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Tópicos  

• Centralized shared-memory architectures 

• Performance of symmetric shared-memory architectures 

• Distributed shared-memory and directory-based coherence 

• Synchronization 

• Memory consistency 
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5.1 Introduction 

• Importance of multiprocessing (from low to high end) 
– Power wall, ILP wall: power and silicon costs growed faster than 

performance 

– Growing interest in high-end servers, cloud computing, SaaS 

– Growth of data-intensive applications, internet, massive data…. 

– Insight: current desktop performance is acceptable, since data-
compute intensive applications run in the cloud 

– Improved understanding of how to use multiprocessors effectively: 
servers, natural parallelism in large data sets or large number of 
independent requests 

– Advantages of replicating a design rather than investing in a unique 
design 
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5.1 Introduction 

• Thread-Level parallelism 

– Have multiple program counters 

– Uses MIMD model (use of TLP is relatively recent) 

– Targeted for tightly-coupled shared-memory multiprocessors 

– Exploit TLP in two ways 

• tightly-coupled threads in single task  parallel processing 

• execution of independent tasks or processes  request-level parallelism 

(multiprogramming is one form) 

• In this chapter: 2-32 processors + shared-memory (multicore 

+ multithread) 

– next chapter: warehouse-scale computers 

– not covered: large-scale multicomputer (Culler) 

• Less tightly coupled than multiprocessor, but more tightly coupled than 

warehouse-scale computing 
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Multiprocessor architecture: issues/approach  

• To use MIMD, n processors, at least n threads are needed 

• Threads typically identified by programmer or created by OS 

(request-level) 

• Could be many iterations of a single loop, generated by 

compiler 

• Amount of computation assigned to each thread = grain size 

– Threads can be used for data-level parallelism, but the overheads 

may outweigh the benefit 

– Grain size must be sufficiently large to exploit parallelism 

• a GPU could be able to parallelize operations on short vectors, but in a 

MIMD the overhead could be too large 
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       Types 

• Symmetric 
multiprocessors (SMP) 

– Small number of 
cores 

– Share single memory 
with uniform memory 
latency (UMA) 

• Distributed shared 
memory (DSM) 

– Memory distributed 
among processors 

– Non-uniform memory 
access/latency 
(NUMA) 

– Processors 
connected via direct 
(switched) and non-
direct (multi-hop) 
interconnection 
networks 



MO401  7 

IC-UNICAMP 

Challenges of Parallel Processing  

• Two main problems 

– Limited parallelism 

• example: to achieve a speedup of 80 with 100 processors we need to 

have 99.75% of code able to run in parallel !! (see exmpl p349) 

– Communication costs: 30-50 cycles between separate cores, 100-

500 cycle between separate chips (next slide)  

• Solutions 

– Limited parallelism 

• better algorithms 

• software systems should maximize hardware occupancy 

– Communication costs; reducing frequency of remote data access 

• HW: caching shared data 

• SW: restructuring data to make more accesses local  
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Exmpl p350: 

communication 

costs 
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5.2 Centralized Shared-Memory Architectures  

• Motivation: large multilevel caches reduce memory BW needs 

• Originallly: processors were single core, one board, memory on 

a shared bus 

• Recently: bus capacity not enough; p directly connected to 

memory chip; accessing remote data goes through remote p 

memory owner  asymmetric access 

– two multicore chips: latency to local memory  remote memory 

• Processors cache private and shared data 

– private data: ok, as usual 

– shared data: new problem  cache coherence 
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Cache Coherence 

• Processors may see different values through their caches 

• Example p352 

 

 

 

 

 

 

 

 

• Informal definition: a memory system is coherent if any read 
of a data item returns the most recently written value 
– Actually, this definition contains two things: coherence and 

consistency 
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Cache Coherence 

• A memory system is coherent if 

1. A read by processor P to location X that follows a write by P to X, with no 
writes of X by another processor occurring between the write and the read 
by P, always returns the value written by P 

– Preserves program order 

2. A read by a processor to location X that follows a write by another 
processor to X returns written value if the read and write are sufficiently 
separated in time and no other writes to X occur between the two accesses 

– if a processor could continuously read old value  incoherent memory 

3. Writes to the same location are serialized. Two writes to the same location 
by any two processors are seen in the same order by all processors.  

 

• Three properties: sufficient conditions for coherence 

• But, what if two processors have “simultaneous” accesses to memory 
location X, P1 reads X and P2 writes X? What is P1 supposed to read? 

– when a written value must be seen by a reader is defined by a memory 
consistency model 
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Memory Consistency 

• Coherence and consistency are complementary 

– Cache coherence defines the behavior of reads and writes to the  
same memory location 

– Memory consistency defines the behavior of reads and writes with respect to 
accesses to other memory locations 

• Consistency model in section 5.6 

• For now 
– a write does not complete (does not allow next write to start) until all 

processors have seen the effect of that write (write propagation) 

– the processor does not change the order of any write with respect to 
any other memory access. 

• Example 
– if one processor writes location A and then location B 

– any processor that sees new value of B must also see new value of A 

• Writes must be completed in program order 
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Enforcing Coherence 

• Coherent caches provide: 
– Migration:  movement of data to local storage  reduced latency 

– Replication:  multiple copies of data  reduced latency and contention 

• Cache coherence protocols 
– Directory based 

• Sharing status of each block kept in one location, the directory 

• In SMP: centralized directory in memory or outermost cache in a multicore 

• In DSM: distributed directory (sec 5.4) 

– Snooping 

• Each core broadcast its memory operations, via bus or other structure 

• Each core monitors (snoops) the broadcasting media and tracks sharing 
status of each block 

• Snooping popular with bus-based multiprocessing 
– Multicore architecture changed the picture  all multicores share some 

level of cache on chip  some designers switched to directory based 
coherence 

 



MO401  14 

IC-UNICAMP 

Snoopy Coherence Protocols 

• Write invalidate 
– On write, invalidate all other copies 

– Use bus itself to serialize 

• Write cannot complete until bus access is obtained 

• Write update 
– On write, update all copies 

– Consumes more BW 

• Which is better? Depends on memory access pattern 
– After I write, what is more likely? Others read? I write again? 

• Coherence protocols are orthogonal to cache write policies 
– Invalidate 

• write through? 

• write back? 

– Update 

• write through? 

• write back? 
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Exmpl: Invalidate and Write Back 
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Snoopy Coherence Protocols 

• Bus or broadcasting media acts as write serialization 
mechanism: writes to a memory location are in bus order 

• How to locate an item when a read miss occurs? 
– In write through cache, all copies are valid (updated) 

– In write-back cache, if a cache has data in dirty state, it sends the 
updated value to the requesting processor (bus transaction) 

• Cache lines marked as shared or exclusive/modified 
– Only writes to shared lines need an invalidate broadcast 

• After this, the line is marked as exclusive 

• Há diferentes protocolos de coerência 
– Para write invalidate: MSI (prox slide), MESI, MOESI 

• Snoopy requer adição de tags de estado a cada bloco da 
cache: estado do protocolo usado  shared, modified, 
exclusive, invalid 
– Como tanto o processador como o snoopy controller devem acessar 

os cache tags, normalmente os tags são duplicados 
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Fig 5.5 Snoopy Coherence Protocols: MSI 
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Snoopy Coherence Protocols: MSI 

Estado 

(ação 

permitida) 

estímulo que causou mudança de  estado     

bus xaction resultante    

Miss para um bloco em estado  inválido  

dado está lá mas wrong tag  miss 

M 

I S 
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Snoopy Coherence Protocols 

Figure 5.7 Cache coherence state diagram with the state transitions induced by the local processor shown 

in black and by the bus activities shown in gray. Activities on a transition are shown in bold.  
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Abordagem alternativa 

• H&P:  
– Write-Back implementado dentro do mesmo protocolo (e máquina de 

estado) 

– Em caso de miss, é possível encontrar o bloco em estado M ou S 
(mas é o endereço errado) 

 

• Culler(*) 
– Write-Back é implementado fora do protocolo de coerência 

• mais correto, visto que não é um problema de coerência 

– Em caso de miss, obrigatoriamente o bloco está no estado I (é o 
endereço deste bloco e não o índice a ele 

• mais correto, visto que o estado é do bloco presente localmente na 
cache e não do bloco apontado pelo índice 

 

(*) “Parallel Computer Architecture", David E. Culler, Jaswinder Pal Singh, Morgan Kaufmman, 1999 
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MSI, conforme Culler 

– Replacement changes state of two blocks: outgoing and incoming (I) 

– Ver expl 5.6, pag 296 

– Sem cache-to-cache sharing 

PrRd/— 

PrRd/— 

PrW r/BusRdX 
BusRd/— 

PrW r/— 

S 

M 

I 

BusRdX/Flush 

BusRdX/— 

BusRd/Flush 

PrRd/BusRd 

PrW r/BusRdX 

bus 

processador 
• PrRD em bloco no estado I ; BusRD ;  estado I-> S ; 

Se outra cache tem o dado em S, não faz nada 

(memória fornece o dado); se está no estado M, esta 

cache fornece o dado (flush) e M -> S; tanto a cache 

solicitante quanto a memória pegam o dado 

 

• PrWR em bloco no estado I; miss; carrega o bloco 

inteiro e modifica a palavra em questão; RdX ; todas 

outras cópias vão para I; a cache solicitante vai de I -> 

M 

 

• PrWR em bloco no estado S; como WR miss; RdX; 

dado que retorna do RdX pode ser ignorado porque já 

na cache; simplificação seria usar uma nova 

transação: Bus Upgrade (BusUpgr); esta transação 

também obtém exclusividade mas não causa 

fornecimento de dados por ninguém 

 

pag 294 
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Snoopy Coherence Protocols 

• Complications for the basic MSI protocol: 
– Operations are not atomic 

• E.g. detect miss, acquire bus, receive a response 

• Creates possibility of deadlock and races 

• One solution:  processor that sends invalidate can hold bus until other 
processors receive the invalidate 

 

• Extensions: 
– Add exclusive state to indicate clean block in only one cache (MESI 

protocol) 

• Prevents needing to write invalidate on a write, if Exclusive-clean 

– Owned state: MOESI 

• solves problem: if block in shared state, who should supply a copy in 
case a processor misses?  

– Before: everybody + memory abort 

– Now: owner 
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Limitations of SMP and snooping 

• As numbers of processors grow, any centralized resource 
can become a bottleneck  

• In a multicore, private L1/L2 and shared L3 (on chip)  ok 
up to 8 cores 

• Snooping bandwidth. Solutions 
– duplicate cache tags 

– directory at the outermost cache level (Intel i7 and Xeon) 
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Limitations (2) 

 

• To solve bus traffic limitations 

• Use interconnection network 

– crossbars or point-to-point 
networks with banked memory 

• Does not scale well 

 

• Or use distributed memory 
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Coherence Protocols 

• AMD Opteron: 
– Memory directly connected to each multicore chip in NUMA-like 

organization 

– Implement coherence protocol using point-to-point links (direct 
broadcasting) 

– Use explicit acknowledgements to order operations 

• there is no common media to snoop on 
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Evolution 

• Bus + snoop + small scale multiprocessing = ok 

• As number or processors increase 
– multibus: snoopy? 

– interconnection network: snoopy? 

• Snoopy demands broadcast, ok with bus 
– also possible in interconnection network  traffic, latency, write 

serialization 

• All solutions but single bus lack its easy “bus order”  write 
serialization 

• Races? 

• Directory is more appropriate for implementing cache 
coherence protocols in large scale multiprocessors 

• (see history, devil in details, textbook) 



MO401  27 

IC-UNICAMP 

5.3 Performance of SMP 

• Performance depends on many factors 

– overall cache performance = uniprocessor cache miss traffic + 

communication traffic 

– processor count, cache size, block size 

• Coherence influences cache miss rate 

– Coherence misses 

• True sharing misses 

– Write to shared block (transmission of invalidation) 

– Read an invalidated block 

• False sharing misses 

– Read an unmodified word in an invalidated block 
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Exmpl p366: 

miss 

identification 
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Study on a commercial workload 

4 processor shared-

memory, Alpha, 4 

instructions issue, 

1998 (but structure 

similar to modern 

multicore chips) 

 

 

(compare to Intel i7) 
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Study on a commercial workload 

• OLTP: Online transaction-processing workload modeled after TPC-B. 

Requests to an Oracle DB 

• DSS: Decision Support System based on TPC-D, also with Oracle 

• Alta Vista: web search engine 
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Performance 

Study:  

Commercial 

Workload 
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Performance 

Study:  

Commercial 

Workload 
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Performance 

Study:  

Commercial 

Workload 
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Performance 

Study:  

Commercial 

Workload 
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Performance 

Study:  

Commercial 

Workload 
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Performance Study:   

Multiprogramming and OS Workload 
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Performance Study:   

Multiprogramming 

and OS Workload 
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Performance Study:   

Multiprogramming and OS Workload 
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5.4 Directory Protocols 
• Directory keeps track of every block 

– Which caches have each block 

– Dirty status of each block 

• Implement in shared L3 cache 

– Keep bit vector of size = # cores for each block in L3 

• indicates which cores may have copies; inval  only to these 

• ok if inclusive 

– Not scalable beyond shared L3 (centralized directory) 

• Implement in a distributed fashion (next to memory) 

– each memory block has bit vector; total overhead = # memory blocks * # nodes 
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Protocolos de cache e de diretório 

• São coisas diferentes. 

• Em um bus, bus transactions fazem a comunicação (única) 
necessária para o snooping e a integridade do protocolo 

• Em rede, não há broadcasting, podem ser necessárias 
múltiplas network transactions para completar uma 
operação. 
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Directory Protocols 

• For each block, maintain state: 
– Shared 

• One or more nodes have the block cached, value in memory is up-to-
date 

• Set of node IDs 

– Uncached 

– Modified 

• Exactly one node has a copy of the cache block, value in memory is out-
of-date 

• Owner node ID 

 

• Directory maintains block states and sends invalidation 
messages 

• Nodes 
– Local = Requestor 

– Home = node with directory 

– Remote = node with copy (not local / home) 
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Messages 
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Individual 

cache block in a 

directory-based 

system 
Requests local node 

Actions 

Requests from outside 
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Directory 
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Directory Protocols 

• For uncached block: 
– Read miss 

• Requesting node is sent the requested data and is made the only 
sharing node, block is now shared 

– Write miss 

• The requesting node is sent the requested data and becomes the 
sharing node, block is now exclusive 

• For shared block: 
– Read miss 

• The requesting node is sent the requested data from memory, node is 
added to sharing set 

– Write miss 

• The requesting node is sent the value, all nodes in the sharing set are 
sent invalidate messages, sharing set only contains requesting node, 
block is now exclusive 
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Directory Protocols 

• For exclusive block: 
– Read miss 

• The owner is sent a data fetch message, block becomes 
shared, owner sends data to the directory, data written back to 
memory, sharers set contains old owner and requestor 

– Data write back 

• Block becomes uncached, sharer set is empty 

– Write miss 

• Message is sent to old owner to invalidate and send the value 
to the directory, requestor becomes new owner, block remains 
exclusive 
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5.5 Synchronization 

• Basic building blocks: atomic read-modify-write 
– Atomic exchange 

• Swaps register with memory location 

– Test-and-set 

• Sets under condition 

– Fetch-and-increment 

• Reads original value from memory and increments it in memory 

– Requires memory read and write in uninterruptable instruction 

 

– load linked/store conditional 

• If the contents of the memory location specified by the load linked are 
changed before the store conditional to the same address, the store 
conditional fails 
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Example LL-SC 

Atomic exchange in memory location specified by R1: 
 

 try: MOV  R3,R4 ;move exchange value 

  LL R2,0(R1)  ;load linked 

  SC R3,0(R1)  ;store conditional 

  BEQZ R3,try ;branch store fails 

  MOV R4, R2 ;put load value in R4 

 

LL-SC implementing an atomic fetch-and-increment: 
  try: LL R2,0(R1)  ;load linked 

  DADDUI R3,R2,#1  ;increment 

  SC R3,0(R1)  ;store conditional 

  BEQZ R3,try ;branch store fails 
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Implementing Locks 

• Spin lock: a processor continuously tries to acquire 

 

If no coherence, lock kept in memory: 

   DADDUI R2,R0,#1 

 lockit: EXCH R2,0(R1) ;atomic exchange 

   BNEZ R2,lockit ;already locked? 

 

If coherence, cached lock: 

 lockit: LD  R2,0(R1) ;load of lock 

   BNEZ R2,lockit ;not available-spin 

   DADDUI R2,R0,#1 ;load locked value 

   EXCH R2,0(R1) ;swap 

   BNEZ R2,lockit ;branch if lock wasn’t 0 
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Cached Spin Locks: bus traffic 
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5.6 Models of Memory Consistency 

Processor 1: 

A=0 

… 

A=1 

if (B==0) … 

Processor 2: 

B=0 

… 

B=1 

if (A==0) … 

 

 

 

 

• Should be impossible for both if-statements to be 
evaluated as true 
– Delayed write invalidate? 

 

• Sequential consistency: 
– Result of execution should be the same as long as: 

• Accesses on each processor were kept in order 

• Accesses on different processors were arbitrarily interleaved 
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Exmpl p393: sequential consistency 
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The programmer´s view 

• To implement, delay completion of all memory accesses 
until all invalidations caused by the access are completed 
– Reduces performance! 

• Alternatives: synchronization 
– Exmpl: a variable is read and updated by two different processors 

• Each processor surrounds the memory operation with lock/unlock 

– “Unlock” after write 

– “Lock” after read 

• Data races 

• Programs with synchronization are “data-race free” 

• In general, behavior of unsynchronized programs is 
unpredictable 
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Relaxed Consistency Models 

• Idea: performance  allow writes out-of-order, but with 
synchronization 

• Rules: 
– X → Y 

• Operation X must complete before operation Y is done 

• Sequential consistency requires: 

– R → W, R → R, W → R, W → W 

 

– Relax W → R 

• “Total store ordering” or “processor consistency” 

 

– Relax W → W 

• “Partial store order” 

 

– Relax R → W and R → R 

• “Weak ordering” and “release consistency” 
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5.7 Crosscutting issues 

• Compiler optimization and the consistency model 
– Unless sync points are clearly identified, the compiler cannot 

interchange a read and a write  could affect semantics 

• Using speculation to hide latency in strict consistency 
models 
– Use delayed commit 

– If an invalidation arrives for a result that has not been committed, 
use speculation recovery 

1. gets most of the advantage of relaxed consistency models 

2. implementation has low cost 

3. simple programming model 
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Inclusion and its implementation 
• All blocks present in a higher level cache are also in lower 

levels 

• Problems: different block sizes, replacement, levels of 
associativity 

• Designers are still split on enforcement of inclusion 
– Intel i7: inclusion for L3 (directory in L3, no need to snoop in L1/L2) 

– AMD Opteron: inclusion on L2 but no inclusion on L3 
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Multiprocessing and multithreading 

• Studies 
– Sun T1: 4-8 core, fine grain multithreading 

– IBM Power 5: dual core, simultaneous multithreading 
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Fig 5.26: 

SMT vs ST 

on IBM 

server 

A comparison of SMT and single-thread (ST) performance on the eight-processor IBM eServer p5 575. 

Note that the y-axis starts at a speedup of 0.9, a performance loss. Only one processor in each Power5 core is 

active, which should slightly improve the results from SMT by decreasing destructive interference in the memory 

system. The SMT results are obtained by creating 16 user threads, while the ST results use only eight threads; 

with only one thread per processor, the Power5 is switched to single-threaded mode by the OS. These results 

were collected by John McCalpin of IBM. As we can see from the data, the standard deviation of the results for 

the SPECfpRate is higher than for SPECintRate (0.13 versus 0.07), indicating that the SMT improvement for FP 

programs is likely to vary widely.  
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5.8 Putting 

all together: 

multicores 
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Performance vs # cores: SPECrate  

Figure 5.28 The performance on the SPECRate benchmarks for three multicore processors as 

the number of processor chips is increased. Notice for this highly parallel benchmark, nearly 

linear speedup is achieved. Both plots are on a log-log scale, so linear speedup is a straight line.  
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Performance vs # cores: SPECjbb2005 

Figure 5.29 The performance on the SPECjbb2005 benchmark for three multicore processors as 

the number of processor chips is increased. Notice for this parallel benchmark, nearly linear speedup 

is achieved.  
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Figure 5.30 This chart shows the speedup for two- and four-core executions of the parallel 

Java and PARSEC workloads without SMT. These data were collected by Esmaeilzadeh et al. 

[2011] using the same setup as described in Chapter 3. Turbo Boost is turned off. The speedup and 

energy efficiency are summarized using harmonic mean, implying a workload where the total time 

spent running each 2p benchmark is equivalent.  

Intel i7: Energy efficiency vs SMT 
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Figure 5.31 This chart shows the speedup for two- and four-core executions of the parallel Java and 

PARSEC workloads both with and without SMT. Remember that the results above vary in the number of 

threads from two to eight, and reflect both architectural effects and application characteristics. Harmonic 

mean is used to summarize results, as discussed in the caption of Figure 5.30.  

Intel i7: processor count and SMT 
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5.9 Fallacies and pitfalls 
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Figure 5.32 Speedup for three benchmarks on an IBM eServer p5 multiprocessor when 

configured with 4, 8, 16, 32, and 64 processors. The dashed line shows linear speedup.  

Linear speedups are needed to make 

multiprocessors cost effective 

• TPM is super 

linear 

• costs scale 

less than linear 
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Figure 5.33 The performance/cost relative to a 4-processor system for three benchmarks run on an IBM eServer 

p5 multiprocessor containing from 4 to 64 processors shows that the larger processor counts can be as cost 

effective as the 4-processor configuration. For TPC-C the configurations are those used in the official runs, which 

means that disk and memory scale nearly linearly with processor count, and a 64-processor machine is approximately 

twice as expensive as a 32-processor version. In contrast, the disk and memory are scaled more slowly (although still 

faster than necessary to achieve the best SPECRate at 64 processors). In particular, the disk configurations go from one 

drive for the 4-processor version to four drives (140 GB) for the 64-processor version. Memory is scaled from 8 GB for 

the 4-processor system to 20 GB for the 64-p-rocessor system.  

(cont) 
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5.10 Conclusions 

• Há mais de 30 anos, previsões: fim da era de 

uniprocessadores e substituição por multiprocessamento 

– Previsões só se confirmaram em 2005: (power + area + ILP) walls 

• Multicore: mais fácil controlar power (idle) e TLP vs ILP 

• Alguns problemas se mantêm: especulação  relação 

custo (área+power) benefício tão ruim em TLP quanto ILP 

• Perguntas no livro (1st ed) em 1996: 

– What architectures would very large scale multiprocessors use? 

• Hoje: clusters, cloud, warehouse computing 

– What is the role of multiprocessing in future? 

• Hoje: exploração de TLP em vez de ILP 
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Exemplo: família de processadores Intel 

usando o core Nehalem 


