
MO401 1

IC-UNICAMP MO401

IC/Unicamp

Prof Mario Côrtes

Capítulo 4

 Data-Level Parallelism –

Vector, SIMD, GPU

MO401 2

IC-UNICAMP

Tópicos

• Vector architectures

• SIMD ISA extensions for multimedia

• GPU

• Detecting and enhancing loop level parallelism

• Crosscutting issues

• putting all together: mobile vs GPU, tesla....

MO401 3

IC-UNICAMP

4.1 Introduction

• SIMD architectures can exploit significant data-level
parallelism for:
– matrix-oriented scientific computing

– media-oriented image and sound processors

• SIMD is more energy efficient than MIMD
– Only needs to fetch one instruction per data operation

– Makes SIMD attractive for personal mobile devices

• SIMD allows programmer to continue to think sequentially

In
tro

d
u
c
tio

n

MO401 4

IC-UNICAMP

SIMD Parallelism

• Variations of SIMD
– Vector architectures

• Fácil de entender/programar; era considerado caro para microproc
(área, DRAM bandwitdth)

– SIMD extensions: multimedia  MMX, SSE, AVX

– Graphics Processor Units (GPUs)  vector, many core heterog.

• For x86 processors:
– Expect two additional cores per chip per year

– SIMD width to double every four years

– Potential speedup from SIMD to be twice that from MIMD!

In
tro

d
u
c
tio

n

MO401 5

IC-UNICAMP

Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86

computers. This figure assumes that two cores per chip for MIMD will be added every two years and the

number of operations for SIMD will double every four years.

Speedup vs X86

MO401 6

IC-UNICAMP

4.2 Vector Architectures

• Basic idea:
– Read (scattered) sets of data elements into “vector registers”

– Operate on those registers

– Disperse the results back into memory

• Registers are controlled by compiler
– Used to hide memory latency

– Leverage memory bandwidth

– Loads e Stores  deeply pipelined

• High latency, but high hw utilization

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 7

IC-UNICAMP

VMIPS

• Example architecture: VMIPS
– Loosely based on Cray-1

– Vector registers (8)

• Each register holds a 64-element, 64 bits/element vector

• Register file has 16 read ports and 8 write ports

– Vector functional units (5)

• Fully pipelined

• Data and control hazards are detected

– Vector load-store unit

• Fully pipelined

• One word per clock cycle after initial latency

– Scalar registers

• 32 general-purpose registers

• 32 floating-point registers

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 8

IC-UNICAMP

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like

MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. This

chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector

units for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes

these units; however, we will not be discussing these units. The vector and scalar registers have a significant

number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick

gray lines) connects these ports to the inputs and outputs of the vector functional units.

VMIPS Archit.

For a 64 x 64b register file

 64 x 64b elements

 128 x 32b elements

 256 x 16b elements

 512 x 8b elements

Vector architecture is

attractive both for scientific

and multimedia apps

MO401 9

IC-UNICAMP

Fig 4.3

VMIPS

ISA

VV:

vector – vector

VS:

vector – scalar

MO401 10

IC-UNICAMP

Exmpl p267: VMIPS Instructions

• DAXPY: Double A x X Plus Y  AX+Y
L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV V4,V2,V3 ; add

SV Ry,V4 ; store the result

• VMIPS vs MIPS
– Requires 6 instructions vs. almost 600 for MIPS (half is overhead)

– RAW in MIPS: MUL.D  ADD.D  S.D

– Stall in VMIPS: only for 1st vector element, then, smooth flow
through pipeline

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 11

IC-UNICAMP

Vector Execution Time

• Execution time depends on three factors:
– Length of operand vectors

– Structural hazards

– Data dependencies

• VMIPS functional units consume one element per clock
cycle
– Execution time is approximately the vector length

• Convoy
– Set of vector instructions that could potentially execute together

– não devem conter hazard estrutural

• Tempo de execução proporcional ao # convoys

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 12

IC-UNICAMP

Chaining and Chimes

• Sequences with read-after-write dependency hazards can
be in the same convoy via chaining

• Chaining
– Allows a vector operation to start as soon as the individual elements

of its vector source operand become available (similar to forwarding)

• Chime
– Unit of time to execute one convoy

– m convoys executes in m chimes

– For vector length of n, requires m x n clock cycles

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 13

IC-UNICAMP

Exmpl p270: execution time

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D (V1  chain)

2 LV ADDVV.D (struct. haz. LV convoys 1, 2)

3 SV (struct. haz. LV convoys 2, 3)

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 64 element vectors, requires 64 x 3 = 192 clock cycles

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 14

IC-UNICAMP

Challenges

• Start up time

– Pipeline latency of vector functional unit

– Assume the same as Cray-1
• Floating-point add => 6 clock cycles

• Floating-point multiply => 7 clock cycles

• Floating-point divide => 20 clock cycles

• Vector load => 12 clock cycles

• Needed improvements:
– > 1 element per clock cycle

– Non-64 wide vectors

– IF statements in vector code (conditional branches)

– Memory system optimizations to support vector processors

– Multiple dimensional matrices

– Sparse matrices

– Programming a vector computer

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 15

IC-UNICAMP

Multiple Lanes: beyond 1 element / cycle

Element n of

vector

register A is

“hardwired” to

element n of

vector

register B

Allows for

multiple

hardware

lanes

V
e
c
to

r A
rc

h
ite

c
tu

re
s

Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction,

C = A + B. The vector processor (a) on the left has a single add pipeline and can complete one addition per cycle.

The vector processor (b) on the right has four add pipelines and can complete four additions per cycle. The

elements within a single vector add instruction are interleaved across the four pipelines. The set of elements that

move through the pipelines together is termed an element group.

MO401 16

IC-UNICAMP

Multiple Lanes: beyond 1 element / cycle

• 1 lane  4 lanes

– clocks in 1 chime: 64 

16

• Multiple lanes:

– little increase in

complexity

– no change in code

• Allows trade-off: area,

clock rate, voltage,

energy

– ½ clock & 2x

lanessame speed

V
e
c
to

r A
rc

h
ite

c
tu

re
s

Figure 4.5 Structure of a vector unit containing four lanes. The vector register storage is divided across the

lanes, with each lane holding every fourth element of each vector register. The figure shows three vector

functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector arithmetic units contains four

execution pipelines, one per lane, which act in concert to complete a single vector instruction. Note how each

section of the vector register file only needs to provide enough ports for pipelines local to its lane. This figure

does not show the path to provide the scalar operand for vector-scalar instructions, but the scalar processor (or

control processor) broadcasts a scalar value to all lanes.

MO401 17

IC-UNICAMP

Vector Length Register

• Vector length not known at compile time?

• Use Vector Length Register (VLR)

• O parâmetro MVL (max vector length) é usado pelo

compilador 

– não é necessário mudar ISA quando muda MVL (not in multimedia)

• Use strip mining for vectors over the maximum length:
low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

 Y[i] = a * X[i] + Y[i] ; /*main operation*/

 low = low + VL; /*start of next vector*/

 VL = MVL; /*reset the length to maximum vector length*/

}

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 18

IC-UNICAMP

Handling Ifs: Vector Mask Registers

• Consider:

 for (i = 0; i < 64; i=i+1)

 if (X[i] != 0)

 X[i] = X[i] – Y[i];

• Use vector mask register to “disable” elements:
 LV V1,Rx ;load vector X into V1

 LV V2,Ry ;load vector Y

 L.D F0,#0 ;load FP zero into F0

 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

 SUBVV.D V1,V1,V2 ;subtract under vector mask

 SV Rx,V1 ;store the result in X

• GFLOPS rate decreases!

– additional instructions executed

anyway (when vect mask reg is used)

V
e
c
to

r A
rc

h
ite

c
tu

re
s

Set {NE} Vect x Scalar

MO401 19

IC-UNICAMP

Memory Banks

• Memory system must be designed to support high

bandwidth for vector loads and stores

• LD/ST vector unit: more complicated than arithmetic unit

– Startup time: 1st word  register

• typical penality: 100 cycles (12 cycles no VMIPS)

– Initiation rate: reading rate from memory (could be  1 cycle)

• for 1 / cycle: multiple memory banks

• Spread accesses across multiple banks

– Control bank addresses independently

– Ability to load or store non sequential words (not interleaving)

– Support multiple vector processors sharing the same memory

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 20

IC-UNICAMP

Exmpl p277: # of memory banks of Cray T90

MO401 21

IC-UNICAMP

Stride: handling muldimentional arrays

• Consider the matrix multiply: A = B * D

 for (i = 0; i < 100; i=i+1)

 for (j = 0; j < 100; j=j+1) {

 A[i][j] = 0.0;

 for (k = 0; k < 100; k=k+1)

 A[i][j] = A[i][j] + B[i][k] * D[k][j];

 }

• 3D array stored as linear array in memory (row or column major)

– one of B or D will have non adjacent elements in memory (row or column)

• Must vectorize multiplication of rows of B with columns of D

– D elements separated by RowSize x EntrySize = 100 * 8 = 800 = stride

• Use non-unit stride  separated elements become contiguous in Vect

Register (locality? better than cache?)

• Bank conflict (stall) if same bank is hit faster than bank busy time:

V
e
c
to

r A
rc

h
ite

c
tu

re
s

timeBank_busy_
N_banks)e,omum(StridMin_mult_c

N_banks


MO401 22

IC-UNICAMP

Exmpl p 279

MO401 23

IC-UNICAMP

Gather-Scatter: Sparse Matrices

• Sparse vectors are usually stored in compacted form

• Consider:

 for (i = 0; i < n; i=i+1)

 A[K[i]] = A[K[i]] + C[M[i]];

• Where K and M designate non-zero elements of A and C

– K and M: same size

• Must be able to

– gather: index vector allows loading to a dense vector

– scatter: store back in memory in the expanded form (not compacted)

• HW support to Gather-Scatter: present in all modern vector

processors. In VMIPS:

– LVI (Load Vector Indexed – Gather)

– SVI (Store Vector Indexed – Scatter)

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 24

IC-UNICAMP

Gather-Scatter: Sparse Matrices (cont)

• Ra, Rc, Rk, Rm:

– starting vector addresses

• Use index vector:

 LV Vk, Rk ;load K

 LVI Va, (Ra+Vk) ;load A[K[]]

 LV Vm, Rm ;load M

 LVI Vc, (Rc+Vm) ;load C[M[]]

 ADDVV.D Va, Va, Vc ;add them

 SVI (Ra+Vk), Va ;store A[K[]]

V
e
c
to

r A
rc

h
ite

c
tu

re
s

for (i = 0; i < n; i=i+1)

 A[K[i]] = A[K[i]] + C[M[i]];

MO401 25

IC-UNICAMP

Programming Vec. Architectures

• Compilers can provide feedback to programmers

• Programmers can provide hints to compiler

V
e
c
to

r A
rc

h
ite

c
tu

re
s

MO401 26

IC-UNICAMP

4.SIMD Extensions

• Media applications operate on data types narrower than the

native word size

– Many graphics systems: 8b (3 colors) + 8b (transparency)

– Audio samples: 8 ou 16 bit

• Hardware changes (example)

– Disconnect carry chains to “partition” adder: 8, 16, 32 bits

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

MO401 27

IC-UNICAMP

Limitations of SIMD Extensions (vs Vector)

• Smaller register file

• Number of data operands encoded into op code (no Vector

Length Register)  addition of 100´s of new op codes

• No sophisticated addressing modes (strided, scatter-gather)

– fewer programs can be vectorized in SIMD extension machines

• No mask registers

•  increased difficulty of programming in SIMD assembly

language

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

MO401 28

IC-UNICAMP

SIMD Implementations

• Implementations:

– Intel MMX (1996)

• Eight 8-bit integer ops or four 16-bit integer ops

– Streaming SIMD Extensions (SSE) (1999)

• Eight 16-bit integer ops

• Four 32-bit integer/fp ops or two 64-bit integer/fp ops

– Advanced Vector Extensions (2010)

• Four 64-bit integer/fp ops

• Goal: accelerate carefully written libraries (rather than for the

compiler to generate them

• With so many flaws, why are SIMD so popular?

– HW changes: easy, low cost, low area

– No need of high memory BW (Vector)

– Fewer problems with virtual memory and page faults (short vectors)

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

MO401 29

IC-UNICAMP

Exmpl p284: SIMD Code
S

IM
D

 In
s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

Anwser (next page)

MO401 30

IC-UNICAMP

SIMD Code – DAXPY

 L.D F0,a ;load scalar a

 MOV F1, F0 ;copy a into F1 for SIMD MUL

 MOV F2, F0 ;copy a into F2 for SIMD MUL

 MOV F3, F0 ;copy a into F3 for SIMD MUL

 DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3]

 MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]

 L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]

 ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]

 S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]

 DADDIU Rx,Rx,#32 ;increment index to X

 DADDIU Ry,Ry,#32 ;increment index to Y

 DSUBU R20,R4,Rx ;compute bound

 BNEZ R20,Loop ;check if done

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

MO401 31

IC-UNICAMP

Roofline Performance Model

• Basic idea:

– Plot peak floating-point throughput as a function of arithmetic

intensity

– Ties together floating-point performance and memory performance

for a target machine

• Arithmetic intensity

– Peak # Floating-point operations / Peak # data bytes transfered

S
IM

D
 In

s
tru

c
tio

n
 S

e
t E

x
te

n
s
io

n
s
 fo

r M
u
ltim

e
d
ia

Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run the

program divided by the number of bytes accessed in main memory [Williams et al. 2009]. Some

kernels have an arithmetic intensity that scales with problem size, such as dense matrix, but there are

many kernels with arithmetic intensities independent of problem size.

MO401 32

IC-UNICAMP

Examples

• Attainable GFLOPs/sec =

–Min(Peak Memory BW × Arithmetic Intensity, Peak Floating Point Perf.)

Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920

multicore computer with SIMD Extensions on the right [Williams et al. 2009]. This Roofline is for unit-stride

memory accesses and double-precision floating-point performance. NEC SX-9 is a vector supercomputer

announced in 2008 that costs millions of dollars. It has a peak DP FP performance of 102.4 GFLOP/sec and a

peak memory bandwidth of 162 GBytes/sec from the Stream benchmark. The Core i7 920 has a peak DP FP

performance of 42.66 GFLOP/sec and a peak memory bandwidth of 16.4 GBytes/sec. The dashed vertical lines

at an arithmetic intensity of 4 FLOP/byte show that both processors operate at peak performance. In this case,

the SX-9 at 102.4 FLOP/sec is 2.4x faster than the Core i7 at 42.66 GFLOP/sec. At an arithmetic intensity of

0.25 FLOP/byte, the SX-9 is 10x faster at 40.5 GFLOP/sec versus 4.1 GFLOP/sec for the Core i7.

FLOP/Byte

GFLOP/s

FLOP/s = B/sec

FLOP/B

Memory

bound

CPU

bound

Cumieira

far left or far right?

MO401 33

IC-UNICAMP

4.4 Graphical Processing Units

• Given the hardware invested to do graphics well, how can

be supplement it to improve performance of a wider range of

applications?

• Basic idea:

– Heterogeneous execution model

• CPU is the host, GPU is the device

– Develop a C-like programming language for GPU

• CUDA: Compute Unified Device Architecture

• C/C++ for host and C/C++ dialect for device (GPU)

– Unify all forms of GPU parallelism as CUDA thread

– Programming model is “Single Instruction Multiple Thread”

MO401 34

IC-UNICAMP

Threads and Blocks

• A thread is associated with each data element

• Threads are organized into blocks (32 threads)

• Blocks are organized into a grid

• GPU hardware handles thread management, not

applications or OS

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 35

IC-UNICAMP

Terminology

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 36

IC-UNICAMP

NVIDIA GPU vs Vector Architectures

• Similarities to vector machines:

– Works well with data-level parallel problems

– Scatter-gather transfers

– Mask registers

– Large register files

• Differences:

– No scalar processor

– Uses multithreading to hide memory latency

– Has many functional units, as opposed to a few deeply pipelined

units like a vector processor

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 37

IC-UNICAMP

Exmpl p291

• Multiply two vectors of length 8192 (8K)

– Code that works over all elements is the grid

– Thread blocks break this down into manageable sizes

• Up to 512 elements per block

– SIMD instruction executes 32 elements at a time (one thread)

• 8192 elements / 32 (elem/thread) = 256 threads

• 256 threads = 16 blocks with 16 threads each

– Thus grid size = 16 blocks (16 = 8192 / 512)

– Block is analogous to a strip-mined vector loop with vector length of

32

– Block is assigned to a multithreaded SIMD processor by the thread

block scheduler

– Current-generation GPUs (Fermi) have 7-15 multithreaded SIMD

processors

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 38

IC-UNICAMP

Exmpl p291

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 39

IC-UNICAMP

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 40

IC-UNICAMP

Floor plan

of the Fermi

GTX 480

GPU

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

Figure 4.15. This diagram shows 16 multithreaded SIMD Processors. The Thread Block Scheduler is highlighted

on the left. The GTX 480 has 6 GDDR5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The Host

Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that distributes thread blocks to

Multiprocessors, each of which has its own SIMD Thread Scheduler.

MO401 41

IC-UNICAMP

One more level of detail

• Threads of SIMD instructions

– Each has its own PC

– Thread scheduler uses scoreboard to dispatch

– No data dependencies between threads!

– Keeps track of up to 48 threads of SIMD instructions

• Hides memory latency

• Thread block scheduler schedules blocks to SIMD

processors

• Within each SIMD processor:

– 32 SIMD lanes

– Wide and shallow compared to vector processors

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 42

IC-UNICAMP

Example

• NVIDIA GPU has 32,768 registers

– Divided into lanes

– Each SIMD thread is limited to 64 registers

– SIMD thread has up to:

• 64 vector registers of 32 32-bit elements

• 32 vector registers of 32 64-bit elements

– Fermi has 16 physical SIMD lanes, each containing 2048 registers

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 43

IC-UNICAMP

Scheduling of

threads of SIMD

instructions

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

Figure 4.16. The scheduler selects a ready thread of SIMD instructions and issues an instruction synchronously to

all the SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are independent, the

scheduler may select a different SIMD thread each time.

MO401 44

IC-UNICAMP

NVIDIA Instruction Set Arch.

• PTX is an abstraction of HW ISA

– “Parallel Thread Execution (PTX)” stable abstraction in dif. versions

– PTX  instructions for a single CUDA thread

– Uses virtual registers; compiler allocates to physical

– Translation to machine code is performed in software (cf. X86)

• Format
opcode.type d, a, b, c;

 where d = destination operand and a, b, c are source operands

• All instructions: can have 1-bit predicate register

– equivalent to mask register (see fig 4.21)

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 45

IC-UNICAMP

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 46

IC-UNICAMP

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 47

IC-UNICAMP

Example – DAPY loop

• One iteration
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID

ld.global.f64 RD0, [X+R8] ; RD0 = X[i]

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]

mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)

add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

– One Thread / loop; one unique id # to each threadblock (blockIdx)

and one thread within a block (threadIdx)

– Creates 8192 CUDA threads; uses unique number to address each

element  no incrementing or branching code

– 3 primeiras instruções: calcula o byte offset em R8 que é somado à

base dos arrays

– GPU não tem instruções especiais para transferência de dados

sequencial, por stride e gather-scatter. Tudo é gather-scatter

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 48

IC-UNICAMP

Conditional Branching

• Like vector architectures (vector masks by SW), GPU branch

hardware uses internal masks (and predicate regs by HW)

• Also uses

– Branch synchronization stack

• Entries consist of masks for each SIMD lane

• I.e. which threads commit their results (all threads execute)

– Instruction markers to manage when a branch diverges into multiple

execution paths

• Push on divergent branch

– …and when paths converge

• Act as barriers

• Pops stack

• Per-thread-lane 1-bit predicate register, specified by

programmer

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 49

IC-UNICAMP

NVIDIA GPU Memory Structures
• Each SIMD Lane has private section of off-chip DRAM

– “Private memory”

– Contains stack frame, spilling registers, and private variables

• Each multithreaded SIMD processor also has on-chip local

memory

– Shared by SIMD lanes / threads within a block

• Memory shared by SIMD processors is GPU Memory

– Host can read and write only to GPU memory

• Em vez de usar “working set” in “large caches” GPU usa

– Small streaming caches

– extensive multithreading to hide long DRAM latencies

– computing resources

– large number or registers

– vector LD/ST amortize latency across many elements, pay for 1st

element and pipeline the rest

• Latest GPUs: small caches as BW filters on GPU memory

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 50

IC-UNICAMP

GPU

Memory

structures

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

Figure 4.18. GPU Memory is shared by all Grids (vectorized loops), Local Memory is shared by all threads of

SIMD instructions within a thread block (body of a vectorized loop), and Private Memory is private to a single

CUDA Thread.

MO401 51

IC-UNICAMP

Fermi Architecture Innovations

• Much more complicated than previous versions

• Fermi: each SIMD processor has

– Two SIMD thread schedulers, two instruction dispatch units (figure)

– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store

units, 4 special function units

– Thus, two threads of SIMD instructions are scheduled every two

clock cycles

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 52

IC-UNICAMP

Fermi Dual SIMD Thread Scheduler
G

ra
p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

Figure 4.19 Compare this design to the single SIMD Thread Design in Figure 4.16.

MO401 53

IC-UNICAMP

Fermi

Multithreaded

SIMD Proc.

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU. Each SIMD Lane has a

pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and operands to these

units, and a queue for holding results. The four Special Function units (SFUs) calculate functions such as square

roots, reciprocals, sines, and cosines.

MO401 54

IC-UNICAMP

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

Fermi Architecture Innovations

• Closer to mainstream system processors

• Fast double precision (DP): rel SP (1/10 prev  ½ now)

– peak DP performance: 78 GFLOPS (prev)  515 GFLOPS (now)

• Caches

– L1 instruction and L1 data caches for each SIMD processor, and a L2

cache shared by SIMD processors and GPU memory. Note: GTX

480 has register file = 2MB and L1 = (0.25 – 0.75 MB)

• 64-bit addressing and unified address space

• Error correcting codes: memory and registers (MTTF?)

• Faster context switching: about 25 ms = 10x faster than in

previous versions

• Faster atomic instructions: (5-20)x faster than in previous

versions

MO401 55

IC-UNICAMP

Vector Architectures vs GPU

• Many similarities + jargon  confusion: how novel?

• A SIMD Processor is similar to a vector processor

• 1 GPU has multiple SIMD Processors (act as independent

MIMD cores)

• NVIDIA GTX 480 is a 15-core machine with hw support for

TLP, each core has 16 lanes

• Biggest difference: multithreading (missing for most vector

processors)

• Registers:

– VMIPS: register file holds contiguous entire vectors (8 vectors of 64

elements = 512 elements)

– GPU: a single vector is distributed across registers of SIMD lanes (1

GPU thread has 64 vectors of 32 elements = 2048 elements 

strong support to multithreading)

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 56

IC-UNICAMP

Vector Architectures vs GPU: terminology
G

ra
p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 57

IC-UNICAMP

Vector Architectures vs GPU: terminology
G

ra
p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 58

IC-UNICAMP

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

(GPUs typically have 8 to 16 SIMD Lanes.) The control processor supplies scalar operands for scalar-vector

operations, increments addressing for unit and non-unit stride accesses to memory, and performs other

accounting-type operations. Peak memory performance only occurs in a GPU when the Address Coalescing unit

can discover localized addressing. Similarly, peak computational performance occurs when all internal mask bits

are set identically. Note that the SIMD Processor has one PC per SIMD thread to help with multithreading.

A vector processor with four lanes A multithreaded SIMD Processor

of a GPU with four SIMD Lanes

Fig 4.22

MO401 59

IC-UNICAMP

Multimedia SIMD computers vs GPU

• Both are multiprocessors with multiple SIMD lanes, but GPU

has more processors and lanes

• Both use multithreading, but GPU has hw support

• Both use cache, but in GPU they are smaller

• Both use 64-bit address, but GPU has smaller main memory

• Scalar processor:

– tightly integrated in SIMD multimedia extensions (as in general)

– separated by I/O bus in GPU

• Support to gather – scatter

– Multimedia extensions: no

– GPU: yes

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 60

IC-UNICAMP

Multicore multimedia SIMD extension vs GPU
G

ra
p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

MO401 61

IC-UNICAMP

4.5 Loop-Level Parallelism

• Focuses on determining whether data accesses in later

iterations are dependent on data values produced in earlier

iterations

– Loop-carried dependence

• Analyzed (close) at HLL. (ILP usually at Assembly level)

• Here, only RAW is analyzed (naming is easy...)

• Example 1:

 for (i=999; i>=0; i=i-1)

 x[i] = x[i] + s;

• No loop-carried dependence

– Only within a loop (induction variable): could be eliminated thru loop

unrolling

MO401 62

IC-UNICAMP

Exmpl p316: Loop-Level Parallelism

• Ex2: what are data dependences between S1 and S2?

 for (i=0; i<100; i=i+1) {

 A[i+1] = A[i] + C[i]; /* S1 */

 B[i+1] = B[i] + A[i+1]; /* S2 */

 }

• Assumes non overlapping arrays

• S1 and S2 use values computed in previous iteration

– loop carried  successive iterations forced to execute in series

• S2 uses value computed by S1 in same iteration

– does not prevent different iterations to be executed in parallel

– could be treated by loop unrolling

MO401 63

IC-UNICAMP

Exmpl p 317: Loop-Level Parallelism

• Ex 3: what are data dependences between S1 and S2?

 for (i=0; i<100; i=i+1) {

 A[i] = A[i] + B[i]; /* S1 */

 B[i+1] = C[i] + D[i]; /* S2 */

 }

• S1 uses value computed by S2 in previous iteration (loop

carried)

– but dependence is not circular so loop is parallel

• Loop is parallel if can be written without circular dependence

 partial order exists

• No dependence S1S2; statements can be interchanged

• On 1st iteration, S1 (erro no livro) depends on B[0],

calculated prior to initiating the loop

MO401 64

IC-UNICAMP

Exmpl p 317: Loop-Level Parallelism

• Transform to:

 A[0] = A[0] + B[0];

 for (i=0; i<99; i=i+1) {

 B[i+1] = C[i] + D[i];

 A[i+1] = A[i+1] + B[i+1];

 }

 B[100] = C[99] + D[99];

• No more loop carried dependences

– iterations can be overlapped, provided statements kept in order

MO401 65

IC-UNICAMP

Exmpl p 317: Loop-Level Parallelism

• Ex 4: dependence information could be inexact

 for (i=0;i<100;i=i+1) {

 A[i] = B[i] + C[i];

 D[i] = A[i] * E[i];

 }

• Second reference to A  no need to load, since value

already in register

• Aqui é fácil chegar a esta conclusão  ambas referências a

A[i] acessariam o mesmo dado na posição de memória 

não há intervening access a A[i]

• Em código mais complicado, nem sempre é simples fazer

esta análise

MO401 66

IC-UNICAMP

Exmpl p 318: Loop-Level Parallelism

• Example 5: dependência na forma de recorrência

 for (i=1;i<100;i=i+1) {

 Y[i] = Y[i-1] + Y[i];

 }

• Detectar recorrência pode ser importante

– algumas arquiteturas (vector computers) tem suporte especial para

recorrência

– possível explorar paralelismo ainda no âmbito de ILP

MO401 67

IC-UNICAMP

Finding dependencies

• Dependence analysis complex when: C pointers or Fortran

pass by reference.

– When indices are not affine  x[y[i]] (e.g. sparse matrices)

• Assume indices are affine:

– a x i + b (i is loop index)

• Determining dependence in two references to same array =

determining whether two affine functions can have same

value for different indices within loop bounds

• Assume:

– Store to a x i + b, then

– Load from c x i + d

– i runs from m to n

– Dependence exists if:

• Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n

• Store to a x j + b, load from c x k + d, and a x j + b = c x k + d

MO401 68

IC-UNICAMP

Finding dependencies

• Generally cannot determine at compile time (a, b, c, d

unknown)

• Test for absence of a dependence:

– GCD test:

• para que uma dependência exista, (d-b) deve ser divisível por GCD(c,a)

• Example:

for (i=0; i<100; i=i+1) {

 X[2*i+3] = X[2*i] * 5.0;

}

• a = 2; b = 3; c = 2; d = 0

– GCD (a, c) = 2; (d-b) = -3

– como -3 não é divisível por 2  não há dependência possível

• O teste de GCD é seguro no resultado negativo mas pode

resultar em falso positivo

MO401 69

IC-UNICAMP

Exmpl p 320: Finding dependencies

• Ex 2: find all dependencies, eliminate WAW and WAR by

renaming
for (i=0; i<100; i=i+1) {

 Y[i] = X[i] / c; /* S1 */

 X[i] = X[i] + c; /* S2 */

 Z[i] = Y[i] + c; /* S3 */

 Y[i] = c - Y[i]; /* S4 */

}

• True dependences: S1  S3, S4 (Y[i]). Not loop carried, but

S3 and S4 must wait S1

• Antidependence: S1  S2 (X[i]), S3  S4 (Y[i])

• WAW: S1  S4 (Y[i])

MO401 70

IC-UNICAMP

Finding dependencies (cont)

• Code with renaming:
for (i=0; i<100; i=i+1) {

 T[i] = X[i] / c; /* Y  T; solve WAW */

 X1[i] = X[i] + c; /* X  X1; solve WAR */

 Z[i] = T[i] + c; /* Y  T; solve WAR */

 Y[i] = c - T[i]; /* S4 */

}

• After the loop

– X renamed to X1

– compiler could fix this

for (i=0; i<100; i=i+1) {

 Y[i] = X[i] / c; /* S1 */

 X[i] = X[i] + c; /* S2 */

 Z[i] = Y[i] + c; /* S3 */

 Y[i] = c - Y[i]; /* S4 */

}

MO401 71

IC-UNICAMP

Dependence Analysis

• Critical for exploiting parallelism

• Loop level parallelism: dependence analysis is the basic tool

• Drawback

– applies only under a limited set of circumstances, within a loop

• Many situations: very difficult

– example: referencing arrays with pointer rather than with indices

• This is one reason why Fortran is still preferred over C and C++ for

scientific applications designed for parallel computers

– example: analyzing references across procedure calls

MO401 72

IC-UNICAMP

Reductions

• Reduction Operation: example dot matrix

 for (i=9999; i>=0; i=i-1)

 sum = sum + x[i] * y[i];

• Not parallel: loop-carried dependence on variable sum

• Can be transformed into 2 loops, one parallel and other partially paral.

 for (i=9999; i>=0; i=i-1)

 sum [i] = x[i] * y[i];

 for (i=9999; i>=0; i=i-1)

 finalsum = finalsum + sum[i];

• Second loop = reduction (used also in MapReduce)  hw support in

vector computers

• Example: suppose p processors, p ranging from 0 to 9

 for (i=999; i>=0; i=i-1)

 finalsum[p] = finalsum[p] + sum[i+1000*p];

• Note: assumes associativity! Finally, a simple scalar loop adds the 10

sums

MO401 73

IC-UNICAMP

4.6 Crosscutting Issues

• Energy and DLP

– Many FUs, many parallel vector elements, many lanes  high

performance with lower clock frequency

– Compared to out-of-order processors: DLP processors have simpler

control logic, no speculation, easier to turn off unused portions of chip

• Banked Memory and Graphics Memory

– GDRAM: higher bandwidth than conventional DRAM

– Soldered directly onto GPU board (no DIMM modules)

– Memory banks  higher bandwidth

• Strided access and TLB misses (VM translations)

– Problem

– Depending on TLB organization, array size and striding

• possible to get one TLB miss for every access to an array element

MO401 74

IC-UNICAMP

4.7 Putting all together: comparisons

• Mobile versus Server GPUs (Fig. 4.26)

– Mobile: NVIDIA Tegra 2  cell phone LG Optimus 2X (Android)

– Fermi GPU for servers

• Meta dos engenheiros: animação no servidor 5 anos depois do

lançamento do filme; e cinco anos depois no celular

• Avatar no Servidor GPU em 2015 e no celular em 2020

• Servers: non GPU vs GPU (Fig. 4.27)

– non GPU: Intel i7 960

– GPU Server: Fermi GTX 280 and GTX 480

MO401 75

IC-UNICAMP

Fig 4.26: Tegra 2 vs Fermi GTX 480

MO401 76

IC-UNICAMP

Fig 4.27

MO401 77

IC-UNICAMP

Figure 4.28

Roofline model

It is limited by memory bandwidth to no more than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. The dashed vertical line to

the right has an arithmetic intensity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/sec and 64 SP GFLOP/sec

on the Core i7 and 78 DP GFLOP/sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7

you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need to use

fused multiply-add instructions on all multithreaded SIMD processors.

These rooflines show double-

precision floating-point performance

in the top row and single-precision

performance in the bottom row. (The

DP FP performance ceiling is also in

the bottom row to give perspective.)

The Core i7 920 on the left has a

peak DP FP performance of 42.66

GFLOP/sec, a SP FP peak of 85.33

GFLOP/sec, and a peak memory

bandwidth of 16.4 GBytes/sec. The

NVIDIA GTX 280 has a DP FP peak

of 78 GFLOP/sec, SP FP peak of

624 GFLOP/sec, and 127

GBytes/sec of memory bandwidth.

The dashed vertical line on the left

represents an arithmetic intensity of

0.5 FLOP/byte.

erro !!

MO401 78

IC-UNICAMP

tbd

MO401 79

IC-UNICAMP

MO401 80

IC-UNICAMP

Comparação feita pelos engenheiros da Intel

• Memory BW:

– GPU has 4,4x  LBM (5.0x), SAXPY (5.3x). Working sets too big do not fit into i7

caches. See roofline slopes

• Compute BW

– 5 benchmarks are compute bound: SGEMM, Conv, FFT, MC, Bilat. 1st three: single

precision arith., GPU is 3-6x. MC double precision, GPU only 1.5x. Bilat uses

transcendental functions, i7 spends 2/3 of time calculating, GPU 5.7x.

• Cache benefits

– Ray casting is only 1.6x  cache blocking in i7 prevents it to be memory BW bound

• Gather-Scatter

– i7 SIMD extension  no benefit if data is scattered. Optimal performance when data is

aligned. Biggest difference in GJK = 15.2x

• Synchronization

– in i7, atomic updates take 28% of total runtime. GTX280 has slow rmw instructions.

Synchronization performance can be important for some data parallel problems

MO401 81

IC-UNICAMP

4.9 Conclusões

• DLP: aumento de importância mesmo em PMD 

multimedia

• Previsão:

– renascimento de DLP na próxima década

– processadores convencionais (system processors) terão mais

características de GPU e vice-versa

• Melhorias esperadas em GPUs

– Suporte à virtualização

– Maior capacidade de memória

– Hoje: I/O  System Memory  GPU Memory. Workloads com muita

atividade de I/O se beneficiarão com acesso mais direto

– Unificação do sistema de memória: alternativa ao bullet anterior

