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Topicos - estrutura
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« Parte B

— Instruction delivery and speculation
— Limitations of ILP

— ILP and memory issues

— Multithreading



3.8 Dynamic Scheduling,

IC-UNICAMP Multiple ISSU.G, and Speculation
« Ateé agora, vistos separadamente
— Dynamic scheduling, multiple issue, speculation
 Modern microarchitectures:
— Dynamic scheduling + multiple issue + speculation
» Hipodtese simplificadora: 2 issues / ciclo

« Extensao do alg. Tomasulo: multiple issue supersacalar pipeline,
separate integer, LD/DT, FP units (add, mult)

— FUs: initiate operation every clock
» Issue to RS in-order. Any two operations (every cycle)
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Figure 3.17 The basic organization of a multiple issue processor with speculation. In this case, the organization
could allow a FP multiply, FP add, integer, and load/store to all issues simultaneously (assuming one issue per clock
per functional unit). Note that several datapaths must be widened to support multiple issues: the CDB, the operand

buses, and, critically, the instruction issue logic, which is not shown in this figure. The last is a difficult problem, as we
discuss in the text,
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IC-AMP Extended Tomasulo

« Multiple issue / cycle: muito complicado.
— ex: as duas operacoes podem ter dependéncia e tabelas tem que se
atualizadas em paralelo (no mesmo clk)
 Two approaches:

— Assign reservation stations and update pipeline control table in half
clock cycles

» Only supports 2 instructions/clock

— Design logic to handle any possible dependencies between the
instructions

— Hybrid approaches

» |ssue logic can become bottleneck
— (ver Fig 3.18, para apenas um caso)
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IC-UNICAMP

Complexidade:
apenas uma
dependéncia

insl = LD
ins2 = op FP com

operando fornecido
pelo LD

MO401 - 2013

Action or bookkeeping

Comments

if (RegisterStat{rsi]. !uliiun- flight instr, writes ri®*/ Updating the resecvation tables for the load

ih = RegisterStat([rsl rier;

if [m{h] Beady) /* Instr :mrpmm already */

rl] ¥ «— ROB{N].Velee; BS[rl].05 «— 0O;})
sloe (RS[ri].Q0 « h;} /* wait for instruction */
j else [RS{r1].Vv{ « megs[rsl; RSIrl].Q « O;);

IRS

rl] Busy « yes; ®5[rl].Deat o~ 51;

Instruction « Load; ROB[b1] Dest + rdl;

[ .Ready + no;

gS[r].A « dmml; RegisterStal[rt]l] .Reorder « bl;
miit&ritat{rtll JBusy +— yos; AOR[b1] .Dest « rtl:

nstruction, whach has o siephe source Gperamd
Becaie this is the firs inanaction in this [sae
bundle, it looks no different than what would
sormally happes for 2 kad

BS[r2].01 « bl;} /* wait for load instruction */

Since we know that the first operand of the F#*
aperution is from the load, this step simply
updates the reservatzon station bo point b the
load. Matice that the dependence must be
mlﬁ:ﬂ on the fly and the ROB entres mug
¢ated dunng this By i thad the
reaervalon ables can be comectly upadated

if Iﬂ.ngn_teritn[rti‘] .M{} JHin=Tlight imstir writes ri#/

ih — RegisierStat[rid).Recrder;

if {H:ﬂ}h],hﬂzlf' Imstr completed already */

r2] Wk o ROB[A].Value; RS[r2]. 0k « 0;]
else (RS[rZ].0k « by} /* wait for instroction */
| else {RS[r2].Vk « Fl:ﬂ![r‘t?h RS[r2] .0k + 0;);

RS

nnut&r'itat rdz] .Reorder « bZ;
muurﬁtat rd2] Busy — yas;
[I:E] Dest +— rd2;

Since we ssumed that the second operand of
the FP inurucison weas from s prsos ivsae bundic.
thirk Slep kooks bike wt woidd o the single-rwe
casc. Of cowrse, if thes inttruction wak

on something m the shme o
baindle ihe tables I-'-:mhfmnd b0 be wpdated
uding the assigned reservation baffer

[nskruction « FP operaticn; FII:IB[hﬂ Dest ' rd2;

BS[rE] . Busy o yos; RS[r?].Dest o b2;
l&!h;i Ready « noy

This section simply updates the tables for the FP
operstion, and is independent of the load OF
oommie, if further mstruecbons o this Msue
bumlltd-:pcndn:]iruﬂtFqui:imtuwld
hagipens with o four-issue superscalar), ihe
upedaies 1o the nesarvaiaon hles for thoae
srinocte s wonihd be effecyed by thes imitnachon

Figure 3.18 The issue steps for a pair of dependent instructions (called 1 and 2} where instruction 1 is FF load
and Instruction 2 is an FP opefation whose first aperand is the result of the load instruction; rl and r2 are the
nssigned reservation stations for the instructions; and bl and b2 are the assigned reorder buffer entries. For the
lisuing Instructions, rdl and rd2 are the destinatlons; rsl, re2, and riZ are the sources {the load only has one
source); vl and r2 are the resarvation statlons allocated: and b1 and b2 are the assigned ROB entries. RS 15 the res-
#rvation station data structure. BeglsterStat is the register data structure, Regs represents the actual registers
and A08 is the rearder buffer data structure. Matice that we need 1o have assigned reorder buffer entries for this
kogic 10 operate properly and recall that all these updates happen in 2 single clock cycle in parallel, not

séguentialyt
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Multiple Issue

IC-UNICAMP

* 1-Pre-assign a RS and ROB entry. Limit the number of instructions of a
given class that can be issued in a “bundle”

— l.e. on FP, one integer, one load, one store
« 2- Examine all the dependencies among the instructions in the bundle

» 3- If dependencies exist in bundle, encode them in reservation stations
and ROB

« All above: a single clock cycle
» At pipeline backend: need multiple completion/commit

* Intel i7 usa este esquema
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Example

Exmpl p 200: multiple 1ssue
with and without speculation

Consider the execution of the following loop, which increments each element of
an integer array, on a two-issue processor, once without speculation and once
with speculation:

Loop: LD R2,0(R1) :R2=array element
DADDIU  RZ,R2,#1 sincrement R2
SD R2,0(R1) ;store result
DADDIU  R1,R1,#8 sincrement pointer
BNE R2,R3,L00P ;branch if not last element

Assume that there are separate integer functional units for effective address
calculation, for ALU operations, and for branch condition evaluation. Create &
table for the first three iterations of this loop for both processors. Assume that up
to two instructions of any type can commit per clock.



& No speculation

IC-U

Memory

Issues at  Executesat  access at Write CDB at
Iteration clock cycle clockcycle clock cycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU RZ2,RZ2,#1 1 5 6 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BNE R2,R3,LO00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU RZ2,RZ2,#1 4 11 12 Wait for LW
2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE RZ,R3,LO0P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU RZ2,RZ2,#1 7 17 18 Wait for LW
3 sD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 8 14 15 Wait for BNE
3 BNE RZ,R3,LO0P 9 19 Wait for DADDIU

Figure 3.19 The time of issue, execution, and writing result for a dual-issue version of our pipeline without
speculation. Note that the LD following the BNE cannot start execution earlier because it must wait until the branch
outcome is determined. This type of program, with data-dependent branches that cannot be resolved earlier, shows
the strength of speculation. Separate functional units for address calculation, ALU operations, and branch-condition
evaluation allow multiple instructions to execute in the same cycle. Figure 3.20 shows this example with speculation.
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With speculation

IC-UNICAMP
Write
Issues Executes Readaccess CDB at Commits
Iteration atclock atclock at clock clock at clock
number Instructions number number number number number Comment
] LD R2,0(R1) ] 2 3 4 5 First issue
1 DADDIU R2,R2,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
| DADDIU R1,R1,#8 2 3 4 ) Commit in order
1 BNE R2,R3,L00P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 9 No execute delay
2 DADDIU R2,R2,#1 4 8 10 Wait for LW
2 SD RZ,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE R2,R3,L00P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 g 10 2 Earliest possible
3 DADDIU R2,RZ2,#1 7 11 12 13 Wait for LW
3 SD RZ,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,R1,#8 8 0 10 14 Executes earlier
3 BNE R2,R3,LO0P 9 13 14 Wait for DADDIU

Figure 3.20 The time of issue, execution, and writing result for a dual-issue version of our pipeline with specula-
tion. Note that the LD following the BNE can start execution early because it is speculative,
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3.9 Advanced Techniques

IC-UNICAMP

* Objetivo: possibilitar alta taxa de execucao de instrucdes
por ciclo
— Increasing instruction delivery bandwidth
— Advanced speculation techniques
— Value prediction
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Animacoes e simulacoes
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 Ver site
— http://www.williamstallings.com/COA/Animation/Links.html|

« Contém varias simulacgoes:
— Branch prediction
— Branch Target Buffer
— Loop unrolling
— Pipeline with static vs. dynamic scheduling
— Reorder Buffer Simulator
— Scoreboarding technique for dynamic scheduling:
— Tomasulo's Algorithm:



Increasing instruction fetch bandwidth

IC-UNICAMP

* Need high instruction bandwidth (from Instr. Cache to Issue
Unit)
— problema: como saber antes da decodificacao se instrucio é desvio
e qual € o proximo PC?
« Branch-Target buffers
— Next PC prediction buffer, indexed by current PC

« Diferencas com o branch prediction buffer ja visto

— no branch prediction buffer:

» apos decodificagdo; s6 branches sao tratados; index pode apontar para
outro branch

— no Branch-Target buffer

« antes da decodificacao; todas as instrucées sao tratadas; “tag” do buffer
identifica univocamente somente branches; somente “taken branches”
sao armazenados > demais instrucdées seguem o fetch normalmente

13
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IC-UNICAMP PC of instruction to fetch

Look up Predicted PC

Branch_ Number of

entries
in branch-

Target arget
Buffer

r’f No: instruction is
- = not predicted to be Branch
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted uniaken
PC should be used as the next PC
e D

Figure 3.21 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruction 5°
addresses stored in the first column; these represent the addresses of known branches. If the PC matches one of 2
these entries, then the instruction being fetched is a taken branch, and the second field, predicted PC, contains the
prediction for the next PC after the branch. Fetching begins immediately at that address. The third field, which is
optional, may be used for extra prediction state bits.
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Figure 3.22 The steps involved in handling an instruction with a branch-target buffer. 15



Exmpl p205: penalidade
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Instruction in buffer Prediction Actual branch Penalty cycles
Yes Taken Taken 0
Yes Taken Not taken 2
No Taken 2
No - Not taken 0

Figure 3.23 Penalties for all possible combinations of whether the branch is in the
buffer and what it actually does, assuming we store only taken branches in the
buffer. There is no branch penalty if everything is correctly predicted and the branch is
found in the target buffer. If the branch is not correctly predicted, the penalty is equal
to one clock cycle to update the buffer with the correct information (during which an
instruction cannot be fetched) and one clock cycle, if needed, to restart fetching the
next correct instruction for the branch. If the branch is not found and taken, a two-cycle
penailty is encountered, during which time the buffer is updated.

Example Determine the total branch penalty for a branch-target buffer assuming the pen-
alty cycles for individual mispredictions from Figure 3.23. Make the following
assumptions about the prediction accuracy and hit rate:

w Prediction accuracy is 90% (for instructions in the buffer).
m Hit rate in the buffer is 90% (for branches predicted taken).

16



Exmpl p205: penalidade

IC-UNICAMP

Answer We compute the penalty by looking at the probability of two events: the branch is
predicted taken but ends up being not taken, and the branch is taken but is not
found in the buffer. Both carry a penalty of two cycles.

Probability (branch in buffer, but actually not taken) = Percent buffer hit rate x Percent incorrect predictions
= 90% x10% = 0.09
Probability (branch not in buffer, but actually taken) = 10%
Branch penalty = (0.09 +0.10) x 2
Branch penalty = 0.38

This penalty compares with a branch penalty for delayed branches, which we
evaluate in Appendix C, of about 0.5 clock cycles per branch. Remember,
thoueh. that the improvement from dvnamic branch prediction will grow as the
pipeline length and, hence, the branch delay grows: in addition, better predictors

will yield a larger performance advantage. Modern high-performance processors
have branch misprediction delays on the order of 15 clock cycles; clearly, accu-
rate prediction is critical!

17



e Branch Folding

* Optimization:
— Larger branch-target buffer

— Add target instruction into buffer to deal with longer decoding time required
by larger buffer

— Allows “Branch folding”
« Branch folding

— With unconditional branch: o hardware permite “pular” o jump (cuja unica
funcao € mudar o PC)

— |n some cases, also with conditional branch
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,C_AM,, Return Address Predictor

* Most unconditional branches come from function returns
— Indirect jump: JR (target muda em tempo de execucgao)

— SPEC95: retorno de procedimento = 15% de todos os branches e
aproximadamente 100% dos desvios incondicionais

« The same procedure can be called from multiple sites

— Causes the buffer to potentially forget about the return address from
previous calls (changes at runtime)

— SPEC CPU95: retorno de procedimento - misprediction = 40%

» Create return address buffer organized as a stack
— melhora consideravelmente o desempenho (fig 3.24)

* (usado pelo Intel Core e AMD Phenom)

uonenoadg pue AJsAlj@ uononiisu| Joj senbiuyos | "Apy
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Figure 3.24 Prediction accuracy for a return address buffer operated as a stack on a number of
SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses predicted correctly. A buffer
of 0 entries implies that the standard branch prediction is used. Since call depths are typically not large,
with some exceptions, a modest buffer works well. These data come from Skadron et al. [1999] and use a
fix-up mechanism to prevent corruption of the cached return addresses.



Integrated Instruction Fetch Unit
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« Design monolithic unit that performs:
— Integrated branch prediction:
» parte da instruction fetch
— Instruction prefetch
* Fetch ahead

— Instruction memory access and buffering
« Accessing multiple cache lines
» Deal (hide) with crossing cache lines

* (used by all high-end processors)
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Register Renaming
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* Register renaming vs. reorder buffers

— Instead of virtual registers from reservation stations and reorder
buffer, create a single register pool
« Contains visible registers and virtual registers
— Use hardware-based map to rename registers during issue
— WAW and WAR hazards are avoided
— Speculation recovery occurs by copying during commit
— Still need a ROB-like queue to update table in order
— Simplifies commit:
* Record that mapping between architectural register and physical register
IS no longer speculative
* Free up physical register used to hold older value
* In other words: SWAP physical registers on commit

— Physical register de-allocation is more difficult

uonenoadg pue AJsAlj@ uononiisu| Joj senbiuyos | "Apy
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Integrated Issue and Renaming

IC-UNICAMP

« Combining instruction issue with register renaming:

— Issue logic pre-reserves enough physical registers for the bundle (ex:
4 registers for a 4 instruction bundle, 1 reg / result)

— Issue logic finds dependencies within bundle, maps registers as
necessary

— Issue logic finds dependencies between current bundle and already
in-flight bundles, maps registers as necessary

« Como no ROB, o hardware deve determinar as
dependéncias e atualizar as tabelas de renaming em um
unico clock

— quanto maior o numero de instrugcdes emitidas por clock, mais
complicado

uonenoadg pue AJsAlj@ uononiisu| Joj senbiuyos | "Apy
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How Much?
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 How much to speculate

— Mis-speculation degrades performance and power relative to no
speculation

« May cause additional misses (cache, TLB)

— Prevent speculative code from causing higher costing misses (e.g.

L2)

» Speculating through multiple branches

— Poderia ser util em

 very high branch frequency

* branch clustering

* long delay in FUs
— Complicates speculation recovery (mas o resto seria simples)
— Ate 2011, esquema nao utilizado comercialmente

* No processor can resolve multiple branches per cycle

uonenoadg pue AJsAlj@ uononiisu| Joj senbiuyos | "Apy
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Energy Efficiency
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« Custo energético da especulacao errada
— Trabalho inutil que deve ser descartado
— Custo adicional da recuperacao

* Speculation and energy efficiency
— Note: speculation is only energy efficient when it significantly
improves performance
« Se um numero grande de instrugcdes desnecessarias estao
sendo executadas, € provavel que, além do custo de
energia, também o desempenho esta piorando

— fig 3.25 - resultado ruim para inteiros - provavel que cause baixa
eficiéncia energética

uonenoadg pue AJsAlj@ uononiisu| Joj senbiuyos | "Apy
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S Fracao de instru¢des desnecessarias

IC-UNICAMP
45%
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35% -
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Figure 3.25 The fraction of instructions that are executed as a result of misspeculation is
typically much higher for integer Programs (the first five) versus FP programs (the last five).
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Value prediction

IC-UNICAMP
« Tenta predizer o resultado das instrucoes
— Em geral, dificil
« (Casos de aplicabilidade:

— Loads that load from a pool of constants (or values that change
unfrequently)

— Instruction that produces a value from a small set of values (possivel
prever de comportamentos observados anteriormente)
* Not been incorporated into modern processors

« Similar idea — address aliasing prediction — is used on some
processors

— para prever se dois ST ou um LD e um ST apontam para o mesmo
endereco

— caso negativo, instrucoes podem ser reordenadas
— em uso limitado ainda hoje
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3.10 Limitacoes do ILP
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« |LP: pipelined processors (60°s), key to perfomance
improvements (80°'s 90°'s)

» Estudos atuais - limitacoes
— especulacao muito agressivas - alto custo (area, power)
— mesmo os principais defensores - mudanca de idéia (2005)

« (artigo importante: Wall 1993)

28



Modelo de HW para estudo

IC-UNICAMP .
 Modelo de hardware para estudos: computador ideal, onde

0 unico limite ao ILP € imposto pelo data flow do programa
— 1. Infinite register renaming

— 2. Perfect branch prediction

— 3. Perfect jump prediction (including indirect jump register)

— 4. Perfect memory address aliasing analysis: todos os enderecos
efetivos sdo conhecidos (possivel reordenar LD/ST)

— 5. Perfect caches: acessos uniformes com 1 ciclo

* Hipoteses 2 e 3 eliminam control dependencies; 1 e 4 todas
as outras dependéncias exceto true data dependences

» Prefetching infinito, capacidade de multiplo (infinito) issue
 FUs tem laténcia de 1 ciclo

« Esta maquina ideal € irrealizavel hoje

— Power 7 (mais avancado superescalar): issue 6 instructions / clock,
SMT, large set of renaming registers (allowing 100°s instructions to

be.in, flight) 29



ILP em um processador perfeito
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« Set of benchmarks - program trace - schedule as early as
possible (perfect branch prediction)

 Measure: average instruction issue rate

gcc 55

espresso 63

li 18

foppp | 75
doduc 119

tomcatv 150

SPEC benchmarks

0O 20 40 60 80 100 120 140 160
Instruction issues per cycle

Figure 3.26 ILP available in a perfect processor for six of the SPEC92 benchmarks. The first three
programs are integer programs, and the last three are floating-point programs. The floating-point programs
are loop intensive and have large amounts of loop-level parallelism.
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ILP para processadores realizaveis (hoje)

IC-UNICAMP o -..:I.T size
 Até 64 instruction issues / ' " E
clock (10x valor disponivel = ?
hoje) |
« Tournament predictor com 1K o =
linhas e resultado (predictor) |-
de 16 linhas 8 e
« Perfect desambiguation of | T

memory references, on the fly

Very large register renaming
set

tomicaly

l-l I.[Z EILI BIL' ﬂ1."_“' :Il.: EILI
Instruction Eewes per C:,-‘-:IE

Figure 3.27 The amount of parallelism available versus the window size for a variety of integer and
floating-point programs with up to 64 arbitrary instruction issues per clock. Although there are fewer
renaming registers than the window size, the fact that all operations have one-cycle latency and the number
of renaming registers equals the issue width allows the processor to exploit parallelism within the entire
window. In a real implementation, the window size and the number of renaming registers must be balanced to
prevent one of these factors from overly constraining the issue rate.
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. Exmpl p 218: compara¢ao desempenho
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Example Consider the following three hypothetical, but not atypical, processors, which we
run with the SPEC gcc benchmark:

1. A simple MIPS two-issue static pipe running at a clock rate of 4 GHz and
achieving a pipeline CPI of 0.8. This processor has a cache system that yields
0.005 misses per instruction.

2. A deeply pipelined version of a two-issue MIPS processor with slightly
smaller caches and a 5 GHz clock rate. The pipeline CPI of the processor 1s
1.0, and the smaller caches yield (L0055 misses per instruction on average.

3. A speculative superscalar with a 64-entry window. It achieves one-half of the
ideal issue rate measured for this window size. (Use the data in Figure 3.27.)
This processor has the smallest caches, which lead to 0.01 misses per instruc-
tion, but it hides 25% of the miss penalty on every miss by dynamic schedul-
ing. This processor has a 2.5 GHz clock.

Assume that the main memory time (which sets the miss penalty) is 50 ns, Deter-
mine the relative performance of these three processors.

32



> Exmpl p 218: comparacao desempenho (2)

Answer  First, we use the miss penalty and miss rate information to compute the contribu-
tion to CPI from cache misses for each configuration. We do this with the follow-

ing formula:
Cache CPI = Misses per instruction x Miss penalty
We need to compute the miss penalties for each system:

Memory access time
Clock cycle

Miss penalty =

The clock cycle times for the processors are 250 ps, 200 ps, and 400 ps, respec-
tively. Hence, the miss penalties are

Miss penalty, = %%%% = 200 cycles
Miss penalty, = lf:j?]n;s = 250 cycles
Miss penalty, = El?—juja—?:ff = 94 cycles

Applying this for each cache:

Cache CPI; =0.005x200= 1.0
Cache CP1,=0.0055x250= 1.4
Cache CP1, =0.01 x94 =0.94

33



We know the pipeline CPI contribution for everything but processor 3: its pipe-
line CPI is given by:

IC-UNICAMP
inaline o = ¥ e B s
Pipeline CPl, = Issuerate ~ Ox05 45 0

Now we can find the CPI for each processor by adding the pipeline and cache
CPI contmbutions:

Emel p CPl,=08+10=1.8
218 (3) CPLL=10+14=24

CPI; =022 + 094 =1.16

Since this is the same architecture, we can compare instruction execution rates in
millions of instructions per second (MIPS) to determine relative performance:

-~

Instruction execution rate =

CPI
Instruction execution rate; = ﬂ[ﬂl_gl_ﬂﬁ = 2222 MIPS
Instruction execution rate, = %I:ﬂ-[z = 2083 MIPS
Instruction execution rate, = M = 2155 MIPS

1.16

In this example, the simple two-issue static superscalar looks best. In practice,
performance depends on both the CPI and clock rate assumptions. 4
J



Conclusoes
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 Limitations of this study

— WAW e WAR through memory: hipoteses simplificadores
subestimaram o efeito desses hazards

— Dependéncia desnecessaria: algumas dependéncias reais (RAW)
poderiam ser eliminadas (por ex, por loop unrolling)

— Value prediction nao foi considerado (poderia melhorar ILP)

« Limites observados de ILP sao intrinsecos, € nao podem ser
superados por avangos tecnoldgicos por exemplo

— Dificuldades para melhorar sao imensas
— ILP wall

35



3.11 ILP and the memory system
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 Hardware versus Software Speculation — trade offs

— Memory disambiguation = enable extensive speculation; Difficult to
do at compile time - hardware based and dynamic disambiguation

— HW based speculation better when control flow unpredictable
— HW based better for precise exception

— HW based does not require additional compensation or bookkeeping
code

— Compiler based benefit: it can “see” ahead in code (statically) >
better code scheduling

— HW based does not require different code to different
implementations of an architecture - Vantagem extremamente
relevante

— HW based - complex implementation
— Some designers try hybrid approaches

— Most ambitious design with compiler based speculation = Itanium -
did not deliver the expected performance
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ILP and the memory system (2)
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« Speculative execution and the memory system

— Especulacao pode gerar enderecos invalidos (que nao apareceriam
sem especulacao) - (false) exception overhead - memoria deve
identificar a especulacido e desprezar a excecao

— Especulagao pode gerar cache miss - importante o uso de non
blocking caches

* penalidade em L2 é tao grande que normalmente compiladores somente
especulam em L1
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3.12 Multithreading (1n uniprocessor)
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« Crosscutting issue
— pipeline, uniprocessor (ch 3)
— graphics processing units (ch 4)
— multiprocessors (chd)
* Explorando paralelismo em uniprocessadores

— Uso de ILP: limites

» principalmente, em altas taxas de issue/clock - dificil esconder cache
misses

— Em On-line Transaction Processing = paralelismo natural
(multiprogramacao)

— Em programacao cientifica - paralelismo natural, se explorarmos
threads independentes

« também em aplicagdes desktop (muitas tarefas em paralelo)

« Paralelismo em multiprocessador: replicated processor
« Multithread in uniprocessor: replicated PC and private state
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Multithreading: aspectos gerais
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 Per-thread state
— separate: PC, register file, page table
— memory: ok to share via virtual memory (como em multiprogramacao)

 HW deve permitir mudanca de thread rapidamente
— thread switch should be much faster than process switch

« Threads devem estar identificadas no codigo
— pelo compilador ou pelo programador

* Granularidade do Multithreading

— Fine Grain: thread switch in each clock. Round-robin interleaving (skip
stalled). Advantadge: hides short/long stalls. Disadvante: slows down
individual thread (latency). Trade-off throughput x latency. Used by
Sun Niagara and NVidia GPU

— Coarse Grain: thread switch on costly stalls. Trade-off throughput x
latency, Disadvantage: throughput losses, specially in short stalls.
Pipeline start-up costs. Not used today
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Multithreading Approaches
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» Four different approaches
— A superscalar with no multithreading support
— A superscalar with coarse-grained multithreading
— A superscalar with fine-grained multithreading

— A superscalar with simultaneous multithreading

* Fine Grain MT on top of a multiple-issue, dynamically scheduled
processor

— hides long latency events
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Execution slots ———»

= Multithreading Approaches

IC-U
Superscalar Coarse MT Fine MT

-+—— Time

=- il =-

Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar
processor. The horizontal dimension represents the instruction execution capability in each clock cycle. The
vertical dimension represents a sequence of clock cycles. An empty (white) box indicates that the corresponding
execution slot is unused in that clock cycle. The shades of gray and black correspond to four different threads in
the multithreading processors. Black is also used to indicate the occupied issue slots in the case of the
superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-grained
multithreaded processors, while the Intel Core i7 and IBM Power7 processors use SMT. The T2 has eight threads,
the Power7 has four, and the Intel i7 has two. In all existing SMTs, instructions issue from only one thread at a
time. The difference in SMT is that the subsequent decision to execute an instruction is decoupled and could
execute the operations coming from several different instructions in the same clock cycle.
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Multithreading: outra figura
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1 FG Multithreading na SUN T1

* Foco: explorar paralelismo via TLP (e nao ILP). (2005)
« FGMT 1 thread / cycle

« Core: single-issue, six-stage pipeline (5 estagios do MIPS classico + 1
estagio para thread switch)

» Loads/branches - 3 cycle latency - hidden by other threads

m— p— — r——

Characteristic Sun T1

Multuprocessor and ~ Eight cores per chip; four threads per core. Fine-grained thread B

multithreading scheduling. One shared floating-point unit for eight cores.

support Supports only on-chip multiprocessing. _

Pipeline structure Simple, in-order, six-deep pipeline with three-cycle delays for
loads and branches

L1 caches 16 KB instructions; 8§ KB data. 64-byte block size. Miss to L2 is

23 cycles, assuming no contention.

L2 caches Four separate L2 caches, each 750 KB and associated with a
memory bank. 64-byte block size. Miss to main memory is 110
clock cycles assuming no contention.

Initial implementation 90 nm process; maximum clock rate of 1.2 GHz; power 79 W,
300 M transistors; 379 mm” die.

Figure 3.29 A summary of the T1 pracessor.
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Effect of FGMT on T1 cache performance
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Relative increase in miss rate or latency

Figure 3.30 The relative change in the miss rates and miss latencies when executing with one thread per
core versus four threads per core on the TPC-C benchmark. The latencies are the actual time to return the
requested data after a miss. In the four-thread case, the execution of other threads could potentially hide much of
this latency.
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Effect of FGMT on T1 cache performance
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Figure 3.31 Breakdown of the status on an average thread. “Executing” indicates the thread issues an
instruction in that cycle. “Ready but not chosen” means it could issue but another thread has been chosen, and
“not ready” indicates that the thread is awaiting the completion of an event (a pipeline delay or cache miss, for
example).
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Figure 3.32 The breakdown of causes for a thread being not ready. The contribution to the “other” category
varies. In PC-C, store buffer full is the largest contributor; in SPEC-JBB, atomic instructions are the largest

contributor; and in SPECWeb99, both factors contribute.

46



CPI
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Benchmark Per-thread CPI Per-core CPI
TPC-C 7.2 1.80
SPECIBB 5.6 1.40
SPECWehbh99 6.6 1.65

| — = =

Figure 3.33 The per-thread CPI, the per-core CP|, the effective eight-core CPI, and
the effective IPC (inverse of CPl) for the eight-core T1 processor.

e CPIl/thread ideal =4

— cada thread consome 1 ciclo em 4

e CPIl/coreideal = 1

 Resultados do T1 em 2005, parecidos com processadores
muito maiores e complexos, com ILP agressivo
— 8 cores (T1) vs 2-4 outros processadores

e 2005: T1 melhor desempenho para inteiros
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Effectiveness of SMT on Superscalar
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« Estudos feitos em 2000-2001 - ganhos modestos
— H & P: condi¢cdes dos experimentos tem problemas
— Na época, grandes expectativas com ILP agressivo

« Experimentos em 2011

— Desempenho e energy efficiency (tempo tarefa /consumo) no Intel i7
e i5 (Fig 3.35). Benchmarks usados (Fig 3.34)

— Experimentos: um unico core do i7 (ou i5), comparacao entre 1
thread e SMT
» Resultados: SMT em um processador com especulacao
agressiva =2 aumento do desempenho de forma eficiente
gquanto ao consumo de energia
— |ILP nao consegue o mesmo em 2011

* Hoje: melhor mais cores mais simples com SMT do que
Menos Ccores complexos
— experimentos com o i5 e Atom - ainda melhores resultados
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Speedup € Energia no 17, com € sem SMT
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Figure 3.35 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the
Java benchmarks and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which
implies a workload where the total time spent executing each benchmark in the single-threaded base set
was the same). The energy efficiency averages 0.99 and 1.07, respectively (using the harmonic mean). Recall
that anything above 1.0 for energy efficiency indicates that the feature reduces execution time by more than it
increases average power. Two of the Java benchmarks experience little speedup and have significant negative
energy efficiency because of this. Turbo Boost is off in all cases. These data were collected and analyzed by
Esmaeilzadeh et al. [2011] using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc
v4 4 Dnative-compiler. 49



3.13 O ARM Cortex-A& ¢ o Intel Core 17
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* |Intel Corei7

— High end, dynamically scheduled, speculative processor - high-end
desktops and servers

« ARM Cortex-AS8

— Uso em smartphones e tablets

— Dual issue, statically scheduled superscalar, dynamic issue detection
(1-2 instructions/cycle)

— Dynamic brach predictor, 512-entry 2-way set associative branch
targe buffer, 4k-entry global history buffer
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AS8: pipeline structure

FO FA1 F2 DO D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict
penalty=13 cycles Instruction execute and load/store
I
Instruction " ALU/MUL pine 0| BP
S pipe
fetch % N update
L I:m-emry__" I _— 3 :
+ fateh nstruction decode = . BP
[ ;L_z queve || % » ALU pipe 1 ipdaile
D -
i = : BP
RS @ LS pipe0or 1 update

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used for instruction fetch
and four for instruction decode, in addition to a five-cycle integer pipeline. This yields a 13-cycle branch
misprediction penalty. The instruction fetch unit tries to keep the 12-entry instruction queue filled.
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A8: Instruction Decode Pipeline
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DO D1 D2 D3 D4
Instruction decode
_',.

Early | —» Dec/seq —>

Dec —
Dec queue Score+board RegFile
read/write : , ID remap

issue logic
Early

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC produced by the fetch unit
(either from the branch target buffer or the PC incrementer) is used to retrieve an 8-byte block from the cache. Up
to two instructions are decoded and placed into the decode queue; if neither instruction is a branch, the PC is
incremented for the next fetch. Once in the decode queue, the scoreboard logic decides when the instructions can
issue. In the issue, the register operands are read; recall that in a simple scoreboard, the operands always come
from the registers. The register operands and opcode are sent to the instruction execution portion of the pipeline.
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A8: Execution Pipeline
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Figure 3.38 The six-stage execution pipeline of the A8.
Multiply operations are always performed in ALU pipeline O.
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[ L2 stallsfinstruction

B L1 stalls/instruction

— E Pipeline stalls/instruction
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Figure 3.39 The estimated composition of the CPl on the ARM A8 shows that pipeline stalls are the
primary addition to the base CPIl. Benchmark eon deserves some special mention, as it does integer-based
graphics calculations (ray tracing) and has very few cache misses. It is computationally intensive with heavy use
of multiples, and the single multiply pipeline becomes a major bottleneck. This estimate is obtained by using the
L1 and L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction. These are
subtracted from the CPIl measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all
three hazards plus minor effects such as way misprediction.
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Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same
size caches for L1 and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary
cache and a 1 MB secondary cache, which is 8-way set associative for the A8 and 16-way for the A9. The block
sizes in the caches are 64 bytes for the A8 and 32 bytes for the A9. As mentioned in the caption of Figure 3.39,
eon makes intensive use of integer multiply, and the combination of dynamic scheduling and a faster multiply
pipeline significantly improves performance on the A9. twolf experiences a small slowdown, likely due to the fact
that its cache behavior is worse with the smaller L1 block size of the A9.

95



IC-UNICAMP

Intel Core 17

« Aggressive out-of-order speculative microarchitecture; Deep
pipelines. Multiple issue. High clock rates.

* Pipeline structure

IF: Multi level branch target buffer. Return address stack. Fetch 16B
16B—> predecode instruction buffer. Micro-op fusion. x86 instructions

Micro-op decode: x86 instructions - micro-ops (simple MIPS-like
instructions) = 28-entry micro-op buffer

Micro-op buffer: Loop stream detection (analise de loops curtos) and
microfusion (fusado de instrucdes).

Basic Instruction Issue: Look up register tables. Renaming. Allocating
ROB. Send to reservation stations

RS: 36-entry centralized RS shared by 6 FU. 6 micro-ops can be
dispatched to FUs / cycle

Execution: Results = RS+register retirement unit. Instr complete.
ROB: Instructions at head - pending writes executed.
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Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total

pipeline depth is 14 stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers.
The six independent functional units can each begin execution of a ready micro-op in the same cycle.
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Figure 3.42 The amount of “wasted work” is plotted by taking the ratio of dispatched micro-ops that do
not graduate to all dispatched micro-ops. For example, the ratio is 25% for sjeng, meaning that 25% of the
dispatched and executed micro-ops are thrown away. The data in this section were collected by Professor Lu
Peng and Ph.D. student Ying Zhang, both of Louisiana State University.
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Figure 3.43 The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI for 0.83 for both the FP
and integer benchmarks, although the behavior is quite different. In the integer case, the CPI values range
from 0.44 to 2.66 with a standard deviation of 0.77, while the variation in the FP case is from 0.62 to 1.38 with a
standard deviation of 0.25. The data in this section were collected by Professor Lu Peng and Ph.D. student Ying

Zhang, both of Louisiana State University.
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3.14
Fallacies
and Pitfalls

Comparing
2 versions
of the same
ISA with
technology
constant

Intel i7 920 ARM AB Intel Atom 230
Four cores, One core, One core,
Area Specific characteristic ~ each with FP no FP with FP
Physical chip Clock rate 2.66 GHz 1 GHz 1.66 GHz
properties ' —
Thermal design power 130w 2w 4w
Package 1366-pin BOA 522-pin BGA 437-pn BGA
Memory system Two-level Two-level N
All four-way set All four-way set
associative One-level associative
|28 V64 D fully associative 16 1/16 D
TLB 512L2 321E2D 64 L2
Three-level
32 KB/32 KB Two-level Two-level
256 KB I6/l6or3W2 KB 32/24 KB
Caches 2-EMB 128 KB-1MB 512 KB
Peak memory BW 17 GBlsec 12 GB/sec B GB/sec
Pipeline structure Peak issue rate 4 opsiclock with fusion 2 ops/clock 2 ops/clock
Pipeline Speculating In-order In-order
scheduling out of order dvnamic issue dynamic 1ssue
Two-level
512-entry BTH
4K global history
E-entry retum
Brench prediction Two-level stack Two-level

—

Figure 3.44 An overview of the four-core Intel i7 920, an example of a typical Arm A8 processor chip (with a 256
MB L2, 32K L1s, and no floating point), and the Intel ARM 230 clearly showing the difference in design philosc-
phy between a processor intended for the PMD (in the case of ARM) or netbook space (in the case of Atom) and 2
processor for use in servers and high-end desktops. Remember, the i7 includes four cores, each of which is several
times higher in performance than the one-core A8 or Atom. All these processors are implemented in a comparable

45 nm technology.
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Figure 3.45 The relative performance and energy efficiency for a set of single-threaded benchmarks
shows the i7 920 is 4 to over 10 times faster than the Atom 230 but that it is about 2 times less power
efficient on average! Performance is shown in the columns as i7 relative to Atom, which is execution time
(i7)/execution time (Atom). Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the
Atom in energy efficiency, although it is essentially as good on four benchmarks, three of which are floating point.
The data shown here were collected by Esmaeilzadeh et al. [2011]. The SPEC benchmarks were compiled with
optimization on using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java
VM. Only one core is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7,
which increases its performance advantage but slightly decreases its relative energy efficiency.



Fallacy
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* Processors with lower CPls will always be faster
* Processors with faster clock rates will always be faster

SPECCInt2006  SPECCFP2006

Processor Clock rate base baseline
Intel Pentium 4 670 3.8 GHz 11.5 12.2
Intel Itanium -2 |.66 GHz 14.5 17.3
itltﬂl 17 3.3 GHz 35.5 R4

Figure 3.46 Three different Intel processors vary widely. Although the [tanium
processor has two cores and the i7 four, only one core is used in the benchmarks.
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3.15 What's ahead
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« 2000: ILP at peak
« 2005:

— mudanca de rumos - TLP e multi-core
— data level parallelism (DLP)

« Unlikely: more increase in width of issue
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Processadores da IBM: Evolucao

-I-'-'—_
Powerd Power5 Power6 Power?
Introduced 2001 2004 2007 2010
Initial clock rate (GHz) 1.3 1.9 47 16
Transistor count (M) 174 276 790 1200
[-5;;(:5 per clock 5 5 T 6
i s .
Functional units 8 8 g 12
Cores/chip 2 2 2 q
E,}._HIT threads 0 ) " 4
Total on-chip cache (MB) 1.5 2 4.1 32.3
— e —

Figure 3.47 Characteristics of four IBM Power processors. All except the Poweré were dynamically scheduled,
which is static, and in-order, and all the processors support two load/store pipelines. The Poweré has the same func-

tional units as the Power5 except for a decimal unit. Power7 uses DRAM for the L3 cache,
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