
MO401 – 2013 1

IC-UNICAMP MO401

IC/Unicamp

2013s1

Prof Mario Côrtes

Capítulo 3 – parte B (3.8 - 3.15):

Instruction-Level Parallelism

and Its Exploitation

MO401 – 2013 2

IC-UNICAMP

Tópicos - estrutura

• Parte A

– Basic compiler ILP

– Advanced branch prediction

– Dynamic scheduling

– Hardware based speculation

– Multiple issue and static scheduling

• Parte B

– Instruction delivery and speculation

– Limitations of ILP

– ILP and memory issues

– Multithreading

MO401 – 2013 3

IC-UNICAMP

3.8 Dynamic Scheduling,

Multiple Issue, and Speculation
• Até agora, vistos separadamente

– Dynamic scheduling, multiple issue, speculation

• Modern microarchitectures:

– Dynamic scheduling + multiple issue + speculation

• Hipótese simplificadora: 2 issues / ciclo

• Extensão do alg. Tomasulo: multiple issue supersacalar pipeline,
separate integer, LD/DT, FP units (add, mult)

– FUs: initiate operation every clock

• Issue to RS in-order. Any two operations (every cycle)

D
y
n
a
m
ic
 S
c
h
e
d
u
lin
g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 4

IC-UNICAMP

D
y
n
a
m
ic
 S
c
h
e
d
u
lin
g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S
p
e
c
u
la
tio

n

Overview of

Design

MO401 – 2013 5

IC-UNICAMP Extended Tomasulo

• Multiple issue / cycle: muito complicado.

– ex: as duas operações podem ter dependência e tabelas tem que ser

atualizadas em paralelo (no mesmo clk)

• Two approaches:

– Assign reservation stations and update pipeline control table in half

clock cycles

• Only supports 2 instructions/clock

– Design logic to handle any possible dependencies between the

instructions

– Hybrid approaches

• Issue logic can become bottleneck

– (ver Fig 3.18, para apenas um caso)

D
y
n
a
m
ic
 S
c
h
e
d
u
lin
g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 6

IC-UNICAMP

Complexidade:

apenas uma

dependência

ins1 = LD

ins2 = op FP com

operando fornecido

pelo LD

MO401 – 2013 7

IC-UNICAMP

• 1- Pre-assign a RS and ROB entry. Limit the number of instructions of a
given class that can be issued in a “bundle”

– I.e. on FP, one integer, one load, one store

• 2- Examine all the dependencies among the instructions in the bundle

• 3- If dependencies exist in bundle, encode them in reservation stations
and ROB

• All above: a single clock cycle

• At pipeline backend: need multiple completion/commit

• Intel i7 usa este esquema

D
y
n
a
m
ic
 S
c
h
e
d
u
lin
g
, M

u
ltip

le
 Is

s
u
e
, a

n
d
 S
p
e
c
u
la
tio

n

Multiple Issue

MO401 – 2013 8

IC-UNICAMP

Exmpl p 200: multiple issue

with and without speculation

MO401 – 2013 9

IC-UNICAMP

No speculation

MO401 – 2013 10

IC-UNICAMP

With speculation

MO401 – 2013 11

IC-UNICAMP

3.9 Advanced Techniques

• Objetivo: possibilitar alta taxa de execução de instruções

por ciclo

– Increasing instruction delivery bandwidth

– Advanced speculation techniques

– Value prediction

MO401 – 2013 12

IC-UNICAMP

Animações e simulações

• Ver site

– http://www.williamstallings.com/COA/Animation/Links.html

• Contém várias simulações:

– Branch prediction

– Branch Target Buffer

– Loop unrolling

– Pipeline with static vs. dynamic scheduling

– Reorder Buffer Simulator

– Scoreboarding technique for dynamic scheduling:

– Tomasulo's Algorithm:

MO401 – 2013 13

IC-UNICAMP

Increasing instruction fetch bandwidth

• Need high instruction bandwidth (from Instr. Cache to Issue

Unit)

– problema: como saber antes da decodificação se instrução é desvio

e qual é o próximo PC?

• Branch-Target buffers

– Next PC prediction buffer, indexed by current PC

• Diferenças com o branch prediction buffer já visto

– no branch prediction buffer:

• após decodificação; só branches são tratados; index pode apontar para

outro branch

– no Branch-Target buffer

• antes da decodificação; todas as instruções são tratadas; “tag” do buffer

identifica univocamente somente branches; somente “taken branches”

são armazenados � demais instruções seguem o fetch normalmente

MO401 – 2013 14

IC-UNICAMP

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

Branch-

Target

Buffer

MO401 – 2013 15

IC-UNICAMP

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

Branch-Target Buffer: steps

MO401 – 2013 16

IC-UNICAMP

Exmpl p205: penalidade

MO401 – 2013 17

IC-UNICAMP

Exmpl p205: penalidade

MO401 – 2013 18

IC-UNICAMP

• Optimization:

– Larger branch-target buffer

– Add target instruction into buffer to deal with longer decoding time required

by larger buffer

– Allows “Branch folding”

• Branch folding

– With unconditional branch: o hardware permite “pular” o jump (cuja única

função é mudar o PC)

– In some cases, also with conditional branch

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

Branch Folding

MO401 – 2013 19

IC-UNICAMP

• Most unconditional branches come from function returns

– Indirect jump: JR (target muda em tempo de execução)

– SPEC95: retorno de procedimento = 15% de todos os branches e

aproximadamente 100% dos desvios incondicionais

• The same procedure can be called from multiple sites

– Causes the buffer to potentially forget about the return address from

previous calls (changes at runtime)

– SPEC CPU95: retorno de procedimento � misprediction = 40%

• Create return address buffer organized as a stack

– melhora consideravelmente o desempenho (fig 3.24)

• (usado pelo Intel Core e AMD Phenom)

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

Return Address Predictor

MO401 – 2013 20

IC-UNICAMP

Desempenho do

Return Address

Predictor

Figure 3.24 Prediction accuracy for a return address buffer operated as a stack on a number of

SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses predicted correctly. A buffer

of 0 entries implies that the standard branch prediction is used. Since call depths are typically not large,

with some exceptions, a modest buffer works well. These data come from Skadron et al. [1999] and use a

fix-up mechanism to prevent corruption of the cached return addresses.

MO401 – 2013 21

IC-UNICAMP

Integrated Instruction Fetch Unit

• Design monolithic unit that performs:

– Integrated branch prediction:

• parte da instruction fetch

– Instruction prefetch

• Fetch ahead

– Instruction memory access and buffering

• Accessing multiple cache lines

• Deal (hide) with crossing cache lines

• (used by all high-end processors)

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 22

IC-UNICAMP

Register Renaming

• Register renaming vs. reorder buffers

– Instead of virtual registers from reservation stations and reorder

buffer, create a single register pool

• Contains visible registers and virtual registers

– Use hardware-based map to rename registers during issue

– WAW and WAR hazards are avoided

– Speculation recovery occurs by copying during commit

– Still need a ROB-like queue to update table in order

– Simplifies commit:

• Record that mapping between architectural register and physical register

is no longer speculative

• Free up physical register used to hold older value

• In other words: SWAP physical registers on commit

– Physical register de-allocation is more difficult

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 23

IC-UNICAMP

Integrated Issue and Renaming

• Combining instruction issue with register renaming:

– Issue logic pre-reserves enough physical registers for the bundle (ex:

4 registers for a 4 instruction bundle, 1 reg / result)

– Issue logic finds dependencies within bundle, maps registers as

necessary

– Issue logic finds dependencies between current bundle and already

in-flight bundles, maps registers as necessary

• Como no ROB, o hardware deve determinar as

dependências e atualizar as tabelas de renaming em um

único clock

– quanto maior o número de instruções emitidas por clock, mais

complicado

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 24

IC-UNICAMP

How Much?

• How much to speculate

– Mis-speculation degrades performance and power relative to no

speculation

• May cause additional misses (cache, TLB)

– Prevent speculative code from causing higher costing misses (e.g.

L2)

• Speculating through multiple branches

– Poderia ser útil em

• very high branch frequency

• branch clustering

• long delay in FUs

– Complicates speculation recovery (mas o resto seria simples)

– Até 2011, esquema não utilizado comercialmente

• No processor can resolve multiple branches per cycle

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 25

IC-UNICAMP

Energy Efficiency

• Custo energético da especulação errada

– Trabalho inútil que deve ser descartado

– Custo adicional da recuperação

• Speculation and energy efficiency

– Note: speculation is only energy efficient when it significantly

improves performance

• Se um número grande de instruções desnecessárias estão

sendo executadas, é provável que, além do custo de

energia, também o desempenho está piorando

– fig 3.25 � resultado ruim para inteiros � provável que cause baixa

eficiência energética

A
d
v
. T

e
c
h
n
iq
u
e
s
 fo

r In
s
tru

c
tio

n
 D
e
liv
e
ry
 a
n
d
 S
p
e
c
u
la
tio

n

MO401 – 2013 26

IC-UNICAMP

Fração de instruções desnecessárias

Figure 3.25 The fraction of instructions that are executed as a result of misspeculation is

typically much higher for integer Programs (the first five) versus FP programs (the last five).

MO401 – 2013 27

IC-UNICAMP

Value prediction

• Tenta predizer o resultado das instruções

– Em geral, difícil

• Casos de aplicabilidade:

– Loads that load from a pool of constants (or values that change

unfrequently)

– Instruction that produces a value from a small set of values (possível

prever de comportamentos observados anteriormente)

• Not been incorporated into modern processors

• Similar idea – address aliasing prediction – is used on some

processors

– para prever se dois ST ou um LD e um ST apontam para o mesmo

endereço

– caso negativo, instruções podem ser reordenadas

– em uso limitado ainda hoje

MO401 – 2013 28

IC-UNICAMP

3.10 Limitações do ILP

• ILP: pipelined processors (60´s), key to perfomance

improvements (80´s 90´s)
• Estudos atuais � limitações

– especulação muito agressivas � alto custo (área, power)

– mesmo os principais defensores � mudança de idéia (2005)

• (artigo importante: Wall 1993)

MO401 – 2013 29

IC-UNICAMP

Modelo de HW para estudo
• Modelo de hardware para estudos: computador ideal, onde

o único limite ao ILP é imposto pelo data flow do programa

– 1. Infinite register renaming

– 2. Perfect branch prediction

– 3. Perfect jump prediction (including indirect jump register)

– 4. Perfect memory address aliasing analysis: todos os endereços

efetivos são conhecidos (possível reordenar LD/ST)

– 5. Perfect caches: acessos uniformes com 1 ciclo

• Hipóteses 2 e 3 eliminam control dependencies; 1 e 4 todas

as outras dependências exceto true data dependences

• Prefetching infinito, capacidade de múltiplo (infinito) issue

• FUs tem latência de 1 ciclo

• Esta máquina ideal é irrealizável hoje

– Power 7 (mais avançado superescalar): issue 6 instructions / clock,

SMT, large set of renaming registers (allowing 100´s instructions to

be in flight)

MO401 – 2013 30

IC-UNICAMP

ILP em um processador perfeito

• Set of benchmarks � program trace � schedule as early as

possible (perfect branch prediction)

• Measure: average instruction issue rate

Figure 3.26 ILP available in a perfect processor for six of the SPEC92 benchmarks. The first three

programs are integer programs, and the last three are floating-point programs. The floating-point programs

are loop intensive and have large amounts of loop-level parallelism.

MO401 – 2013 31

IC-UNICAMP

ILP para processadores realizáveis (hoje)

• Até 64 instruction issues /

clock (10x valor disponível

hoje)

• Tournament predictor com 1K

linhas e resultado (predictor)

de 16 linhas

• Perfect desambiguation of

memory references, on the fly

• Very large register renaming

set

Figure 3.27 The amount of parallelism available versus the window size for a variety of integer and

floating-point programs with up to 64 arbitrary instruction issues per clock. Although there are fewer

renaming registers than the window size, the fact that all operations have one-cycle latency and the number

of renaming registers equals the issue width allows the processor to exploit parallelism within the entire

window. In a real implementation, the window size and the number of renaming registers must be balanced to

prevent one of these factors from overly constraining the issue rate.

MO401 – 2013 32

IC-UNICAMP

Exmpl p 218: comparação desempenho

MO401 – 2013 33

IC-UNICAMP

Exmpl p 218: comparação desempenho (2)

MO401 – 2013 34

IC-UNICAMP

Exmpl p

218: (3)

MO401 – 2013 35

IC-UNICAMP

Conclusões

• Limitations of this study

– WAW e WAR through memory: hipóteses simplificadores

subestimaram o efeito desses hazards

– Dependência desnecessária: algumas dependências reais (RAW)

poderiam ser eliminadas (por ex, por loop unrolling)

– Value prediction não foi considerado (poderia melhorar ILP)

• Limites observados de ILP são intrínsecos, e não podem ser

superados por avanços tecnológicos por exemplo

– Dificuldades para melhorar são imensas

– ILP wall

MO401 – 2013 36

IC-UNICAMP

3.11 ILP and the memory system

• Hardware versus Software Speculation – trade offs

– Memory disambiguation � enable extensive speculation; Difficult to

do at compile time � hardware based and dynamic disambiguation

– HW based speculation better when control flow unpredictable

– HW based better for precise exception

– HW based does not require additional compensation or bookkeeping

code

– Compiler based benefit: it can “see” ahead in code (statically) �

better code scheduling

– HW based does not require different code to different

implementations of an architecture � Vantagem extremamente

relevante

– HW based � complex implementation

– Some designers try hybrid approaches

– Most ambitious design with compiler based speculation � Itanium �

did not deliver the expected performance

MO401 – 2013 37

IC-UNICAMP

ILP and the memory system (2)

• Speculative execution and the memory system

– Especulação pode gerar endereços inválidos (que não apareceriam

sem especulação) � (false) exception overhead � memória deve

identificar a especulação e desprezar a exceção

– Especulação pode gerar cache miss � importante o uso de non

blocking caches

• penalidade em L2 é tão grande que normalmente compiladores somente

especulam em L1

MO401 – 2013 38

IC-UNICAMP

3.12 Multithreading (in uniprocessor)

• Crosscutting issue

– pipeline, uniprocessor (ch 3)

– graphics processing units (ch 4)

– multiprocessors (ch5)

• Explorando paralelismo em uniprocessadores

– Uso de ILP: limites

• principalmente, em altas taxas de issue/clock � difícil esconder cache

misses

– Em On-line Transaction Processing � paralelismo natural

(multiprogramação)

– Em programação científica � paralelismo natural, se explorarmos

threads independentes

• também em aplicações desktop (muitas tarefas em paralelo)

• Paralelismo em multiprocessador: replicated processor

• Multithread in uniprocessor: replicated PC and private state

MO401 – 2013 39

IC-UNICAMP

Multithreading: aspectos gerais

• Per-thread state

– separate: PC, register file, page table

– memory: ok to share via virtual memory (como em multiprogramação)

• HW deve permitir mudança de thread rapidamente

– thread switch should be much faster than process switch

• Threads devem estar identificadas no código

– pelo compilador ou pelo programador

• Granularidade do Multithreading

– Fine Grain: thread switch in each clock. Round-robin interleaving (skip

stalled). Advantadge: hides short/long stalls. Disadvante: slows down

individual thread (latency). Trade-off throughput x latency. Used by

Sun Niagara and NVidia GPU

– Coarse Grain: thread switch on costly stalls. Trade-off throughput x

latency, Disadvantage: throughput losses, specially in short stalls.

Pipeline start-up costs. Not used today

MO401 – 2013 40

IC-UNICAMP

Multithreading Approaches

• Four different approaches

– A superscalar with no multithreading support

– A superscalar with coarse-grained multithreading

– A superscalar with fine-grained multithreading

– A superscalar with simultaneous multithreading

• Fine Grain MT on top of a multiple-issue, dynamically scheduled

processor

– hides long latency events

MO401 – 2013 41

IC-UNICAMP

Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar

processor. The horizontal dimension represents the instruction execution capability in each clock cycle. The

vertical dimension represents a sequence of clock cycles. An empty (white) box indicates that the corresponding

execution slot is unused in that clock cycle. The shades of gray and black correspond to four different threads in

the multithreading processors. Black is also used to indicate the occupied issue slots in the case of the

superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-grained

multithreaded processors, while the Intel Core i7 and IBM Power7 processors use SMT. The T2 has eight threads,

the Power7 has four, and the Intel i7 has two. In all existing SMTs, instructions issue from only one thread at a

time. The difference in SMT is that the subsequent decision to execute an instruction is decoupled and could

execute the operations coming from several different instructions in the same clock cycle.

Multithreading Approaches

MO401 – 2013 42

IC-UNICAMP

Multithreading: outra figura

http://www.realworldtech.com/alpha-ev8-smt/

MO401 – 2013 43

IC-UNICAMP

FG Multithreading na SUN T1

• Foco: explorar paralelismo via TLP (e não ILP). (2005)

• FGMT 1 thread / cycle

• Core: single-issue, six-stage pipeline (5 estágios do MIPS clássico + 1

estágio para thread switch)

• Loads/branches � 3 cycle latency � hidden by other threads

MO401 – 2013 44

IC-UNICAMP

Figure 3.30 The relative change in the miss rates and miss latencies when executing with one thread per

core versus four threads per core on the TPC-C benchmark. The latencies are the actual time to return the

requested data after a miss. In the four-thread case, the execution of other threads could potentially hide much of

this latency.

Effect of FGMT on T1 cache performance

MO401 – 2013 45

IC-UNICAMP

Figure 3.31 Breakdown of the status on an average thread. “Executing” indicates the thread issues an

instruction in that cycle. “Ready but not chosen” means it could issue but another thread has been chosen, and

“not ready” indicates that the thread is awaiting the completion of an event (a pipeline delay or cache miss, for

example).

Effect of FGMT on T1 cache performance

MO401 – 2013 46

IC-UNICAMP

Figure 3.32 The breakdown of causes for a thread being not ready. The contribution to the “other” category

varies. In PC-C, store buffer full is the largest contributor; in SPEC-JBB, atomic instructions are the largest

contributor; and in SPECWeb99, both factors contribute.

Thread not ready

cache misses:

50-75%

MO401 – 2013 47

IC-UNICAMP

CPI

• CPI / thread ideal = 4

– cada thread consome 1 ciclo em 4

• CPI / core ideal = 1

• Resultados do T1 em 2005, parecidos com processadores

muito maiores e complexos, com ILP agressivo

– 8 cores (T1) vs 2-4 outros processadores

• 2005: T1 melhor desempenho para inteiros

MO401 – 2013 48

IC-UNICAMP

Effectiveness of SMT on Superscalar

• Estudos feitos em 2000-2001 � ganhos modestos

– H & P: condições dos experimentos tem problemas

– Na época, grandes expectativas com ILP agressivo

• Experimentos em 2011

– Desempenho e energy efficiency (tempo tarefa /consumo) no Intel i7

e i5 (Fig 3.35). Benchmarks usados (Fig 3.34)

– Experimentos: um único core do i7 (ou i5), comparação entre 1

thread e SMT

• Resultados: SMT em um processador com especulação

agressiva � aumento do desempenho de forma eficiente

quanto ao consumo de energia

– ILP não consegue o mesmo em 2011

• Hoje: melhor mais cores mais simples com SMT do que

menos cores complexos

– experimentos com o i5 e Atom � ainda melhores resultados

MO401 – 2013 49

IC-UNICAMP

Figure 3.35 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the

Java benchmarks and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which

implies a workload where the total time spent executing each benchmark in the single-threaded base set

was the same). The energy efficiency averages 0.99 and 1.07, respectively (using the harmonic mean). Recall

that anything above 1.0 for energy efficiency indicates that the feature reduces execution time by more than it

increases average power. Two of the Java benchmarks experience little speedup and have significant negative

energy efficiency because of this. Turbo Boost is off in all cases. These data were collected and analyzed by

Esmaeilzadeh et al. [2011] using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc

v4.4.1 native compiler.

Speedup e Energia no i7, com e sem SMT

MO401 – 2013 50

IC-UNICAMP

3.13 O ARM Cortex-A8 e o Intel Core i7

• Intel Core i7

– High end, dynamically scheduled, speculative processor � high-end

desktops and servers

• ARM Cortex-A8

– Uso em smartphones e tablets

– Dual issue, statically scheduled superscalar, dynamic issue detection

(1-2 instructions/cycle)

– Dynamic brach predictor, 512-entry 2-way set associative branch

targe buffer, 4k-entry global history buffer

MO401 – 2013 51

IC-UNICAMP

Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used for instruction fetch

and four for instruction decode, in addition to a five-cycle integer pipeline. This yields a 13-cycle branch

misprediction penalty. The instruction fetch unit tries to keep the 12-entry instruction queue filled.

A8: pipeline structure

MO401 – 2013 52

IC-UNICAMP

Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC produced by the fetch unit

(either from the branch target buffer or the PC incrementer) is used to retrieve an 8-byte block from the cache. Up

to two instructions are decoded and placed into the decode queue; if neither instruction is a branch, the PC is

incremented for the next fetch. Once in the decode queue, the scoreboard logic decides when the instructions can

issue. In the issue, the register operands are read; recall that in a simple scoreboard, the operands always come

from the registers. The register operands and opcode are sent to the instruction execution portion of the pipeline.

A8: Instruction Decode Pipeline

MO401 – 2013 53

IC-UNICAMP

Figure 3.38 The six-stage execution pipeline of the A8.

Multiply operations are always performed in ALU pipeline 0.

A8: Execution Pipeline

MO401 – 2013 54

IC-UNICAMP

Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the

primary addition to the base CPI. Benchmark eon deserves some special mention, as it does integer-based

graphics calculations (ray tracing) and has very few cache misses. It is computationally intensive with heavy use

of multiples, and the single multiply pipeline becomes a major bottleneck. This estimate is obtained by using the

L1 and L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction. These are

subtracted from the CPI measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all

three hazards plus minor effects such as way misprediction.

A8: CPI

composition

MO401 – 2013 55

IC-UNICAMP

Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same

size caches for L1 and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary

cache and a 1 MB secondary cache, which is 8-way set associative for the A8 and 16-way for the A9. The block

sizes in the caches are 64 bytes for the A8 and 32 bytes for the A9. As mentioned in the caption of Figure 3.39,

eon makes intensive use of integer multiply, and the combination of dynamic scheduling and a faster multiply

pipeline significantly improves performance on the A9. twolf experiences a small slowdown, likely due to the fact

that its cache behavior is worse with the smaller L1 block size of the A9.

A9

vs

A8

MO401 – 2013 56

IC-UNICAMP

Intel Core i7

• Aggressive out-of-order speculative microarchitecture; Deep

pipelines. Multiple issue. High clock rates.

• Pipeline structure

– IF: Multi level branch target buffer. Return address stack. Fetch 16B

– 16B� predecode instruction buffer. Micro-op fusion. x86 instructions

– Micro-op decode: x86 instructions � micro-ops (simple MIPS-like

instructions) � 28-entry micro-op buffer

– Micro-op buffer: Loop stream detection (análise de loops curtos) and

microfusion (fusão de instruções).

– Basic Instruction Issue: Look up register tables. Renaming. Allocating

ROB. Send to reservation stations

– RS: 36-entry centralized RS shared by 6 FU. 6 micro-ops can be

dispatched to FUs / cycle

– Execution: Results � RS+register retirement unit. Instr complete.

– ROB: Instructions at head � pending writes executed.

MO401 – 2013 57

IC-UNICAMP

Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total

pipeline depth is 14 stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers.

The six independent functional units can each begin execution of a ready micro-op in the same cycle.

i7

pipeline

structure

MO401 – 2013 58

IC-UNICAMP

Figure 3.42 The amount of “wasted work” is plotted by taking the ratio of dispatched micro-ops that do

not graduate to all dispatched micro-ops. For example, the ratio is 25% for sjeng, meaning that 25% of the

dispatched and executed micro-ops are thrown away. The data in this section were collected by Professor Lu

Peng and Ph.D. student Ying Zhang, both of Louisiana State University.

i7:

%

Wasted

Work

MO401 – 2013 59

IC-UNICAMP

Figure 3.43 The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI for 0.83 for both the FP

and integer benchmarks, although the behavior is quite different. In the integer case, the CPI values range

from 0.44 to 2.66 with a standard deviation of 0.77, while the variation in the FP case is from 0.62 to 1.38 with a

standard deviation of 0.25. The data in this section were collected by Professor Lu Peng and Ph.D. student Ying

Zhang, both of Louisiana State University.

i7:

CPI

MO401 – 2013 60

IC-UNICAMP

3.14

Fallacies

and Pitfalls

Comparing

2 versions

of the same

ISA with

technology

constant

MO401 – 2013 61

IC-UNICAMP

Comparison

Figure 3.45 The relative performance and energy efficiency for a set of single-threaded benchmarks

shows the i7 920 is 4 to over 10 times faster than the Atom 230 but that it is about 2 times less power

efficient on average! Performance is shown in the columns as i7 relative to Atom, which is execution time

(i7)/execution time (Atom). Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the

Atom in energy efficiency, although it is essentially as good on four benchmarks, three of which are floating point.

The data shown here were collected by Esmaeilzadeh et al. [2011]. The SPEC benchmarks were compiled with

optimization on using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java

VM. Only one core is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7,

which increases its performance advantage but slightly decreases its relative energy efficiency.

MO401 – 2013 62

IC-UNICAMP

Fallacy

• Processors with lower CPIs will always be faster

• Processors with faster clock rates will always be faster

MO401 – 2013 63

IC-UNICAMP

3.15 What´s ahead
• 2000: ILP at peak

• 2005:

– mudança de rumos � TLP e multi-core

– data level parallelism (DLP)

• Unlikely: more increase in width of issue

MO401 – 2013 64

IC-UNICAMP

Processadores da IBM: Evolução

