
MO401 1

IC-UNICAMP MO401

IC/Unicamp

Prof Mario Côrtes

Capítulo 5

 Multiprocessors and

Thread-Level Parallelism

MO401 2

IC-UNICAMP

Tópicos

• Centralized shared-memory architectures

• Performance of symmetric shared-memory architectures

• Distributed shared-memory and directory-based coherence

• Synchronization

• Memory consistency

MO401 3

IC-UNICAMP

5.1 Introduction

• Importance of multiprocessing (from low to high end)
– Power wall, ILP wall: power and silicon costs growed faster than

performance

– Growing interest in high-end servers, cloud computing, SaaS

– Growth of data-intensive applications, internet, massive data….

– Insight: current desktop performance is acceptable, since data-
compute intensive applications run in the cloud

– Improved understanding of how to use multiprocessors effectively:
servers, natural parallelism in large data sets or large number of
independent requests

– Advantages of replicating a design rather than investing in a unique
design

MO401 4

IC-UNICAMP

5.1 Introduction

• Thread-Level parallelism

– Have multiple program counters

– Uses MIMD model (use of TLP is relatively recent)

– Targeted for tightly-coupled shared-memory multiprocessors

– Exploit TLP in two ways

• tightly-coupled threads in single task  parallel processing

• execution of independent tasks or processes  request-level parallelism

(multiprogramming is one form)

• In this chapter: 2-32 processors + shared-memory (multicore

+ multithread)

– next chapter: warehouse-scale computers

– not covered: large-scale multicomputer (Culler)

• Less tightly coupled than multiprocessor, but more tightly coupled than

warehouse-scale computing

MO401 5

IC-UNICAMP

Multiprocessor architecture: issues/approach

• To use MIMD, n processors, at least n threads are needed

• Threads typically identified by programmer or created by OS

(request-level)

• Could be many iterations of a single loop, generated by

compiler

• Amount of computation assigned to each thread = grain size

– Threads can be used for data-level parallelism, but the overheads

may outweigh the benefit

– Grain size must be sufficiently large to exploit parallelism

• a GPU could be able to parallelize operations on short vectors, but in a

MIMD the overhead could be too large

MO401 6

IC-UNICAMP

 Types

• Symmetric
multiprocessors (SMP)

– Small number of
cores

– Share single memory
with uniform memory
latency (UMA)

• Distributed shared
memory (DSM)

– Memory distributed
among processors

– Non-uniform memory
access/latency
(NUMA)

– Processors
connected via direct
(switched) and non-
direct (multi-hop)
interconnection
networks

MO401 7

IC-UNICAMP

Challenges of Parallel Processing

• Two main problems

– Limited parallelism

• example: to achieve a speedup of 80 with 100 processors we need to

have 99.75% of code able to run in parallel !! (see exmpl p349)

– Communication costs: 30-50 cycles between separate cores, 100-

500 cycle between separate chips (next slide)

• Solutions

– Limited parallelism

• better algorithms

• software systems should maximize hardware occupancy

– Communication costs; reducing frequency of remote data access

• HW: caching shared data

• SW: restructuring data to make more accesses local

MO401 8

IC-UNICAMP

Exmpl p350:

communication

costs

MO401 9

IC-UNICAMP

5.2 Centralized Shared-Memory Architectures

• Motivation: large multilevel caches reduce memory BW needs

• Originallly: processors were single core, one board, memory on

a shared bus

• Recently: bus capacity not enough; p directly connected to

memory chip; accessing remote data goes through remote p

memory owner  asymmetric access

– two multicore chips: latency to local memory  remote memory

• Processors cache private and shared data

– private data: ok, as usual

– shared data: new problem  cache coherence

MO401 10

IC-UNICAMP

Cache Coherence

• Processors may see different values through their caches

• Example p352

• Informal definition: a memory system is coherent if any read
of a data item returns the most recently written value
– Actually, this definition contains two things: coherence and

consistency

MO401 11

IC-UNICAMP

Cache Coherence

• A memory system is coherent if

1. A read by processor P to location X that follows a write by P to X, with no
writes of X by another processor occurring between the write and the read
by P, always returns the value written by P

– Preserves program order

2. A read by a processor to location X that follows a write by another
processor to X returns written value if the read and write are sufficiently
separated in time and no other writes to X occur between the two accesses

– if a processor could continuously read old value  incoherent memory

3. Writes to the same location are serialized. Two writes to the same location
by any two processors are seen in the same order by all processors.

• Three properties: sufficient conditions for coherence

• But, what if two processors have “simultaneous” accesses to memory
location X, P1 reads X and P2 writes X? What is P1 supposed to read?

– when a written value must be seen by a reader is defined by a memory
consistency model

MO401 12

IC-UNICAMP

Memory Consistency

• Coherence and consistency are complementary

– Cache coherence defines the behavior of reads and writes to the
same memory location

– Memory consistency defines the behavior of reads and writes with respect to
accesses to other memory locations

• Consistency model in section 5.6

• For now
– a write does not complete (does not allow next write to start) until all

processors have seen the effect of that write (write propagation)

– the processor does not change the order of any write with respect to
any other memory access.

• Example
– if one processor writes location A and then location B

– any processor that sees new value of B must also see new value of A

• Writes must be completed in program order

MO401 13

IC-UNICAMP

Enforcing Coherence

• Coherent caches provide:
– Migration: movement of data to local storage  reduced latency

– Replication: multiple copies of data  reduced latency and contention

• Cache coherence protocols
– Directory based

• Sharing status of each block kept in one location, the directory

• In SMP: centralized directory in memory or outermost cache in a multicore

• In DSM: distributed directory (sec 5.4)

– Snooping

• Each core broadcast its memory operations, via bus or other structure

• Each core monitors (snoops) the broadcasting media and tracks sharing
status of each block

• Snooping popular with bus-based multiprocessing
– Multicore architecture changed the picture  all multicores share some

level of cache on chip  some designers switched to directory based
coherence

MO401 14

IC-UNICAMP

Snoopy Coherence Protocols

• Write invalidate
– On write, invalidate all other copies

– Use bus itself to serialize

• Write cannot complete until bus access is obtained

• Write update
– On write, update all copies

– Consumes more BW

• Which is better? Depends on memory access pattern
– After I write, what is more likely? Others read? I write again?

• Coherence protocols are orthogonal to cache write policies
– Invalidate

• write through?

• write back?

– Update

• write through?

• write back?

MO401 15

IC-UNICAMP

Exmpl: Invalidate and Write Back

MO401 16

IC-UNICAMP

Snoopy Coherence Protocols

• Bus or broadcasting media acts as write serialization
mechanism: writes to a memory location are in bus order

• How to locate an item when a read miss occurs?
– In write through cache, all copies are valid (updated)

– In write-back cache, if a cache has data in dirty state, it sends the
updated value to the requesting processor (bus transaction)

• Cache lines marked as shared or exclusive/modified
– Only writes to shared lines need an invalidate broadcast

• After this, the line is marked as exclusive

• Há diferentes protocolos de coerência
– Para write invalidate: MSI (prox slide), MESI, MOESI

• Snoopy requer adição de tags de estado a cada bloco da
cache: estado do protocolo usado  shared, modified,
exclusive, invalid
– Como tanto o processador como o snoopy controller devem acessar

os cache tags, normalmente os tags são duplicados

MO401 17

IC-UNICAMP

Fig 5.5 Snoopy Coherence Protocols: MSI

MO401 18

IC-UNICAMP

Snoopy Coherence Protocols: MSI

Estado

(ação

permitida)

estímulo que causou mudança de estado

bus xaction resultante

Miss para um bloco em estado  inválido 

dado está lá mas wrong tag  miss

M

I S

MO401 19

IC-UNICAMP

Snoopy Coherence Protocols

Figure 5.7 Cache coherence state diagram with the state transitions induced by the local processor shown

in black and by the bus activities shown in gray. Activities on a transition are shown in bold.

MO401 20

IC-UNICAMP

Abordagem alternativa

• H&P:
– Write-Back implementado dentro do mesmo protocolo (e máquina de

estado)

– Em caso de miss, é possível encontrar o bloco em estado M ou S
(mas é o endereço errado)

• Culler(*)
– Write-Back é implementado fora do protocolo de coerência

• mais correto, visto que não é um problema de coerência

– Em caso de miss, obrigatoriamente o bloco está no estado I (é o
endereço deste bloco e não o índice a ele

• mais correto, visto que o estado é do bloco presente localmente na
cache e não do bloco apontado pelo índice

(*) “Parallel Computer Architecture", David E. Culler, Jaswinder Pal Singh, Morgan Kaufmman, 1999

MO401 21

IC-UNICAMP

MSI, conforme Culler

– Replacement changes state of two blocks: outgoing and incoming (I)

– Ver expl 5.6, pag 296

– Sem cache-to-cache sharing

PrRd/—

PrRd/—

PrW r/BusRdX
BusRd/—

PrW r/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrRd/BusRd

PrW r/BusRdX

bus

processador
• PrRD em bloco no estado I ; BusRD ; estado I-> S ;

Se outra cache tem o dado em S, não faz nada

(memória fornece o dado); se está no estado M, esta

cache fornece o dado (flush) e M -> S; tanto a cache

solicitante quanto a memória pegam o dado

• PrWR em bloco no estado I; miss; carrega o bloco

inteiro e modifica a palavra em questão; RdX ; todas

outras cópias vão para I; a cache solicitante vai de I ->

M

• PrWR em bloco no estado S; como WR miss; RdX;

dado que retorna do RdX pode ser ignorado porque já

na cache; simplificação seria usar uma nova

transação: Bus Upgrade (BusUpgr); esta transação

também obtém exclusividade mas não causa

fornecimento de dados por ninguém

pag 294

MO401 22

IC-UNICAMP

Snoopy Coherence Protocols

• Complications for the basic MSI protocol:
– Operations are not atomic

• E.g. detect miss, acquire bus, receive a response

• Creates possibility of deadlock and races

• One solution: processor that sends invalidate can hold bus until other
processors receive the invalidate

• Extensions:
– Add exclusive state to indicate clean block in only one cache (MESI

protocol)

• Prevents needing to write invalidate on a write, if Exclusive-clean

– Owned state: MOESI

• solves problem: if block in shared state, who should supply a copy in
case a processor misses?

– Before: everybody + memory abort

– Now: owner

MO401 23

IC-UNICAMP

Limitations of SMP and snooping

• As numbers of processors grow, any centralized resource
can become a bottleneck

• In a multicore, private L1/L2 and shared L3 (on chip)  ok
up to 8 cores

• Snooping bandwidth. Solutions
– duplicate cache tags

– directory at the outermost cache level (Intel i7 and Xeon)

MO401 24

IC-UNICAMP

Limitations (2)

• To solve bus traffic limitations

• Use interconnection network

– crossbars or point-to-point
networks with banked memory

• Does not scale well

• Or use distributed memory

MO401 25

IC-UNICAMP

Coherence Protocols

• AMD Opteron:
– Memory directly connected to each multicore chip in NUMA-like

organization

– Implement coherence protocol using point-to-point links (direct
broadcasting)

– Use explicit acknowledgements to order operations

• there is no common media to snoop on

MO401 26

IC-UNICAMP

Evolution

• Bus + snoop + small scale multiprocessing = ok

• As number or processors increase
– multibus: snoopy?

– interconnection network: snoopy?

• Snoopy demands broadcast, ok with bus
– also possible in interconnection network  traffic, latency, write

serialization

• All solutions but single bus lack its easy “bus order”  write
serialization

• Races?

• Directory is more appropriate for implementing cache
coherence protocols in large scale multiprocessors

• (see history, devil in details, textbook)

MO401 27

IC-UNICAMP

5.3 Performance of SMP

• Performance depends on many factors

– overall cache performance = uniprocessor cache miss traffic +

communication traffic

– processor count, cache size, block size

• Coherence influences cache miss rate

– Coherence misses

• True sharing misses

– Write to shared block (transmission of invalidation)

– Read an invalidated block

• False sharing misses

– Read an unmodified word in an invalidated block

MO401 28

IC-UNICAMP

Exmpl p366:

miss

identification

MO401 29

IC-UNICAMP

Study on a commercial workload

4 processor shared-

memory, Alpha, 4

instructions issue,

1998 (but structure

similar to modern

multicore chips)

(compare to Intel i7)

MO401 30

IC-UNICAMP

Study on a commercial workload

• OLTP: Online transaction-processing workload modeled after TPC-B.

Requests to an Oracle DB

• DSS: Decision Support System based on TPC-D, also with Oracle

• Alta Vista: web search engine

MO401 31

IC-UNICAMP

Performance

Study:

Commercial

Workload

MO401 32

IC-UNICAMP

Performance

Study:

Commercial

Workload

MO401 33

IC-UNICAMP

Performance

Study:

Commercial

Workload

MO401 34

IC-UNICAMP

Performance

Study:

Commercial

Workload

MO401 35

IC-UNICAMP

Performance

Study:

Commercial

Workload

MO401 36

IC-UNICAMP

Performance Study:

Multiprogramming and OS Workload

MO401 37

IC-UNICAMP

Performance Study:

Multiprogramming

and OS Workload

MO401 38

IC-UNICAMP

Performance Study:

Multiprogramming and OS Workload

MO401 39

IC-UNICAMP

5.4 Directory Protocols
• Directory keeps track of every block

– Which caches have each block

– Dirty status of each block

• Implement in shared L3 cache

– Keep bit vector of size = # cores for each block in L3

• indicates which cores may have copies; inval  only to these

• ok if inclusive

– Not scalable beyond shared L3 (centralized directory)

• Implement in a distributed fashion (next to memory)

– each memory block has bit vector; total overhead = # memory blocks * # nodes

MO401 40

IC-UNICAMP

Protocolos de cache e de diretório

• São coisas diferentes.

• Em um bus, bus transactions fazem a comunicação (única)
necessária para o snooping e a integridade do protocolo

• Em rede, não há broadcasting, podem ser necessárias
múltiplas network transactions para completar uma
operação.

P

A M/D

C

P

A M/D

C

P

A M/D

C

Rea d re que st
to dire ctory

Reply with
owne r identity

Rea d re q.
to owne r

Data
Reply

Revision me ssa ge
to dire ctory

1.

2.

3.

4a .

4b.

P

A M/D

C

P

A M/D

C

P

A M/D

C

RdEx re que st
to dire ctory

Reply with
sharers identity

Inval. req.
to sha re r

1.

2.

P

A M/D

C

Inval. req.
to sha re r

Inval. a ck

Inval. a ck

3a . 3b.

4a . 4b.

R equestor

N ode with
dirty copy

D irectory node
fo r b lock

R equestor

D irectory node

Sharer Sharer

(a) Read miss to a block in dir ty state (b) Write miss to a block with tw o sharers

MO401 41

IC-UNICAMP

Directory Protocols

• For each block, maintain state:
– Shared

• One or more nodes have the block cached, value in memory is up-to-
date

• Set of node IDs

– Uncached

– Modified

• Exactly one node has a copy of the cache block, value in memory is out-
of-date

• Owner node ID

• Directory maintains block states and sends invalidation
messages

• Nodes
– Local = Requestor

– Home = node with directory

– Remote = node with copy (not local / home)

MO401 42

IC-UNICAMP

Messages

MO401 43

IC-UNICAMP

Individual

cache block in a

directory-based

system
Requests local node

Actions

Requests from outside

MO401 44

IC-UNICAMP

Directory

MO401 45

IC-UNICAMP

Directory Protocols

• For uncached block:
– Read miss

• Requesting node is sent the requested data and is made the only
sharing node, block is now shared

– Write miss

• The requesting node is sent the requested data and becomes the
sharing node, block is now exclusive

• For shared block:
– Read miss

• The requesting node is sent the requested data from memory, node is
added to sharing set

– Write miss

• The requesting node is sent the value, all nodes in the sharing set are
sent invalidate messages, sharing set only contains requesting node,
block is now exclusive

MO401 46

IC-UNICAMP

Directory Protocols

• For exclusive block:
– Read miss

• The owner is sent a data fetch message, block becomes
shared, owner sends data to the directory, data written back to
memory, sharers set contains old owner and requestor

– Data write back

• Block becomes uncached, sharer set is empty

– Write miss

• Message is sent to old owner to invalidate and send the value
to the directory, requestor becomes new owner, block remains
exclusive

MO401 47

IC-UNICAMP

5.5 Synchronization

• Basic building blocks: atomic read-modify-write
– Atomic exchange

• Swaps register with memory location

– Test-and-set

• Sets under condition

– Fetch-and-increment

• Reads original value from memory and increments it in memory

– Requires memory read and write in uninterruptable instruction

– load linked/store conditional

• If the contents of the memory location specified by the load linked are
changed before the store conditional to the same address, the store
conditional fails

MO401 48

IC-UNICAMP

Example LL-SC

Atomic exchange in memory location specified by R1:

 try: MOV R3,R4 ;move exchange value

 LL R2,0(R1) ;load linked

 SC R3,0(R1) ;store conditional

 BEQZ R3,try ;branch store fails

 MOV R4, R2 ;put load value in R4

LL-SC implementing an atomic fetch-and-increment:
 try: LL R2,0(R1) ;load linked

 DADDUI R3,R2,#1 ;increment

 SC R3,0(R1) ;store conditional

 BEQZ R3,try ;branch store fails

MO401 49

IC-UNICAMP

Implementing Locks

• Spin lock: a processor continuously tries to acquire

If no coherence, lock kept in memory:

 DADDUI R2,R0,#1

 lockit: EXCH R2,0(R1) ;atomic exchange

 BNEZ R2,lockit ;already locked?

If coherence, cached lock:

 lockit: LD R2,0(R1) ;load of lock

 BNEZ R2,lockit ;not available-spin

 DADDUI R2,R0,#1 ;load locked value

 EXCH R2,0(R1) ;swap

 BNEZ R2,lockit ;branch if lock wasn’t 0

MO401 50

IC-UNICAMP

Cached Spin Locks: bus traffic

MO401 51

IC-UNICAMP

5.6 Models of Memory Consistency

Processor 1:

A=0

…

A=1

if (B==0) …

Processor 2:

B=0

…

B=1

if (A==0) …

• Should be impossible for both if-statements to be
evaluated as true
– Delayed write invalidate?

• Sequential consistency:
– Result of execution should be the same as long as:

• Accesses on each processor were kept in order

• Accesses on different processors were arbitrarily interleaved

MO401 52

IC-UNICAMP

Exmpl p393: sequential consistency

MO401 53

IC-UNICAMP

The programmer´s view

• To implement, delay completion of all memory accesses
until all invalidations caused by the access are completed
– Reduces performance!

• Alternatives: synchronization
– Exmpl: a variable is read and updated by two different processors

• Each processor surrounds the memory operation with lock/unlock

– “Unlock” after write

– “Lock” after read

• Data races

• Programs with synchronization are “data-race free”

• In general, behavior of unsynchronized programs is
unpredictable

MO401 54

IC-UNICAMP

Relaxed Consistency Models

• Idea: performance  allow writes out-of-order, but with
synchronization

• Rules:
– X → Y

• Operation X must complete before operation Y is done

• Sequential consistency requires:

– R → W, R → R, W → R, W → W

– Relax W → R

• “Total store ordering” or “processor consistency”

– Relax W → W

• “Partial store order”

– Relax R → W and R → R

• “Weak ordering” and “release consistency”

MO401 55

IC-UNICAMP

5.7 Crosscutting issues

• Compiler optimization and the consistency model
– Unless sync points are clearly identified, the compiler cannot

interchange a read and a write  could affect semantics

• Using speculation to hide latency in strict consistency
models
– Use delayed commit

– If an invalidation arrives for a result that has not been committed,
use speculation recovery

1. gets most of the advantage of relaxed consistency models

2. implementation has low cost

3. simple programming model

MO401 56

IC-UNICAMP

Inclusion and its implementation
• All blocks present in a higher level cache are also in lower

levels

• Problems: different block sizes, replacement, levels of
associativity

• Designers are still split on enforcement of inclusion
– Intel i7: inclusion for L3 (directory in L3, no need to snoop in L1/L2)

– AMD Opteron: inclusion on L2 but no inclusion on L3

MO401 57

IC-UNICAMP

Multiprocessing and multithreading

• Studies
– Sun T1: 4-8 core, fine grain multithreading

– IBM Power 5: dual core, simultaneous multithreading

MO401 58

IC-UNICAMP

Fig 5.26:

SMT vs ST

on IBM

server

A comparison of SMT and single-thread (ST) performance on the eight-processor IBM eServer p5 575.

Note that the y-axis starts at a speedup of 0.9, a performance loss. Only one processor in each Power5 core is

active, which should slightly improve the results from SMT by decreasing destructive interference in the memory

system. The SMT results are obtained by creating 16 user threads, while the ST results use only eight threads;

with only one thread per processor, the Power5 is switched to single-threaded mode by the OS. These results

were collected by John McCalpin of IBM. As we can see from the data, the standard deviation of the results for

the SPECfpRate is higher than for SPECintRate (0.13 versus 0.07), indicating that the SMT improvement for FP

programs is likely to vary widely.

MO401 59

IC-UNICAMP

5.8 Putting

all together:

multicores

M
o
d
e
ls

 o
f M

e
m

o
ry

 C
o
n
s
is

te
n
c
y
: A

n
 In

tro
d
u
c
tio

n

MO401 60

IC-UNICAMP

Performance vs # cores: SPECrate

Figure 5.28 The performance on the SPECRate benchmarks for three multicore processors as

the number of processor chips is increased. Notice for this highly parallel benchmark, nearly

linear speedup is achieved. Both plots are on a log-log scale, so linear speedup is a straight line.

MO401 61

IC-UNICAMP

Performance vs # cores: SPECjbb2005

Figure 5.29 The performance on the SPECjbb2005 benchmark for three multicore processors as

the number of processor chips is increased. Notice for this parallel benchmark, nearly linear speedup

is achieved.

MO401 62

IC-UNICAMP

Figure 5.30 This chart shows the speedup for two- and four-core executions of the parallel

Java and PARSEC workloads without SMT. These data were collected by Esmaeilzadeh et al.

[2011] using the same setup as described in Chapter 3. Turbo Boost is turned off. The speedup and

energy efficiency are summarized using harmonic mean, implying a workload where the total time

spent running each 2p benchmark is equivalent.

Intel i7: Energy efficiency vs SMT

MO401 63

IC-UNICAMP

Figure 5.31 This chart shows the speedup for two- and four-core executions of the parallel Java and

PARSEC workloads both with and without SMT. Remember that the results above vary in the number of

threads from two to eight, and reflect both architectural effects and application characteristics. Harmonic

mean is used to summarize results, as discussed in the caption of Figure 5.30.

Intel i7: processor count and SMT

MO401 64

IC-UNICAMP

5.9 Fallacies and pitfalls

MO401 65

IC-UNICAMP

Figure 5.32 Speedup for three benchmarks on an IBM eServer p5 multiprocessor when

configured with 4, 8, 16, 32, and 64 processors. The dashed line shows linear speedup.

Linear speedups are needed to make

multiprocessors cost effective

• TPM is super

linear

• costs scale

less than linear

MO401 66

IC-UNICAMP

Figure 5.33 The performance/cost relative to a 4-processor system for three benchmarks run on an IBM eServer

p5 multiprocessor containing from 4 to 64 processors shows that the larger processor counts can be as cost

effective as the 4-processor configuration. For TPC-C the configurations are those used in the official runs, which

means that disk and memory scale nearly linearly with processor count, and a 64-processor machine is approximately

twice as expensive as a 32-processor version. In contrast, the disk and memory are scaled more slowly (although still

faster than necessary to achieve the best SPECRate at 64 processors). In particular, the disk configurations go from one

drive for the 4-processor version to four drives (140 GB) for the 64-processor version. Memory is scaled from 8 GB for

the 4-processor system to 20 GB for the 64-p-rocessor system.

(cont)

MO401 67

IC-UNICAMP

5.10 Conclusions

• Há mais de 30 anos, previsões: fim da era de

uniprocessadores e substituição por multiprocessamento

– Previsões só se confirmaram em 2005: (power + area + ILP) walls

• Multicore: mais fácil controlar power (idle) e TLP vs ILP

• Alguns problemas se mantêm: especulação  relação

custo (área+power) benefício tão ruim em TLP quanto ILP

• Perguntas no livro (1st ed) em 1996:

– What architectures would very large scale multiprocessors use?

• Hoje: clusters, cloud, warehouse computing

– What is the role of multiprocessing in future?

• Hoje: exploração de TLP em vez de ILP

MO401 68

IC-UNICAMP

Exemplo: família de processadores Intel

usando o core Nehalem

