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Tópicos  

• Vector architectures 

• SIMD ISA extensions for multimedia 

• GPU 

• Detecting and enhancing loop level parallelism 

• Crosscutting issues 

• putting all together: mobile vs GPU, tesla.... 
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4.1 Introduction 

• SIMD architectures can exploit significant data-level 
parallelism for: 
– matrix-oriented scientific computing 

– media-oriented image and sound processors 

 

• SIMD is more energy efficient than MIMD 
– Only needs to fetch one instruction per data operation 

– Makes SIMD attractive for personal mobile devices 

 

• SIMD allows programmer to continue to think sequentially 
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SIMD Parallelism 

• Variations of SIMD 
– Vector architectures 

• Fácil de entender/programar; era considerado  caro para microproc 
(área, DRAM bandwitdth) 

– SIMD extensions: multimedia  MMX, SSE, AVX 

– Graphics Processor Units (GPUs)  vector, many core heterog. 

 

• For x86 processors: 
– Expect two additional cores per chip per year 

– SIMD width to double every four years 

– Potential speedup from SIMD to be twice that from MIMD! 
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for x86 

computers. This figure assumes that two cores per chip for MIMD will be added every two years and the 

number of operations for SIMD will double every four years.  

Speedup vs X86 
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4.2 Vector Architectures 

• Basic idea: 
– Read  (scattered) sets of data elements into “vector registers” 

– Operate on those registers 

– Disperse the results back into memory 

 

• Registers are controlled by compiler 
– Used to hide memory latency 

– Leverage memory bandwidth 

– Loads e Stores  deeply pipelined 

• High latency, but high  hw utilization 
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VMIPS 

• Example architecture:  VMIPS 
– Loosely based on Cray-1 

– Vector registers (8) 

• Each register holds a 64-element, 64 bits/element vector 

• Register file has 16 read ports and 8 write ports 

– Vector functional units (5) 

• Fully pipelined 

• Data and control hazards are detected 

– Vector load-store unit 

• Fully pipelined 

• One word per clock cycle after initial latency 

– Scalar registers 

• 32 general-purpose registers 

• 32 floating-point registers 
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Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like 

MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. This 

chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector 

units for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes 

these units; however, we will not be discussing these units. The vector and scalar registers have a significant 

number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick 

gray lines) connects these ports to the inputs and outputs of the vector functional units.  

VMIPS Archit. 

 
For a 64 x 64b register file 

 64 x 64b elements 

 128 x 32b elements 

 256 x 16b elements 

 512 x 8b elements 

 

Vector architecture is 

attractive both for scientific 

and multimedia apps 
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Fig 4.3 

VMIPS 

ISA 

 

VV:  

vector – vector 

 

VS:  

vector – scalar  
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Exmpl p267: VMIPS Instructions 

• DAXPY: Double A x X Plus Y   AX+Y 
L.D   F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D  V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV  V4,V2,V3 ; add 

SV   Ry,V4  ; store the result 

 

• VMIPS vs MIPS 
– Requires 6 instructions vs. almost 600 for MIPS (half is overhead) 

– RAW in MIPS: MUL.D  ADD.D  S.D 

– Stall in VMIPS:  only for 1st vector element, then, smooth flow 
through pipeline 
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Vector Execution Time 

• Execution time depends on three factors: 
– Length of operand vectors 

– Structural hazards 

– Data dependencies 

 

• VMIPS functional units consume one element per clock 
cycle 
– Execution time is approximately the vector length 

 

• Convoy 
– Set of vector instructions that could potentially execute together 

– não devem conter hazard estrutural 

 

• Tempo de execução proporcional ao # convoys 
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Chaining and Chimes 

• Sequences with read-after-write dependency hazards can 
be in the same convoy via chaining  

 

• Chaining 
– Allows a vector operation to start as soon as the individual elements 

of its vector source operand become available (similar to forwarding) 

 

• Chime 
– Unit of time to execute one convoy 

– m convoys executes in m chimes 

– For vector length of n, requires m x n clock cycles 
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Exmpl p270: execution time 

LV   V1,Rx   ;load vector X 

MULVS.D V2,V1,F0  ;vector-scalar multiply 

LV   V3,Ry   ;load vector Y 

ADDVV.D V4,V2,V3  ;add two vectors 

SV   Ry,V4   ;store the sum 

 

Convoys: 

1  LV MULVS.D (V1  chain ) 

2  LV ADDVV.D (struct. haz. LV convoys 1, 2) 

3  SV   (struct. haz. LV convoys 2, 3) 

 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 

For 64 element vectors, requires 64 x 3 = 192 clock cycles 
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Challenges 

• Start up time 

– Pipeline latency of vector functional unit 

– Assume the same as Cray-1 
• Floating-point add => 6 clock cycles 

• Floating-point multiply => 7 clock cycles 

• Floating-point divide => 20 clock cycles 

• Vector load => 12 clock cycles 

• Needed improvements: 
– > 1 element per clock cycle 

– Non-64 wide vectors 

– IF statements in vector code (conditional branches) 

– Memory system optimizations to support vector processors 

– Multiple dimensional matrices 

– Sparse matrices 

– Programming a vector computer 
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Multiple Lanes: beyond 1 element / cycle 

Element n of 

vector 

register A is 

“hardwired” to 

element n of 

vector 

register B 

 

Allows for 

multiple 

hardware 

lanes 
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Figure 4.4 Using multiple functional units to improve the performance of a single vector add instruction, 

C = A + B. The vector processor (a) on the left has a single add pipeline and can complete one addition per cycle. 

The vector processor (b) on the right has four add pipelines and can complete four additions per cycle. The 

elements within a single vector add instruction are interleaved across the four pipelines. The set of elements that 

move through the pipelines together is termed an element group.  
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Multiple Lanes: beyond 1 element / cycle 

• 1 lane  4 lanes 

– clocks in 1 chime: 64  

16 

• Multiple lanes: 

– little increase in 

complexity 

– no change in code 

• Allows trade-off: area, 

clock rate, voltage, 

energy 

– ½ clock & 2x 

lanessame speed 
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Figure 4.5 Structure of a vector unit containing four lanes. The vector register storage is divided across the 

lanes, with each lane holding every fourth element of each vector register. The figure shows three vector 

functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector arithmetic units contains four 

execution pipelines, one per lane, which act in concert to complete a single vector instruction. Note how each 

section of the vector register file only needs to provide enough ports for pipelines local to its lane. This figure 

does not show the path to provide the scalar operand for vector-scalar instructions, but the scalar processor (or 

control processor) broadcasts a scalar value to all lanes.  
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Vector Length Register 

• Vector length not known at compile time? 

• Use Vector Length Register (VLR) 

• O parâmetro MVL (max vector length) é usado pelo 

compilador   

– não é necessário mudar ISA quando muda MVL (not in multimedia) 

• Use strip mining for vectors over the maximum length: 
low = 0; 

VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

 low = low + VL; /*start of next vector*/ 

 VL = MVL; /*reset the length to maximum vector length*/ 

} 
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Handling Ifs: Vector Mask Registers 

• Consider: 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

   X[i] = X[i] – Y[i]; 

• Use vector mask register to “disable” elements: 
 LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 

• GFLOPS rate decreases! 

– additional instructions executed 

anyway (when vect mask reg is used) 
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Set {NE} Vect x Scalar 
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Memory Banks 

• Memory system must be designed to support high 

bandwidth for vector loads and stores 

• LD/ST vector unit: more complicated than arithmetic unit 

– Startup time: 1st word  register 

• typical penality: 100 cycles (12 cycles no VMIPS) 

– Initiation rate: reading rate from memory (could be  1 cycle) 

• for 1 / cycle: multiple memory banks 

 

• Spread accesses across multiple banks 

– Control bank addresses independently 

– Ability to load or store non sequential words (not interleaving) 

– Support multiple vector processors sharing the same memory 

 

V
e
c
to

r A
rc

h
ite

c
tu

re
s
 



MO401  20 

IC-UNICAMP 

Exmpl p277: # of memory banks of Cray T90 
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Stride: handling muldimentional arrays 

• Consider the matrix multiply: A = B * D 

 for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 

   A[i][j] = 0.0; 

   for (k = 0; k < 100; k=k+1) 

   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

  } 

• 3D array stored as linear array in memory (row or column major) 

– one of B or D will have non adjacent elements in memory (row or column) 

• Must vectorize multiplication of rows of B with columns of D 

– D elements separated by RowSize x EntrySize = 100 * 8 = 800 = stride 

• Use non-unit stride  separated elements become contiguous in Vect 

Register (locality? better than cache?) 

• Bank conflict (stall) if same bank is hit faster than bank busy time: 
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Exmpl p 279 
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Gather-Scatter: Sparse Matrices 

• Sparse vectors are usually stored in compacted form 

• Consider: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]]; 

• Where K and M designate non-zero elements of A and C 

– K and M: same size 

• Must be able to 

– gather: index vector allows loading to a dense vector 

– scatter: store back in memory in the expanded form (not compacted) 

• HW support to Gather-Scatter: present in all modern vector 

processors. In VMIPS:  

– LVI (Load Vector Indexed – Gather)  

– SVI (Store Vector Indexed – Scatter)  
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Gather-Scatter: Sparse Matrices (cont) 

• Ra, Rc, Rk, Rm:  

– starting vector addresses 

• Use index vector: 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm  ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 
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for (i = 0; i < n; i=i+1) 

        A[K[i]] = A[K[i]] + C[M[i]]; 
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Programming Vec. Architectures 

• Compilers can provide feedback to programmers 

• Programmers can provide hints to compiler 
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4.SIMD Extensions  

• Media applications operate on data types narrower than the 

native word size 

– Many graphics systems: 8b (3 colors) + 8b (transparency) 

– Audio samples: 8 ou 16 bit 

• Hardware changes (example) 

– Disconnect carry chains to “partition” adder: 8, 16, 32 bits 
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Limitations of SIMD Extensions (vs Vector) 

• Smaller register file 

• Number of data operands encoded into op code (no Vector 

Length Register)  addition of 100´s of new op codes 

• No sophisticated addressing modes (strided, scatter-gather) 

– fewer programs can be vectorized in SIMD extension machines 

• No mask registers 

 

•  increased difficulty of programming in SIMD assembly 

language 
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SIMD Implementations 

• Implementations: 

– Intel MMX (1996) 

• Eight 8-bit integer ops or four 16-bit integer ops 

– Streaming SIMD Extensions (SSE) (1999) 

• Eight 16-bit integer ops 

• Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

– Advanced Vector Extensions (2010) 

• Four 64-bit integer/fp ops 

• Goal: accelerate carefully written libraries (rather than for the 

compiler to generate them 

• With so many flaws, why are SIMD so popular? 

– HW changes: easy, low cost, low area  

– No need of high memory BW (Vector) 

– Fewer problems with virtual memory and page faults (short vectors) 
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Exmpl p284: SIMD Code 
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SIMD Code – DAXPY  

 L.D F0,a ;load scalar a 

 MOV F1, F0 ;copy a into F1 for SIMD MUL 

 MOV F2, F0 ;copy a into F2 for SIMD MUL 

 MOV F3, F0 ;copy a into F3 for SIMD MUL 

 DADDIU R4,Rx,#512 ;last address to load 

Loop: L.4D  F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] 

 MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3] 

 L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3] 

 ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3] 

 S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] 

 DADDIU Rx,Rx,#32 ;increment index to X 

 DADDIU Ry,Ry,#32 ;increment index to Y 

 DSUBU R20,R4,Rx ;compute bound 

 BNEZ R20,Loop ;check if done 
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Roofline Performance Model 

• Basic idea: 

– Plot peak floating-point throughput as a function of arithmetic 

intensity 

– Ties together floating-point performance and memory performance 

for a target machine 

• Arithmetic intensity 

– Peak # Floating-point operations / Peak # data bytes transfered 
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Figure 4.10 Arithmetic intensity, specified as the number of floating-point operations to run the 

program divided by the number of bytes accessed in main memory [Williams et al. 2009]. Some 

kernels have an arithmetic intensity that scales with problem size, such as dense matrix, but there are 

many kernels with arithmetic intensities independent of problem size.  
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Examples 

• Attainable GFLOPs/sec = 

–Min(Peak Memory BW × Arithmetic Intensity, Peak Floating Point Perf.) 

Figure 4.11 Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 

multicore computer with SIMD Extensions on the right [Williams et al. 2009]. This Roofline is for unit-stride 

memory accesses and double-precision floating-point performance. NEC SX-9 is a vector supercomputer 

announced in 2008 that costs millions of dollars. It has a peak DP FP performance of 102.4 GFLOP/sec and a 

peak memory bandwidth of 162 GBytes/sec from the Stream benchmark. The Core i7 920 has a peak DP FP 

performance of 42.66 GFLOP/sec and a peak memory bandwidth of 16.4 GBytes/sec. The dashed vertical lines 

at an arithmetic intensity of 4 FLOP/byte show that both processors operate at peak performance. In this case, 

the SX-9 at 102.4 FLOP/sec is 2.4x faster than the Core i7 at 42.66 GFLOP/sec. At an arithmetic intensity of 

0.25 FLOP/byte, the SX-9 is 10x faster at 40.5 GFLOP/sec versus 4.1 GFLOP/sec for the Core i7.  

FLOP/Byte 

GFLOP/s 

FLOP/s = B/sec 

FLOP/B 

Memory 

bound 

CPU 

bound 

Cumieira 

far left or far right? 
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4.4 Graphical Processing Units 

• Given the hardware invested to do graphics well, how can 

be supplement it to improve performance of a wider range of 

applications? 

 

• Basic idea: 

– Heterogeneous execution model 

• CPU is the host, GPU is the device 

– Develop a C-like programming language for GPU 

• CUDA: Compute Unified Device Architecture 

• C/C++ for host and C/C++ dialect for device (GPU) 

– Unify all forms of GPU parallelism as CUDA thread 

– Programming model is “Single Instruction Multiple Thread” 
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Threads and Blocks 

• A thread is associated with each data element 

• Threads are organized into blocks (32 threads) 

• Blocks are organized into a grid 

 

• GPU hardware handles thread management, not 

applications or OS 
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Terminology 
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NVIDIA GPU  vs Vector Architectures 

• Similarities to vector machines: 

– Works well with data-level parallel problems 

– Scatter-gather transfers 

– Mask registers 

– Large register files 

 

• Differences: 

– No scalar processor 

– Uses multithreading to hide memory latency 

– Has many functional units, as opposed to a few deeply pipelined 

units like a vector processor 
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Exmpl p291 

• Multiply two vectors of length 8192 (8K) 

– Code that works over all elements is the grid 

– Thread blocks break this down into manageable sizes 

• Up to 512 elements per block 

– SIMD instruction executes 32 elements at a time (one thread) 

• 8192 elements / 32 (elem/thread) = 256 threads 

• 256 threads = 16 blocks with 16 threads each 

– Thus grid size = 16 blocks  (16 = 8192 / 512) 

– Block is analogous to a strip-mined vector loop with vector length of 

32 

– Block is assigned to a multithreaded SIMD processor by the thread 

block scheduler 

– Current-generation GPUs (Fermi) have 7-15 multithreaded SIMD 

processors 
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Exmpl p291 
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Floor plan 

of the Fermi 

GTX 480 

GPU 
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Figure 4.15. This diagram shows 16 multithreaded SIMD Processors. The Thread Block Scheduler is highlighted 

on the left. The GTX 480 has 6 GDDR5 ports, each 64 bits wide, supporting up to 6 GB of capacity. The Host 

Interface is PCI Express 2.0 x 16. Giga Thread is the name of the scheduler that distributes thread blocks to 

Multiprocessors, each of which has its own SIMD Thread Scheduler.  
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One more level of detail 

• Threads of SIMD instructions 

– Each has its own PC 

– Thread scheduler uses scoreboard to dispatch 

– No data dependencies between threads! 

– Keeps track of up to 48 threads of SIMD instructions 

• Hides memory latency 

• Thread block scheduler schedules blocks to SIMD 

processors 

• Within each SIMD processor: 

– 32 SIMD lanes 

– Wide and shallow compared to vector processors 

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

 



MO401  42 

IC-UNICAMP 

  

Example 

• NVIDIA GPU has 32,768 registers 

– Divided into lanes 

– Each SIMD thread is limited to 64 registers 

– SIMD thread has up to: 

• 64 vector registers of 32 32-bit elements 

• 32 vector registers of 32 64-bit elements 

– Fermi has 16 physical SIMD lanes, each containing 2048 registers 
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Scheduling of 

threads of SIMD 

instructions 
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Figure 4.16. The scheduler selects a ready thread of SIMD instructions and issues an instruction synchronously to 

all the SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are independent, the 

scheduler may select a different SIMD thread each time.  
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NVIDIA Instruction Set Arch. 

• PTX  is an abstraction of HW ISA 

– “Parallel Thread Execution (PTX)” stable abstraction in dif. versions 

– PTX  instructions for a single CUDA thread 

– Uses virtual registers; compiler allocates to physical 

– Translation to machine code is performed in software (cf. X86) 

• Format 
opcode.type d, a, b, c; 

 where d = destination operand and a, b, c are source operands 

 

 

 

• All instructions: can have 1-bit predicate register 

– equivalent to mask register (see fig 4.21) 
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Example – DAPY loop 

• One iteration 
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29) 

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID 

ld.global.f64 RD0, [X+R8] ; RD0 = X[i] 

ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i] 

mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a) 

add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i]) 

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i]) 

 

– One Thread / loop; one unique id # to each threadblock (blockIdx)  

and one thread within a block (threadIdx) 

– Creates 8192 CUDA threads; uses unique number to address each 

element  no incrementing or branching code 

– 3 primeiras instruções: calcula o byte offset em R8 que é somado à 

base dos arrays 

– GPU não tem instruções especiais para transferência de dados 

sequencial, por stride e gather-scatter. Tudo é gather-scatter 
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Conditional Branching 

• Like vector architectures (vector masks by SW), GPU branch 

hardware uses internal masks (and predicate regs by HW) 

• Also uses 

– Branch synchronization stack 

• Entries consist of masks for each SIMD lane 

• I.e. which threads commit their results (all threads execute) 

– Instruction markers to manage when a branch diverges into multiple 

execution paths 

• Push on divergent branch 

– …and when paths converge 

• Act as barriers 

• Pops stack 

• Per-thread-lane 1-bit predicate register, specified by 

programmer 
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NVIDIA GPU Memory Structures 
• Each SIMD Lane has private section of off-chip DRAM 

– “Private memory” 

– Contains stack frame, spilling registers, and private variables 

• Each multithreaded SIMD processor also has on-chip local 

memory 

– Shared by SIMD lanes / threads within a block 

• Memory shared by SIMD processors is GPU Memory 

– Host can read and write only to GPU memory 

• Em vez de usar “working set” in “large caches” GPU usa 

– Small streaming caches 

– extensive multithreading to hide long DRAM latencies 

– computing resources 

– large number or registers 

– vector LD/ST amortize latency across many elements, pay for 1st 

element and pipeline the rest 

• Latest GPUs: small caches as BW filters on GPU memory 
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GPU 
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Figure 4.18. GPU Memory is shared by all Grids (vectorized loops), Local Memory is shared by all threads of 

SIMD instructions within a thread block (body of a vectorized loop), and Private Memory is private to a single 

CUDA Thread.  
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Fermi Architecture Innovations 

• Much more complicated than previous versions 

• Fermi: each SIMD processor has 

– Two SIMD thread schedulers, two instruction dispatch units (figure) 

– 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 load-store 

units, 4 special function units 

– Thus, two threads of SIMD instructions are scheduled every two 

clock cycles 
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Fermi Dual SIMD Thread Scheduler 
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Figure 4.19 Compare this design to the single SIMD Thread Design in Figure 4.16.  
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Fermi 

Multithreaded 
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Figure 4.20 Block diagram of the multithreaded SIMD Processor of a Fermi GPU. Each SIMD Lane has a 

pipelined floating-point unit, a pipelined integer unit, some logic for dispatching instructions and operands to these 

units, and a queue for holding results. The four Special Function units (SFUs) calculate functions such as square 

roots, reciprocals, sines, and cosines.  
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Fermi Architecture Innovations 

• Closer to mainstream system processors 

• Fast double precision (DP): rel SP (1/10 prev  ½ now) 

– peak DP performance: 78 GFLOPS (prev)  515 GFLOPS (now)  

• Caches 

– L1 instruction and L1 data caches for each SIMD processor, and a L2 

cache shared by SIMD processors and GPU memory. Note: GTX 

480 has register file = 2MB and L1 = (0.25 – 0.75 MB) 

• 64-bit addressing and unified address space 

• Error correcting codes: memory and registers (MTTF?) 

• Faster context switching: about 25 ms = 10x faster than in 

previous versions 

• Faster atomic instructions: (5-20)x faster than in previous 

versions 
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Vector Architectures vs GPU 

• Many similarities + jargon  confusion: how novel? 

• A SIMD Processor is similar to a vector processor 

• 1 GPU has multiple SIMD Processors (act as independent 

MIMD cores) 

• NVIDIA GTX 480 is a 15-core machine with hw support for 

TLP, each core has 16 lanes 

• Biggest difference: multithreading (missing for most vector 

processors) 

• Registers: 

– VMIPS: register file holds contiguous entire vectors (8 vectors of 64 

elements = 512 elements) 

– GPU: a single vector is distributed across registers of SIMD lanes (1 

GPU thread has 64 vectors of 32 elements = 2048 elements  

strong support to multithreading) 
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Vector Architectures vs GPU: terminology 
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Vector Architectures vs GPU: terminology 
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(GPUs typically have 8 to 16 SIMD Lanes.) The control processor supplies scalar operands for scalar-vector 

operations, increments addressing for unit and non-unit stride accesses to memory, and performs other 

accounting-type operations. Peak memory performance only occurs in a GPU when the Address Coalescing unit 

can discover localized addressing. Similarly, peak computational performance occurs when all internal mask bits 

are set identically. Note that the SIMD Processor has one PC per SIMD thread to help with multithreading.  

A vector processor with four lanes A multithreaded SIMD Processor 

of a GPU with four SIMD Lanes 

Fig 4.22 
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Multimedia SIMD computers vs GPU 

• Both are multiprocessors with multiple SIMD lanes, but GPU 

has more processors and lanes 

• Both use multithreading, but GPU has hw support 

• Both use cache, but in GPU they are smaller 

• Both use 64-bit address, but GPU has smaller main memory 

• Scalar processor: 

– tightly integrated in SIMD multimedia extensions (as in general) 

– separated by I/O bus in GPU 

• Support to gather – scatter 

– Multimedia extensions: no 

– GPU: yes 
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Multicore multimedia SIMD extension vs GPU 
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4.5 Loop-Level Parallelism 

• Focuses on determining whether data accesses in later 

iterations are dependent on data values produced in earlier 

iterations 

– Loop-carried dependence 

• Analyzed (close) at HLL. (ILP usually at Assembly level) 

• Here, only RAW is analyzed (naming is easy...) 

 

• Example 1: 

 for (i=999; i>=0; i=i-1) 

  x[i] = x[i] + s; 

 

• No loop-carried dependence 

– Only within a loop (induction variable): could be eliminated thru loop 

unrolling 



MO401  62 

IC-UNICAMP 

  

Exmpl p316: Loop-Level Parallelism 

• Ex2: what are data dependences between S1 and S2? 

  

 for (i=0; i<100; i=i+1) { 

  A[i+1] = A[i] + C[i];  /* S1 */ 

  B[i+1] = B[i] + A[i+1];  /* S2 */ 

 } 

• Assumes non overlapping arrays 

• S1 and S2 use values computed in previous iteration 

– loop carried  successive iterations forced to execute in series 

• S2 uses value computed by S1 in same iteration 

– does not prevent different iterations to be executed in parallel 

– could be treated by loop unrolling 
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Exmpl p 317: Loop-Level Parallelism 

• Ex 3: what are data dependences between S1 and S2? 

  

 for (i=0; i<100; i=i+1) { 

  A[i] = A[i] + B[i];  /* S1 */ 

  B[i+1] = C[i] + D[i];  /* S2 */ 

 } 

• S1 uses value computed by S2 in previous iteration (loop 

carried) 

– but dependence is not circular so loop is parallel 

• Loop is parallel if can be written without circular dependence 

 partial order exists 

• No dependence S1S2; statements can be interchanged 

• On 1st iteration, S1 (erro no livro) depends on B[0], 

calculated prior to initiating the loop 
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Exmpl p 317: Loop-Level Parallelism 

• Transform to: 

 A[0] = A[0] + B[0]; 

 for (i=0; i<99; i=i+1) { 

  B[i+1] = C[i] + D[i]; 

  A[i+1] = A[i+1] + B[i+1]; 

 } 

 B[100] = C[99] + D[99]; 

 

• No more loop carried dependences 

– iterations can be overlapped, provided statements kept in order 
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Exmpl p 317: Loop-Level Parallelism 

• Ex 4: dependence information could be inexact 

 for (i=0;i<100;i=i+1)  { 

  A[i] = B[i] + C[i]; 

  D[i] = A[i] * E[i]; 

 } 

• Second reference to A  no need to load, since value 

already in register 

• Aqui é fácil chegar a esta conclusão  ambas referências a 

A[i] acessariam o mesmo dado na posição de memória  

não há intervening access a A[i] 

• Em código mais complicado, nem sempre é simples fazer 

esta análise 
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Exmpl p 318: Loop-Level Parallelism 

• Example 5: dependência na forma de recorrência 

 for (i=1;i<100;i=i+1)  { 

  Y[i] = Y[i-1] + Y[i]; 

 } 

 

• Detectar recorrência pode ser importante 

– algumas arquiteturas (vector computers) tem suporte especial para 

recorrência 

– possível explorar paralelismo ainda no âmbito de ILP 
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Finding dependencies 

• Dependence analysis complex when: C pointers or Fortran 

pass by reference.   

– When indices are not affine  x[y[i]] (e.g. sparse matrices) 

• Assume indices are affine: 

– a x i + b (i is loop index) 

• Determining dependence in two references to same array = 

determining whether two affine functions can have same 

value for different indices within loop bounds 

• Assume: 

– Store to a x i + b, then 

– Load from c x i + d 

– i runs from m to n 

– Dependence exists if: 

• Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n 

• Store to a x j + b, load from c x k + d, and a x j + b = c x k + d 
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Finding dependencies 

• Generally cannot determine at compile time (a, b, c, d 

unknown) 

• Test for absence of a dependence: 

– GCD test: 

• para que uma dependência exista, (d-b) deve ser divisível por GCD(c,a) 

• Example: 

for (i=0; i<100; i=i+1) { 

 X[2*i+3] = X[2*i] * 5.0; 

} 

• a = 2; b = 3; c = 2; d = 0 

– GCD (a, c) = 2; (d-b) = -3 

– como -3 não é divisível por 2  não há dependência possível 

• O teste de GCD é seguro no resultado negativo mas pode 

resultar em falso positivo 
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Exmpl p 320: Finding dependencies 

• Ex 2: find all dependencies, eliminate WAW and WAR by 

renaming 
for (i=0; i<100; i=i+1) { 

 Y[i] = X[i] / c;  /* S1 */ 

 X[i] = X[i] + c;  /* S2 */ 

 Z[i] = Y[i] + c;  /* S3 */ 

 Y[i] = c - Y[i];  /* S4 */ 

} 

 

• True dependences: S1  S3, S4 (Y[i]). Not loop carried, but 

S3 and S4 must wait S1 

• Antidependence: S1  S2 (X[i]), S3  S4 (Y[i]) 

• WAW: S1  S4 (Y[i]) 
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Finding dependencies (cont) 

 

 

 

 

• Code with renaming: 
for (i=0; i<100; i=i+1) { 

 T[i] = X[i] / c;  /* Y  T; solve WAW */ 

 X1[i] = X[i] + c;  /* X  X1; solve WAR */ 

 Z[i] = T[i] + c;  /* Y  T; solve WAR */ 

 Y[i] = c - T[i];  /* S4 */ 

} 

• After the loop 

– X renamed to X1 

– compiler could fix this 

 

for (i=0; i<100; i=i+1) { 

 Y[i] = X[i] / c;  /* S1 */ 

 X[i] = X[i] + c;  /* S2 */ 

 Z[i] = Y[i] + c;  /* S3 */ 

 Y[i] = c - Y[i];  /* S4 */ 

} 
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Dependence Analysis 

• Critical for exploiting parallelism 

• Loop level parallelism: dependence analysis is the basic tool 

• Drawback 

– applies only under a limited set of circumstances, within a loop 

• Many situations: very difficult 

– example: referencing arrays with pointer rather than with indices 

• This is one reason why Fortran is still preferred over C and C++ for 

scientific applications designed for parallel computers 

– example: analyzing references across procedure calls 
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Reductions 

• Reduction Operation: example dot matrix 

 for (i=9999; i>=0; i=i-1) 

  sum = sum + x[i] * y[i]; 

• Not parallel: loop-carried dependence on variable sum 

• Can be transformed into 2 loops, one parallel and other partially paral. 

 for (i=9999; i>=0; i=i-1) 

  sum [i] = x[i] * y[i]; 

 for (i=9999; i>=0; i=i-1) 

  finalsum = finalsum + sum[i]; 

• Second loop = reduction (used also in MapReduce)  hw support in 

vector computers 

• Example: suppose p processors, p ranging from 0 to 9 

 for (i=999; i>=0; i=i-1) 

  finalsum[p] = finalsum[p] + sum[i+1000*p]; 

• Note:  assumes associativity! Finally, a simple scalar loop adds the 10 

sums 
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4.6 Crosscutting Issues 

• Energy and DLP 

– Many FUs, many parallel vector elements, many lanes  high 

performance with lower clock frequency 

– Compared to out-of-order processors: DLP processors have simpler 

control logic, no speculation, easier to turn off unused portions of chip 

• Banked Memory and Graphics Memory 

– GDRAM: higher bandwidth than conventional DRAM 

– Soldered directly onto GPU board (no DIMM modules) 

– Memory banks  higher bandwidth 

• Strided access and TLB misses (VM translations) 

– Problem 

– Depending on TLB organization, array size and striding 

• possible to get one TLB miss for every access to an array element 
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4.7 Putting all together: comparisons 

• Mobile versus Server GPUs (Fig. 4.26) 

– Mobile: NVIDIA Tegra 2  cell phone LG Optimus 2X (Android) 

– Fermi GPU for servers 

• Meta dos engenheiros: animação no servidor 5 anos depois do 

lançamento do filme; e cinco anos depois no celular 

• Avatar no Servidor GPU em 2015 e no celular em 2020 

 

• Servers: non GPU vs GPU (Fig. 4.27)  

– non GPU: Intel i7 960 

– GPU Server: Fermi GTX 280 and GTX 480 
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Fig 4.26: Tegra 2 vs Fermi GTX 480 
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Fig 4.27 
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Figure 4.28 

Roofline model 

It is limited by memory bandwidth to no more than 8 DP GFLOP/sec or 8 SP GFLOP/sec on the Core i7. The dashed vertical line to 

the right has an arithmetic intensity of 4 FLOP/byte. It is limited only computationally to 42.66 DP GFLOP/sec and 64 SP GFLOP/sec 

on the Core i7 and 78 DP GFLOP/sec and 512 DP GFLOP/sec on the GTX 280. To hit the highest computation rate on the Core i7 

you need to use all 4 cores and SSE instructions with an equal number of multiplies and adds. For the GTX 280, you need to use 

fused multiply-add instructions on all multithreaded SIMD processors.  

These rooflines show double-

precision floating-point performance 

in the top row and single-precision 

performance in the bottom row. (The 

DP FP performance ceiling is also in 

the bottom row to give perspective.) 

The Core i7 920 on the left has a 

peak DP FP performance of 42.66 

GFLOP/sec, a SP FP peak of 85.33 

GFLOP/sec, and a peak memory 

bandwidth of 16.4 GBytes/sec. The 

NVIDIA GTX 280 has a DP FP peak 

of 78 GFLOP/sec, SP FP peak of 

624 GFLOP/sec, and 127 

GBytes/sec of memory bandwidth. 

The dashed vertical line on the left 

represents an arithmetic intensity of 

0.5 FLOP/byte.  

erro !! 
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tbd 
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Comparação feita pelos engenheiros da Intel 

• Memory BW:  

– GPU has 4,4x  LBM (5.0x), SAXPY (5.3x). Working sets too big do not fit into i7 

caches. See roofline slopes 

• Compute BW 

– 5 benchmarks are compute bound: SGEMM, Conv, FFT, MC, Bilat. 1st three: single 

precision arith., GPU is 3-6x. MC double precision, GPU only 1.5x.  Bilat uses 

transcendental functions, i7 spends 2/3 of time calculating, GPU 5.7x. 

• Cache benefits 

– Ray casting is only 1.6x  cache blocking in i7 prevents it to be memory BW bound 

• Gather-Scatter 

– i7 SIMD extension  no benefit if data is scattered. Optimal performance when data is 

aligned. Biggest difference in GJK = 15.2x  

• Synchronization 

– in i7, atomic updates take 28% of total runtime. GTX280 has slow rmw instructions. 

Synchronization performance can be important for some data parallel problems 
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4.9 Conclusões 

• DLP: aumento de importância mesmo em PMD  

multimedia 

• Previsão:  

– renascimento de DLP na próxima década 

– processadores convencionais (system processors) terão mais 

características de GPU e vice-versa 

• Melhorias esperadas em GPUs 

– Suporte à virtualização 

– Maior capacidade de memória 

– Hoje: I/O  System Memory  GPU Memory. Workloads com muita 

atividade de I/O se beneficiarão com acesso mais direto 

– Unificação do sistema de memória: alternativa ao bullet anterior 

 


