system call

pag 26

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

39

Programming Model

What programmer uses in coding applications

Specifies communication and synchronization

Examples:

• Multiprogramming: no communication or synch. at program level

• Shared address space: like bulletin board

• Message passing: like letters or phone calls, explicit point to point

• Data parallel: more regimented, global actions on data

– Implemented with shared address space or message passing

pag 26

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

40

Communication Abstraction

User level communication primitives provided

• Realizes the programming model

• Mapping exists between language primitives of programming model
and these primitives

Supported directly by hw, or via OS, or via user sw

Lot of debate about what to support in sw and gap between layers

Today:

• Hw/sw interface tends to be flat, i.e. complexity roughly uniform

• Compilers and software play important roles as bridges today

• Technology trends exert strong influence

Result is convergence in organizational structure

• Relatively simple, general purpose communication primitives

pag 27

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

41

Communication Architecture
= User/System Interface + Implementation

User/System Interface:

• Comm. primitives exposed to user-level by hw and system-level sw

Implementation:

• Organizational structures that implement the primitives: hw or OS

• How optimized are they? How integrated into processing node?

• Structure of network

Goals:
• Performance

• Broad applicability
• Programmability

• Scalability

• Low Cost

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

42

Evolution of Architectural Models
Historically machines tailored to programming models

• Prog. model, comm. abstraction, and machine organization lumped
together as the “architecture”

Evolution helps understand convergence

• Identify core concepts

• Shared Address Space

• Message Passing

• Data Parallel

Others:

• Dataflow

• Systolic Arrays

Examine programming model, motivation, intended applications, and
contributions to convergence

pag 28

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

43

1.2.2 Shared Address Space Architectures

Any processor can directly reference any memory location

• Communication occurs implicitly as result of loads and stores

Convenient:

• Location transparency

• Similar programming model to time-sharing on uniprocessors

– Except processes run on different processors

– Good throughput on multiprogrammed workloads

Naturally provided on wide range of platforms

• History dates at least to precursors of mainframes in early 60s

• Wide range of scale: few to hundreds of processors

Popularly known as shared memory machines or model

• Ambiguous: memory may be physically distributed among processors

SMP: shared memory multiprocessor
pag 28

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

44

Shared Address Space Model
Process: virtual address space plus one or more threads of

control

Portions of address spaces of processes are shared

•Writes to shared address visible to other threads (in other processes too)

•Natural extension of uniprocessors model: conventional memory

operations for comm.; special atomic operations for synchronization

•OS uses shared memory to coordinate processes

S t o r e

P 1

P 2

P n

P 0

L o a d

P 0 p r i v a t e

P 1 p r i v a t e

P 2 p r i v a t e

P n p r i v a t e

Virtual address spaces for a

collection of processes communicating

via shared addresses

Machine physical address space

Shared portion

of address space

Private portion

of address space

Common physical

addresses

pag 29

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

45

Communication Hardware

Also natural extension of uniprocessor (estrutura apenas aumentada)

Already have processor, one or more memory modules and I/O
controllers connected by hardware interconnect of some sort

Memory capacity increased by adding modules, I/O by controllers

•Add processors for processing!

•For higher-throughput multiprogramming, or parallel programs

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices

pag 29

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

46

History

P

P

C

C

I/O

I/O

M MM M

PP

C

I/O

M MC

I/O

$ $

“Mainframe” approach

• Motivated by multiprogramming

• Extends crossbar used for mem bw and I/O

• Originally processor cost limited to small
– later, cost of crossbar

• Bandwidth scales with p

• High incremental cost; use multistage instead

“Minicomputer” approach

• Almost all microprocessor systems have bus

• Motivated by multiprogramming, TP

• Used heavily for parallel computing

• Called symmetric multiprocessor (SMP)

• Latency larger than for uniprocessor

• Bus is bandwidth bottleneck

– caching is key: coherence problem

• Low incremental cost
(Ver fig. 1.16) pag 29

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

47

Example: Intel Pentium Pro Quad

• All coherence and
multiprocessing glue in
processor module

• Highly integrated, targeted at
high volume

• Low latency and bandwidth

P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pr o
module

P-Pr o
module

P-Pr o
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-w ay
interleaved

DRAM

P
C

I
b
u
s

P
C

I
b
u
sPCI

I/O
cards

pag 33

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

48

Example: SUN Enterprise

• 16 cards of either type: processors (UltraSparc) + memory, or I/O

• All memory accessed over bus, so symmetric

• Higher bandwidth, higher latency bus

Gigaplane bus (256 data, 41 addr ess, 83 MHz)

S
B

U
S

S
B

U
S

S
B

U
S

2
 F

ib
e
rC

h
a
n
n
e

l

1
0
0
b

T
,
S

C
S

I

Bus interface

CPU/mem
cardsP

$2

$

P

$2

$

Mem ctrl

Bus interface/sw itch

I/O cards

pag 35

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

49

Scaling Up

• Problem is interconnect: cost (crossbar) or bandwidth (bus)

• Dance-hall: bandwidth still scalable, but lower cost than crossbar

– latencies to memory uniform, but uniformly large

• Distributed memory or non-uniform memory access (NUMA)

– Construct shared address space out of simple message transactions
across a general-purpose network (e.g. read-request, read-response)

• Caching shared (particularly nonlocal) data?

M M M

M M M

NetworkNetwork

P

$

P

$

P

$

P

$

P

$

P

$

“Dance hall” Distributed memory

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

50

Example (NUMA): Cray T3E

• Scale up to 1024 processors (Alpha, 6 vizinhos), 480MB/s links

• Memory controller generates comm. request for nonlocal references

• No hardware mechanism for coherence (SGI Origin etc. provide this)

pag 37

Switch

P

$

X

Z

Exter nal I/O

Mem
ctrl

and NI

Mem

Y

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

51

1.2.3 Message Passing Architectures

Complete computer as building block, including I/O

• Communication via explicit I/O operations (e não via operações de
memória)

Programming model: directly access only private address space
(local memory), comm. via explicit messages (send/receive)

High-level block diagram similar to distributed-memory SAS

• But comm. integrated at IO level, needn’t be into memory system

• Like networks of workstations (clusters), but tighter integration
(não há monitor/teclado por nó)

• Easier to build than scalable SAS

Programming model more removed (mais distante) from basic
hardware operations

• Library or OS intervention

pag 37

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

52

Message-Passing Abstraction

• Send specifies (local) buffer to be transmitted and receiving process

• Recv specifies sending process and application storage to receive into

• Memory to memory copy, but need to name processes

• Optional tag on send and matching rule on receive

• User process names local data and entities in process/tag space too

• In simplest form, the send/recv match achieves pairwise synch event

– Other variants too

• Many overheads: copying, buffer management, protection

Pr ocess P Pr ocess Q

Addr ess Y

Addr ess X

Send X, Q, t

Receive Y , P , t Match

Local pr ocess
addr ess space

Local pr ocess
addr ess space

pag 38

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

53

Evolution of Message-Passing Machines

Early machines (´85): FIFO on each
link

• Hw close to prog. Model;
synchronous ops

• Replaced by DMA, enabling non-
blocking ops

– Buffered by system at destination
until recv

Diminishing role of topology

• No início, topologia importante (só
nomear processador vizinho)

• Store&forward routing: topology
important

• Introduction of pipelined routing
made it less so

• Cost is in node-network interface

• Simplifies programming

000001

010011

100

110

101

111

Topologias típicas:

• hipercubo

• mesh

pag 39

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

54

Example: IBM SP-2

• Made out of

essentially

complete

RS6000

workstations

• Network

interface

integrated in

I/O bus (bw

limited by I/O

bus)

Memory bus

MicroChannel bus

I/O

i860 NI

DMA

D
R

A
M

IBM SP-2 node

L2 $

Pow er 2
CPU

Memory
controller

4-w ay
interleaved

DRAM

General inter connection
netw ork formed f rom
8-port sw itches

NIC

pag 41

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

55

Example Intel Paragon

Memory bus (64-bit, 50 MHz)

i860

L1 $

NI

DMA

i860

L1 $

Driver

Mem
ctrl

4-w ay
interleaved

DRAM

Intel
Paragon
node

8 bits,
175 MHz,
bidirectional2D grid netw ork

w ith processing node
attached to every sw itch

Sandia’s Intel Paragon XP/S-based Supercomputer

pag 41

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

56

1.2.4 Toward Architectural Convergence
Evolution and role of software have blurred boundary (SAS x MP)

• Send/recv supported on SAS machines via buffers

• Can construct global address space on MP using hashing

• Page-based (or finer-grained) shared virtual memory

Hardware organization converging too

• Tighter NI integration even for MP (low-latency, high-bandwidth)

• At lower level, even hardware SAS passes hardware messages

Even clusters of workstations/SMPs are parallel systems (the network is the

computer

• Emergence of fast system area networks (SAN)

Programming models distinct, but organizations converging

• Nodes connected by general network and communication assists

• Implementations also converging, at least in high-end machines

pag 42

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

57

1.2.5 Data Parallel Systems
Outros nomes: processor array ou SIMD

Programming model

• Operations performed in parallel on each element of data structure (array ou

vetor)

• Logically single thread of control, performs sequential or parallel steps

• Conceptually, a processor associated with each data element

Architectural model

• Array of many simple, cheap processors with little memory each

– Processors don’t sequence through instructions

• Attached to a control processor that issues instructions

• Specialized and general communication, cheap

global synchronization

PE PE PE

PE PE PE

PE PE PE

Control
processor

Original motivations

•Matches simple differential equation solvers

•Centralize high cost of instruction fetch/sequencing

(que era grande)

pag 44

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

58

Application of Data Parallelism

• Each PE contains an employee record with his/her salary

If salary > 100K then

 salary = salary *1.05

else

 salary = salary *1.10

• Logically, the whole operation is a single step

• Some processors enabled for arithmetic operation, others disabled

Other examples:

• Finite differences, linear algebra, ...

• Document searching, graphics, image processing, ...

Some recent machines:

• Thinking Machines CM-1, CM-2 (and CM-5) (ver fig 1.25)

• Maspar MP-1 and MP-2,

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

59

Evolution and Convergence
Rigid control structure (SIMD in Flynn taxonomy)

• SISD = uniprocessor, MIMD = multiprocessor

Popular when cost savings of centralized sequencer high

• 60s when CPU was a cabinet

• Replaced by vectors in mid-70s (grande simplificação)
– More flexible w.r.t. memory layout and easier to manage

• Revived in mid-80s when 32-bit datapath slices just fit on chip (32
processadores de 1 bit em um único chip)

• No longer true with modern microprocessors

Other reasons for demise

• Simple, regular applications have good locality, can do well anyway
(cache é mais genérica e funciona tão bem como)

• Loss of applicability due to hardwiring data parallelism

– MIMD machines as effective for data parallelism and more general

Prog. model converges with SPMD (single program multiple data)

• Contributes need for fast global synchronization

• Structured global address space, implemented with either SAS or MP
pag 47

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

60

1.2.6 (1) Dataflow Architectures

Represent computation as a graph of essential dependences

• Logical processor at each node, activated by availability of operands

• Message (tokens) carrying tag of next instruction sent to next processor
(message token = tag (address) + data)

• Tag compared with others in matching store; match fires execution 1 b

a

+

c e

d

f

Dataflow graph

f = a d

Network

T oken
stor e

W aiting
Matching

Instruction
fetch

Execute

T oken queue

Form
token

Network

Network

Pr ogram
stor e

a = (b +1) (b c)
d = c e

Busca instrução

(token) do que fazer

na rede; se “match”

executa e passa

resultado adiante

pag 47

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

61

Evolution and Convergence

Dataflow
• Estático: cada nó representa uma operação primitiva
• Dinâmico: função complexa executada pelo nó

Key characteristics
• Ability to name operations, synchronization, dynamic scheduling

Converged to use conventional processors and memory
• Support for large, dynamic set of threads to map to processors
• Typically shared address space as well
• But separation of progr. model from hardware (like data-parallel)

Lasting contributions:
• Integration of communication with thread (handler) generation
• Tightly integrated communication and fine-grained

synchronization
• Remained useful concept for software (compilers etc.)

pag 48

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

62

1.2.6 (2) Systolic Architectures

• Replace single processor with array of regular processing elements

• Orchestrate data flow for high throughput with less memory access

Different from pipelining

• Nonlinear array structure, multidirection data flow, each PE may have
(small) local instruction and data memory

Different from SIMD: each PE may do something different

Initial motivation: VLSI enables inexpensive special-purpose chips

Represent algorithms directly by chips connected in regular pattern

M

PE

M

PE PE PE

pag 49

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

63

Systolic Arrays (contd.)

• Practical realizations (e.g. iWARP) use quite general processors

– Enable variety of algorithms on same hardware

• But dedicated interconnect channels

– Data transfer directly from register to register across channel

• Specialized, and same problems as SIMD

– General purpose systems work well for same algorithms (locality etc.)

y (i) = w 1 x (i) + w 2 x (i + 1) + w 3 x (i + 2) + w 4 x (i + 3)

x 8

y 3 y 2 y 1

x 7
x 6

x 5
x 4

x 3

w 4

x 2

x

w

x 1

w 3 w 2 w 1

x in

y in

x out

y out

x out = x

y out = y in + w x in
x = x in

Example: Systolic array for 1-D convolution

pag 50

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

64

1.2.7 Convergence: Generic Parallel Architecture

A generic modern multiprocessor

Node: processor(s), memory system, plus communication assist

• Network interface and communication controller

• Scalable network

• Convergence allows lots of innovation, now within framework

• Integration of assist with node, what operations, how efficiently...

• Modelo de programação -> efeito no Communication Assist

• Ver efeito para SAS, MP, Data Parallel e Systolic Array

Mem

Netw ork

P

$

Communication
assist (CA)

pag 51

1.3 Fundamental Design Issues

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

66

Understanding Parallel Architecture
Traditional taxonomies not very useful (SIMD/MIMD) (porque multiple general

purpose processors are dominant)

Focusing on programming models not enough, nor hardware structures

• Same one can be supported by radically different architectures

Foco deve ser em: Architectural distinctions that affect software

• Compilers, libraries, programs

Design of user/system and hardware/software interface (Decisões)

• Constrained from above by progr. models and below by technology

Guiding principles provided by layers

• What primitives are provided at communication abstraction

• How programming models map to these

• How they are mapped to hardware

Communication Abstraction: interface entre o modelo de

programação e a implem. do sistema: importância equivalente ao conjunto de

instruções em computadores convencionais

Modelo de

programação

Comm.

abstraction

HW

pag 52

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

67

Fundamental Design Issues

At any layer, interface (contrato entre HW e SW) aspect and
performance aspects (deve permitir melhoria individual)

Data named by threads; operations performed on named data; ordering
among operations

• Naming: How are logically shared data and/or processes referenced?

• Operations: What operations are provided on these data

• Ordering: How are accesses to data ordered and coordinated?

• Replication: How are data replicated to reduce communication?

• Communication Cost: Latency, bandwidth, overhead, occupancy

Understand at programming model first, since that sets requirements

Other issues

• Node Granularity: How to split between processors and memory?

• ... pag 53

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

68

Sequential Programming Model

Contract

• Naming: Can name any variable in virtual address space (exemplo
em uniprocessadores)

– Hardware (and perhaps compilers) does translation to physical addresses

• Operations: Loads and Stores

• Ordering: Sequential program order

Performance (sequential programming model)

• Rely on dependences on single location (mostly): dependence order

• Compilers and hardware violate other orders without getting caught

• Compiler: reordering and register allocation

• Hardware: out of order, pipeline bypassing, write buffers

• Transparent replication in caches
pag 53

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

69

SAS Programming Model

Naming: Any process can name any variable in shared space

Operations: loads and stores, plus those needed for ordering

Simplest Ordering Model:

• Within a process/thread: sequential program order

• Across threads: some interleaving (as in time-sharing)

• Additional orders through synchronization

• Again, compilers/hardware can violate orders without getting caught

– Different, more subtle ordering models also possible (discussed later)

pag 54

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

70

Synchronization

Mutual exclusion (locks)

• Ensure certain operations on certain data can be performed by
only one process at a time

• Room that only one person can enter at a time

• No ordering guarantees (ordem não interessa; o importante é que
apenas um tenha acesso por vez)

Event synchronization

• Ordering of events to preserve dependences

– Passagem de bastão

– e.g. producer —> consumer of data

• 3 main types:

– point-to-point

– global

– group
pag 57

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

71

Message Passing Programming Model

Naming: Processes can name private data directly (or can name
other processes) (private data space <-> global process space)

• No shared address space

Operations: Explicit communication through send and receive

• Send transfers data from private address space to another process

• Receive copies data from process to private address space

• Must be able to name processes

Ordering:

• Program order within a process

• Send and receive can provide pt to pt synch between processes

• Mutual exclusion inherent

Can construct global address space:

• Process number + address within process address space

• But no direct operations on these names

pag 55

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

72

Design Issues Apply at All Layers

Prog. model’s position provides constraints/goals for system

In fact, each interface between layers supports or takes a position on:

• Naming model

• Set of operations on names

• Ordering model

• Replication

• Communication performance

Any set of positions can be mapped to any other by software

Let’s see issues across layers

• How lower layers can support contracts of programming models

• Performance issues

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

73

Naming and Operations

Naming and operations in programming model can be directly
supported by lower levels (uniforme em todos os níveis de
abstração), or translated by compiler, libraries or OS

Example: Shared virtual address space in programming model

Alt1: Hardware interface supports shared (global) physical address
space

• Direct support by hardware through v-to-p mappings (comum para todos
os processadores), no software layers

Alt2: Hardware supports independent physical address spaces (cada
processador pode acessar áreas físicas distintas)

• Can provide SAS through OS, so in system/user interface

– v-to-p mappings only for data that are local

– remote data accesses incur page faults; brought in via page fault handlers

– same programming model, different hardware requirements and cost model

pag 55

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

74

Naming and Operations (contd)
Example: Implementing Message Passing

Alt1: Direct support at hardware interface

• But match and buffering benefit from more flexibility

Alt2: Support at sys/user interface or above in software (almost
always)

• Hardware interface provides basic data transport (well suited)

• Send/receive built in sw for flexibility (protection, buffering)

• Choices at user/system interface:

– Alt2.1: OS each time: expensive

– Alt2.2: OS sets up once/infrequently, then little sw involvement each
time (setup com OS e execução com HW)

• Alt2.3: Or lower interfaces provide SAS (virtual), and send/receive
built on top with buffers and loads/stores (leitura/escrita em buffers
+ sincronização)

Need to examine the issues and tradeoffs at every layer

• Frequencies and types of operations, costs
pag 56

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

75

Ordering

Message passing: no assumptions on orders across processes except
those imposed by send/receive pairs

SAS: How processes see the order of other processes’ references
defines semantics of SAS

• Ordering very important and subtle

• Uniprocessors play tricks with orders to gain parallelism or locality

• These are more important in multiprocessors

• Need to understand which old tricks are valid, and learn new ones

• How programs behave, what they rely on, and hardware implications

pag 57

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

76

1.3.3 Replication
Very important for reducing data transfer/communication

Again, depends on naming model

Uniprocessor: caches do it automatically

• Reduce communication with memory

Message Passing naming model at an interface

• A receive replicates, giving a new name; subsequently use new name

• Replication is explicit in software above that interface

SAS naming model at an interface

• A load brings in data transparently, so can replicate transparently

• Hardware caches do this, e.g. in shared physical address space

• OS can do it at page level in shared virtual address space, or objects

• No explicit renaming, many copies for same name: coherence problem

– in uniprocessors, “coherence” of copies is natural in memory hierarchy

Obs: communication = entre processos (não equivalente a data transfer)

pag 58

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

77

1.3.4 Communication Performance

Performance characteristics determine usage of operations at a layer

• Programmer, compilers etc make choices based on this (evitam
operações custosas)

Fundamentally, three characteristics:

• Latency: time taken for an operation

• Bandwidth: rate of performing operations

• Cost: impact on execution time of program

If processor does one thing at a time: bandwidth 1/latency (custo =
latência * nº de operações)

• But actually more complex in modern systems

Characteristics apply to overall operations, as well as individual
components of a system, however small

We’ll focus on communication or data transfer across nodes

pag 59

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

78

Simple Example (expl 1.2)
Component performs an operation in 100ns (latência)

(portanto) Simple bandwidth: 10 Mops

Internally pipeline depth 10 => bandwidth 100 Mops

• Rate determined by slowest stage of pipeline, not overall latency (se
operação executada a cada 200ns -> bandwitdh = 5Mops ->pipeline não
efetivo)

Delivered bandwidth on application depends on initiation frequency
(quantas vezes sequência é executada)

Suppose application performs 100 M operations. What is cost?

• op count * op latency gives 10 sec (upper bound) (100E6*100E-9=10)
(se não é possível usar pipeline)

• op count / peak op rate gives 1 sec (lower bound) (se for possível uso
completo do pipeline -> 10x)

– assumes full overlap of latency with useful work, so just issue cost

• if application can do 50 ns of useful work (em média) before depending
on result of op, cost to application is the other 50ns of latency
(100E6*50E-9=5)

pag 60

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

79

Linear Model of Data Transfer Latency
Transfer time (n) = T0 + n/B

• T0 = startup; n= bytes; B= bandwidth

• Model useful for message passing (T0= latência 1ºbit), memory access (T0=
tempo de acesso) , bus (T0= arbitration), pipeline (T0= encher pipeline)
vector ops etc

As n increases, bandwidth approaches

asymptotic rate B

How quickly it approaches depends on T0

Size needed for half bandwidth (half-power point):

 n1/2 = T0 * B (ver errata no livro texto)

But linear model not enough

• When can next transfer be initiated? Can cost be overlapped?

• Need to know how transfer is performed

pag 60

B

BW

n

B/2

n1/2

T BT0+n

n B n
BW = =

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

80

Communication Cost Model

Comm Time per message= Overhead + Assist Occupancy +

 Network Delay + Size/Bandwidth + Contention

= ov + oc + l + n/B + Tc

Overhead and assist occupancy may be f(n) or not

Each component along the way has occupancy and delay

• Overall delay is sum of delays

• Overall occupancy (1/bandwidth) is biggest of occupancies (gargalo)

• Próxima transferência de dados só pode começar se recursos críticos estão
livres (assumindo que não há buffers no caminho)

Comm Cost = frequency * (Comm time - overlap)

General model for data transfer: applies to cache misses too

pag 61-63

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

81

Summary of Design Issues

Functional and performance issues apply at all layers

Functional: Naming, operations and ordering

Performance: Organization, latency, bandwidth, overhead, occupancy

Replication and communication are deeply related

• Management depends on naming model

Goal of architects: design against frequency and type of operations
that occur at communication abstraction, constrained by tradeoffs
from above or below

• Hardware/software tradeoffs

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

82

Recap

Parallel architecture is important thread in evolution of architecture

• At all levels

• Multiple processor level now in mainstream of computing

Exotic designs have contributed much, but given way to convergence

• Push of technology, cost and application performance

• Basic processor-memory architecture is the same

• Key architectural issue is in communication architecture

– How communication is integrated into memory and I/O system on node

Fundamental design issues

• Functional: naming, operations, ordering

• Performance: organization, replication, performance characteristics

Design decisions driven by workload-driven evaluation

• Integral part of the engineering focus

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

83

Outline for Rest of Class

Understanding parallel programs as workloads
– Much more variation, less consensus and greater impact than in sequential

• What they look like in major programming models (Ch. 2)

• Programming for performance: interactions with architecture (Ch. 3)

• Methodologies for workload-driven architectural evaluation (Ch. 4)

Cache-coherent multiprocessors with centralized shared memory

• Basic logical design, tradeoffs, implications for software (Ch 5)

• Physical design, deeper logical design issues, case studies (Ch 6)

Scalable systems

• Design for scalability and realizing programming models (Ch 7)

• Hardware cache coherence with distributed memory (Ch 8)

• Hardware-software tradeoffs for scalable coherent SAS (Ch 9)

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

84

Outline (contd.)

Interconnection networks (Ch 10)

Latency tolerance (Ch 11)

Future directions (Ch 12)

Overall: conceptual foundations and engineering issues across broad
range of scales of design, all of which are important

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

85

Top 500 em jun/08 (5 primeiros)

• The new No. 1 system, built by IBM for the U.S. Department of
Energy’s Los Alamos National Laboratory and and named
“Roadrunner,” by LANL after the state bird of New Mexico
achieved performance of 1.026 petaflop/s—becoming the first
supercomputer ever to reach this milestone. At the same time,
Roadrunner is also one of the most energy efficient systems on the
TOP500

• Blue Gene/L, with a performance of 478.2 teraflop/s at DOE’s
Lawrence Livermore National Laboratory

• IBM BlueGene/P (450.3 teraflop/s) at DOE’s Argonne National
Laboratory,

• Sun SunBlade x6420 “Ranger” system (326 teraflop/s) at the Texas
Advanced Computing Center at the University of Texas – Austin

• The upgraded Cray XT4 “Jaguar” (205 teraflop/s) at DOE’s Oak
Ridge National Laboratory

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

86

Top 500 em jul/07:projeções

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

87

Top 500 em jul/08

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

88

Top 500 em jun/09 (10 primeiros)

1 DOE/NNSA/LANL United States Roadrunner - BladeCenter QS22/LS21

Cluster, PowerXCell 8i 3.2 Ghz / Opteron

DC 1.8 GHz, Voltaire Infiniband

IBM

2 Oak Ridge National

Laboratory

United States Jaguar - Cray XT5 QC 2.3 GHz Cray Inc.

3 Forschungszentrum Juelich

(FZJ)

Germany JUGENE - Blue Gene/P Solution IBM

4 NASA/Ames Research

Center/NAS

United States Pleiades - SGI Altix ICE 8200EX, Xeon QC

3.0/2.66 GHz

SGI

5 DOE/NNSA/LLNL United States BlueGene/L - eServer Blue Gene Solution IBM

6 National Institute for

Computational

Sciences/University of

Tennessee

United States Kraken XT5 - Cray XT5 QC 2.3 GHz Cray Inc.

7 Argonne National Laboratory United States Blue Gene/P Solution IBM

8 Texas Advanced Computing

Center/Univ. of Texas

United States Ranger - SunBlade x6420, Opteron QC 2.3

Ghz, Infiniband

Sun

Microsystems

9 DOE/NNSA/LLNL United States Dawn - Blue Gene/P Solution IBM

10 Forschungszentrum Juelich

(FZJ)

Germany JUROPA - Sun Constellation, NovaScale

R422-E2, Intel Xeon X5570, 2.93 GHz, Sun

M9/Mellanox QDR Infiniband/Partec

Parastation

Bull SA

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

89

Top 500 em jun/09

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

90

Projeções em jun/09

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

91

Top em jun/2010
1 Jaguar - Cray XT5-HE Opteron Six Core 2.6 GHz

2 Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla
C2050 GPU (China)

3 Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i 3.2
Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband

4 Kraken XT5 - Cray XT5-HE Opteron Six Core 2.6 GHz

5 JUGENE - Blue Gene/P Solution

6 Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC
3.0/Xeon Westmere 2.93 Ghz, Infiniband

7 Tianhe-1 - NUDT TH-1 Cluster, Xeon E5540/E5450, ATI Radeon
HD 4870 2, Infiniband

8 BlueGene/L - eServer Blue Gene Solution

9 Intrepid - Blue Gene/P Solution

10 Red Sky - Sun Blade x6275, Xeon X55xx 2.93 Ghz, Infiniband

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

92

Top 500 em jun/2010

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

93

Top em jun/2011

 Site Computer

1 RIKEN Advanced Institute for
Computational Science (AICS) Japan

K computer, SPARC64 VIIIfx 2.0GHz, Tofu InterConnect
Fujitsu

2 National Supercomputing Center in
Tianjin China

Tianhe-1A - NUDT TH MPP, X5670 2.93Ghz 6C, NVIDIA
GPU, FT-1000 8C NUDT

3 DOE/SC/Oak Ridge National
Laboratory United States

Jaguar - Cray XT5-HE Opteron 6-core 2.6 GHz Cray
Inc.

4 National Supercomputing Centre in
Shenzhen (NSCS) China

Nebulae - Dawning TC3600 Blade, Intel X5650, NVidia Tesla
C2050 GPU Dawning

5 GSIC Center, Tokyo Institute of
Technology Japan

TSUBAME 2.0 - HP ProLiant SL390s G7 Xeon 6C X5670,
Nvidia GPU, Linux/Windows NEC/HP

6 DOE/NNSA/LANL/SNL
United States

Cielo - Cray XE6 8-core 2.4 GHz Cray Inc.

7 NASA/Ames Research Center/NAS
United States

Pleiades - SGI Altix ICE 8200EX/8400EX, Xeon HT QC
3.0/Xeon 5570/5670 2.93 Ghz, Infiniband SGI

8 DOE/SC/LBNL/NERSC United
States

Hopper - Cray XE6 12-core 2.1 GHz Cray Inc.

9 Commissariat a l'Energie Atomique
(CEA) France

Tera-100 - Bull bullx super-node S6010/S6030 Bull
SA

10 DOE/NNSA/LANL United States Roadrunner - BladeCenter QS22/LS21 Cluster, PowerXCell 8i
3.2 Ghz / Opteron DC 1.8 GHz, Voltaire Infiniband IBM

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

94

Top 500 em jun/2011

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

95

Projected Performance @ 2011

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

96

TOP500 jun/2012

Rank Site Computer

1
DOE/NNSA/LLNL

United States

Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom

IBM

2

RIKEN Advanced Institute for Computational Science

(AICS)

Japan

K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect

Fujitsu

3
DOE/SC/Argonne National Laboratory

United States

Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom

IBM

4
Leibniz Rechenzentrum

Germany

SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C

2.70GHz, Infiniband FDR

IBM

5
National Supercomputing Center in Tianjin

China

Tianhe-1A - NUDT YH MPP, Xeon X5670 6C 2.93 GHz,

NVIDIA 2050

NUDT

6
DOE/SC/Oak Ridge National Laboratory

United States

Jaguar - Cray XK6, Opteron 6274 16C 2.200GHz, Cray

Gemini interconnect, NVIDIA 2090

Cray Inc.

7
CINECA

Italy

Fermi - BlueGene/Q, Power BQC 16C 1.60GHz, Custom

IBM

8
Forschungszentrum Juelich (FZJ)

Germany

JuQUEEN - BlueGene/Q, Power BQC 16C 1.60GHz, Custom

IBM

9
CEA/TGCC-GENCI

France

Curie thin nodes - Bullx B510, Xeon E5-2680 8C 2.700GHz,

Infiniband QDR

Bull

10
National Supercomputing Centre in Shenzhen (NSCS)

China

Nebulae - Dawning TC3600 Blade System, Xeon X5650 6C

2.66GHz, Infiniband QDR, NVIDIA 2050

Dawning

http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/177719
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176929
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/176544
http://www.top500.org/system/177720
http://www.top500.org/system/177720
http://www.top500.org/system/177720
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/site/47871
http://www.top500.org/system/177722
http://www.top500.org/system/177722
http://www.top500.org/system/177722
http://www.top500.org/site/50414
http://www.top500.org/site/50414
http://www.top500.org/site/50414
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818
http://www.top500.org/system/177818

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

97

TOP500 2012

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

98

TOP500 2012 - Highlights

Sequoia, an IBM BlueGene/Q system is the No. 1 system on the TOP500. It was first delivered to the

Lawrence Livermore National Laboratory in 2011and now full deployed with an impressive 16.32 Petaflop/s

on the Linpack benchmark using 1,572,864 cores. Sequoia is one of the most energy efficient systems on

the list consuming a total of 7.89.

Fujitsu’s “K Computer” installed at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe,

Japan, is now the No. 2 system on the TOP500 list with10.51 Pflop/s on the Linpack benchmark using

705,024 SPARC64 processing cores.

A second BlueGene/Q system (Mira) installed at Argonne National Laboratory is now at No. 3 with 8.15

Petaflop/s on the Linpack benchmark using 786,432 cores.

The most powerful system in Europe and No.4 on the List is SuperMUC, an IBM iDataplex system with Intel

Sandybridge installed at Leibniz Rechenzentrum in Germany.

The Chinese Tianhe-1A system, the No. 1 on the TOP500 in November 2010 is now the No. 5 with 2.57

Pflop/s Linpack performance.

The largest U.S. system in the previous list, the upgraded Jaguar, installed at the Oak Ridge National

Laboratory, is holding on to the No. 6 spot with 1.94 Pflop/s Linpack performance.

Roadrunner, the first system to break the petaflop barrier in June 2008, is now listed at No 19.

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

99

TOP500 2012 - Highlights

There are 20 petaflop/s systems in the TOP500 List

The two Chinese systems at No. 5 and No. 10 and the Japanese Tsubame 2.0 system at No. 14 are all using

NVIDIA GPUs to accelerate computation and a total of 57 systems on the list are using Accelerator/Co-

Processor technology.

The number of systems installed in China decreased from 74 in the previous to 68 in the current list. China

still holds the No. 2 position as a user of HPC, ahead of Japan, UK, France, and Germany. Japan holds

the No. 2 position in performance share.

Intel continues to provide the processors for the largest share (74.2 percent) of TOP500 systems.

Intel’s Westmere processors increased their presence in the list with 246 systems, (240 in 2011).

Already 74.8 percent of the systems use processors with six or more cores.

57 systems use accelerators or co-processors (up from 39 six month ago), 52 of these use NVIDIA chips, two

use Cell processors, and two use ATI Radeon and a one new system with Intel MIC technology.

IBM’s BlueGene/Q is now the most popular system in the TOP10 with 4 entries including the No. 1 and No. 3.

Italy makes a first debut in the TOP10 with an IBM BlueGene/Q system installed at CINECA. The system is

at position No. 7 in the List with 1.69 Pflop/s Linpack performance.

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

100

TOP Green jun/2012

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

101

Models of Shared-Memory Multiprocessors

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices

M M M

Network

P

$

P

$

P

$

Network

D

P

C

D

P

C

D

P

C

Distributed memory or

 Non-uniform Memory Access (NUMA) Model

Uniform Memory Access (UMA) Model

or Symmetric Memory Processors (SMPs). Interconnect:

Bus, Crossbar, Multistage network

P: Processor

M: Memory

C: Cache

D: Cache directory

Cache-Only Memory Architecture (COMA)

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

102

Performance flatlining

Figure courtesy of

Kunle Olukotun,

Lance Hammond, Herb

Sutter, and

Burton Smith

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

103

Previsão de crescimento do clock

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

104

Previsão de crescimento do clock (ITRS)

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

105

Changing Conventional Wisdom

Old Conventional Wisdom: Power is free, Transistors expensive

New Conventional Wisdom: “Power wall” Power expensive, Xtors free
(Can put more on chip than can afford to turn on)

Old CW: Sufficiently increasing Instruction Level Parallelism via compilers,
innovation (Out-of-order, speculation, VLIW, …)

New CW: “ILP wall” law of diminishing returns on more HW for ILP

Old CW: Multiplies are slow, Memory access is fast

New CW: “Memory wall” Memory slow, multiplies fast
(200 clock cycles to DRAM memory, 4 clocks for multiply)

Old CW: Uniprocessor performance 2X / 1.5 yrs

New CW: Power Wall + ILP Wall + Memory Wall = Brick Wall

• Uniprocessor performance now 2X / 5(?) yrs

 Sea change in chip design: multiple “cores”
 (2X processors per chip / ~ 2 years)

– More simpler processors are more power efficient

Fonte: Doug L Hoffman, Patterson 2008

A
d

a
p

ta
d
o
 d

o
s
 s

lid
e

s
 d

a
 e

d
it
o

ra
 p

o
r

M
a

ri
o

 C
ô
rt

e
s
 –

 I
C

/U
n

ic
a
m

p

106

Sea Change in Chip Design

Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,

10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

 RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ~ 0.02 mm2 at 65 nm

– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?

– Proximity Communication via capacitive coupling at > 1 TB/s ?
(Ivan Sutherland @ Sun / Berkeley)

http://www.t-ram.com/
http://www.t-ram.com/
http://www.t-ram.com/

