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Tópicos - estrutura 

• Parte A 

– Basic compiler ILP 

– Advanced branch prediction 

– Dynamic scheduling 

– Hardware based speculation 

– Multiple issue and static scheduling 

• Parte B 

– Instruction delivery and speculation 

– Limitations of ILP 

– ILP and memory issues 

– Multithreading 
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3.8 Dynamic Scheduling,  

Multiple Issue, and Speculation 
• Até agora, vistos separadamente 

– Dynamic scheduling, multiple issue, speculation 

• Modern microarchitectures: 

– Dynamic scheduling + multiple issue + speculation 

• Hipótese simplificadora: 2 issues / ciclo 

• Extensão do alg. Tomasulo: multiple issue supersacalar pipeline, 
separate integer, LD/ST, FP units (add, mult) 

– FUs: initiate operation every clock 

• Issue to RS in-order. Any two operations (every cycle) 
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Overview of 

Design 

New:  

issue and 

completion 

logic must 

support 2 

instructions / 

clock cycle 
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• Multiple issue / cycle: muito complicado.  

– ex: as duas operações podem ter dependência e tabelas tem que ser 

atualizadas em paralelo (no mesmo clk) 

• Two approaches: 

– Assign reservation stations and update pipeline control table in half 

clock cycles 

• Only supports 2 instructions/clock 

– Design logic to handle any possible dependencies between the 

instructions 

– Hybrid approaches 

• Modern superscalar processors (4+ issues) use both: 

– Issue logic: wide and pipelined 

• Issue logic can become bottleneck 

– (ver Fig 3.18, para apenas um caso) 
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Complexidade: 

apenas uma 

dependência 

 

ins1 = LD 

 

ins2 = op FP com 

operando fornecido 

pelo LD 
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• 1- Pre-assign a RS and ROB entry. Limit the number of instructions of a 
given class that can be issued in a “bundle” 

– I.e. on FP, one integer, one load, one store 

• 2- Examine all the dependencies among the instructions in the bundle 

• 3- If dependencies exist in bundle, encode them in reservation stations 
and ROB 

 

• All above: a single clock cycle 

• At pipeline backend: need multiple completion/commit 
– Easier, because dependences have already been dealt with 

 

• Intel i7 usa este esquema 

Multiple Issue 
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Exmpl p 200: multiple issue 

with and without speculation 
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No speculation 
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With speculation 
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3.9 Advanced Techniques 

• Objetivo: possibilitar alta taxa de execução de instruções 

por ciclo 

– Increasing instruction delivery bandwidth 

– Advanced speculation techniques 

– Value prediction 
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Animações e simulações 

• Ver site 

– http://www.williamstallings.com/COA/Animation/Links.html  

 

• Contém várias simulações: 

– Branch prediction 

– Branch Target Buffer 

– Loop unrolling 

– Pipeline with static vs. dynamic scheduling 

– Reorder Buffer Simulator 

– Scoreboarding technique for dynamic scheduling: 

– Tomasulo's Algorithm: 

http://www.williamstallings.com/COA/Animation/Links.html
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Increasing instruction fetch bandwidth 

• Need high instruction bandwidth (from Instr. Cache to Issue 

Unit) 

– problema: como saber antes da decodificação se instrução é desvio 

e qual é o próximo PC? 

• Branch-Target buffers 

– Next PC prediction buffer, indexed by current PC 

 

• Diferenças com o branch prediction buffer já visto 

– branch prediction buffer: 

• após decodificação; só branches são tratados; index pode apontar para 

outro branch 

– no Branch-Target buffer 

• antes da decodificação; todas as instruções são tratadas; “tag” do buffer 

identifica univocamente somente branches; somente “taken branches” 

são armazenados  demais instruções seguem o fetch normalmente 
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Branch-

Target 

Buffer 
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Branch-Target Buffer: steps 
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Exmpl p205: penalidade 
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Exmpl p205: penalidade 
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• Optimization: 

– Larger branch-target buffer 

– Add target instruction into buffer to deal with longer decoding time required 

by larger buffer 

– Allows “Branch folding” 

• Branch folding 

– With unconditional branch: o hardware permite “pular” o jump (cuja única 

função é mudar o PC) 

– In some cases, also with conditional branch 
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Branch Folding 
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• Most unconditional branches come from function returns 

– Indirect jump: JR (target muda em tempo de execução) 

– SPEC95: retorno de procedimento = 15% de todos os branches e 

aproximadamente 100% dos desvios incondicionais 

• The same procedure can be called from multiple sites 

– Causes the buffer to potentially forget about the return address from 

previous calls (changes at runtime) 

– SPEC CPU95: retorno de procedimento  misprediction = 40% 

• Create return address buffer organized as a stack 

– melhora consideravelmente o desempenho (fig 3.24) 

 

• (usado pelo Intel Core  e AMD Phenom) 
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Return Address Predictor 
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Desempenho do 

Return Address 

Predictor 

Figure 3.24 Prediction accuracy for a return address buffer operated as a stack on a number of 

SPEC CPU95 benchmarks. The accuracy is the fraction of return addresses predicted correctly. A buffer 

of 0 entries implies that the standard branch prediction is used. Since call depths are typically not large, 

with some exceptions, a modest buffer works well. These data come from Skadron et al. [1999] and use a 

fix-up mechanism to prevent corruption of the cached return addresses.  
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Integrated Instruction Fetch Unit 

• Design monolithic unit that performs: 

– Integrated branch prediction:  

• parte da instruction fetch 

– Instruction prefetch 

• Fetch ahead 

– Instruction memory access and buffering 

• Accessing multiple cache lines 

• Deal (hide) with crossing cache lines 

 

 

• (used by all high-end processors) 
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Register Renaming 

• Register renaming vs. reorder buffers 

– Instead of virtual registers from reservation stations and reorder 

buffer, create a single register pool 

• Contains visible registers and virtual registers 

– Use hardware-based map to rename registers during issue 

– WAW and WAR hazards are avoided 

– Speculation recovery occurs by copying during commit 

– Still need a ROB-like queue to update table in order 

– Simplifies commit: 

• Record that mapping between architectural register and physical register 

is no longer speculative 

• Free up physical register used to hold older value 

• In other words:  SWAP physical registers on commit 

– Physical register de-allocation is more difficult 
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Integrated Issue and Renaming 

• Combining instruction issue with register renaming: 

– Issue logic pre-reserves enough physical registers for the bundle (ex: 

4 registers for a 4 instruction bundle, 1 reg / result) 

– Issue logic finds dependencies within bundle, maps registers as 

necessary 

– Issue logic finds dependencies between current bundle and already 

in-flight bundles, maps registers as necessary 

 

• Como no ROB, o hardware deve determinar as 

dependências e atualizar as tabelas de renaming em um 

único clock 

– quanto maior o número de instruções emitidas por clock, mais 

complicado 
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How Much? 

• How much to speculate 

– Mis-speculation degrades performance and power relative to no 

speculation 

• May cause additional misses (cache, TLB) 

– Prevent speculative code from causing higher costing misses (e.g. 

L2) 

 

• Speculating through multiple branches 

– Poderia ser útil em 

• very high branch frequency 

• branch clustering 

• long delay in FUs 

– Complicates speculation recovery (mas o resto seria simples) 

– Até 2011, esquema não utilizado comercialmente 

• No processor can resolve multiple branches per cycle 
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Energy Efficiency 

• Custo energético da especulação errada 

– Trabalho inútil que deve ser descartado 

– Custo adicional da recuperação 

• Speculation and energy efficiency 

– Note:  speculation is only energy efficient when it significantly 

improves performance 

• Se um número grande de instruções desnecessárias estão 

sendo executadas, é provável que, além do custo de 

energia, também o desempenho está piorando 

– fig 3.25  resultado ruim para inteiros  provável que cause baixa 

eficiência energética 
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Fração de instruções desnecessárias 

Figure 3.25 The fraction of instructions that are executed as a result of misspeculation is 

typically much higher for integer Programs (the first five) versus FP programs (the last five).  
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Value prediction 

• Tenta predizer o resultado das instruções 

– Em geral, difícil 

• Casos de aplicabilidade: 

– Loads that load from a pool of constants (or values that change 

unfrequently) 

– Instruction that produces a value from a small set of values (possível 

prever de comportamentos observados anteriormente) 

• Not been incorporated into modern processors 

• Similar idea – address aliasing prediction – is used on some 

processors 

– para prever se dois ST ou um LD e um ST apontam para o mesmo 

endereço 

– caso negativo, instruções podem ser reordenadas 

– em uso limitado ainda hoje 
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3.10 Limitações do ILP 

• ILP: pipelined processors (60´s), key to perfomance 

improvements (80´s 90´s) 

• Estudos atuais  limitações 

– especulação muito agressivas  alto custo (área, power) 

– mesmo os principais defensores  mudança de idéia (2005) 

 

• (artigo importante: Wall 1993) 
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Modelo de HW para estudo  
• Modelo de hardware para estudos: computador ideal, onde 

o único limite ao ILP é imposto pelo data flow do programa 

– 1. Infinite register renaming 

– 2. Perfect branch prediction 

– 3. Perfect jump prediction (including indirect jump register) 

– 4. Perfect memory address aliasing analysis: todos os endereços 

efetivos são conhecidos (possível reordenar LD/ST) 

– 5. Perfect caches: acessos uniformes com 1 ciclo 

• Hipóteses 2 e 3 eliminam control dependencies; 1 e 4 todas 

as outras dependências exceto true data dependences 

• Prefetching infinito, capacidade de múltiplo (infinito) issue 

• FUs tem latência de 1 ciclo 

• Esta máquina ideal é irrealizável hoje 

– Power 7 (mais avançado superescalar): issue 6 instructions / clock, 

SMT, large set of renaming registers (allowing 100´s instructions to 

be in flight) 
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ILP em um processador perfeito 

• Set of benchmarks  program trace  schedule as early as 

possible (perfect branch prediction) 

• Measure: average instruction issue rate 

Figure 3.26 ILP available in a perfect processor for six of the SPEC92 benchmarks. The first three 

programs are integer programs, and the last three are floating-point programs. The floating-point programs 

are loop intensive and have large amounts of loop-level parallelism.  
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ILP para processadores realizáveis (hoje) 

• Até 64 instruction issues / 

clock (10x valor disponível 

hoje) 

• Tournament predictor com 1K 

linhas e resultado (predictor) 

de 16 linhas 

• Perfect desambiguation of 

memory references, on the fly 

• Very large register renaming 

set 

Figure 3.27 The amount of parallelism available versus the window size for a variety of integer and 

floating-point programs with up to 64 arbitrary instruction issues per clock. Although there are fewer 

renaming registers than the window size, the fact that all operations have one-cycle latency and the number 

of renaming registers equals the issue width allows the processor to exploit parallelism within the entire 

window. In a real implementation, the window size and the number of renaming registers must be balanced to 

prevent one of these factors from overly constraining the issue rate.  
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Exmpl p 218: comparação desempenho 
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Exmpl p 218: comparação desempenho (2) 
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Exmpl p 

218: (3) 
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Conclusões 

• Limitations of this study  

– WAW e WAR through memory: hipóteses simplificadores 

subestimaram o efeito desses hazards 

– Dependência desnecessária: algumas dependências reais (RAW) 

poderiam ser eliminadas (por ex, por loop unrolling) 

– Value prediction não foi considerado (poderia melhorar ILP) 

 

• Limites observados de ILP são intrínsecos, e não podem ser 

superados por avanços tecnológicos por exemplo 

– Dificuldades para melhorar são imensas 

– ILP wall 
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3.11 ILP and the memory system 

• Hardware versus Software Speculation – trade offs 

– Memory disambiguation  enable extensive speculation; Difficult to 

do at compile time  hardware based and dynamic disambiguation 

– HW based speculation better when control flow unpredictable 

– HW based better for precise exception 

– HW based does not require additional compensation or bookkeeping 

code 

– Compiler based benefit: it can “see” ahead in code (statically)  

better code scheduling 

– HW based does not require different code to different  

implementations of an architecture  Vantagem extremamente 

relevante 

– HW based  complex implementation 

– Some designers try hybrid approaches 

– Most ambitious design with compiler based speculation  Itanium  

did not deliver the expected performance 
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ILP and the memory system (2) 

• Speculative execution and the memory system 

– Especulação pode gerar endereços inválidos (que não apareceriam 

sem especulação)  (false) exception overhead  memória deve 

identificar a especulação e desprezar a exceção 

– Especulação pode gerar cache miss  importante o uso de non 

blocking caches 

• penalidade em L2 é tão grande que normalmente compiladores somente 

especulam em L1 
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3.12 Multithreading (in uniprocessor) 

• Crosscutting issue 

– pipeline, uniprocessor (ch 3) 

– graphics processing units (ch 4) 

– multiprocessors (ch5) 

• Explorando paralelismo em uniprocessadores 

– Uso de ILP: limites 

• principalmente, em altas taxas de issue/clock  difícil esconder cache 

misses 

– Em On-line Transaction Processing  paralelismo natural 

(multiprogramação) 

– Em programação científica  paralelismo natural, se explorarmos 

threads independentes 

• também em aplicações desktop (muitas tarefas em paralelo) 

• Paralelismo em multiprocessador: replicated processor 

• Multithread in uniprocessor: replicated PC and private state 
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Multithreading: aspectos gerais 

• Per-thread state 

– separate: PC, register file, page table 

– memory: ok to share via virtual memory (como em multiprogramação) 

• HW deve permitir mudança de thread rapidamente 

– thread switch should be much faster than process switch 

• Threads devem estar identificadas no código 

– pelo compilador ou pelo programador 

• Granularidade do Multithreading 

– Fine Grain: thread switch in each clock. Round-robin interleaving (skip 

stalled). Advantadge: hides short/long stalls. Disadvante: slows down 

individual thread (latency). Trade-off throughput x latency. Used by 

Sun Niagara and NVidia GPU 

– Coarse Grain: thread switch on costly stalls. Trade-off throughput x 

latency, Disadvantage: throughput losses, specially in short stalls. 

Pipeline start-up costs. Not used today 
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Multithreading Approaches 

• Four different approaches (in Fig 3.28) 

– A superscalar with no multithreading support 

– A superscalar with coarse-grained multithreading 

– A superscalar with fine-grained multithreading 

– A superscalar with simultaneous multithreading 

• Fine Grain MT on top of a multiple-issue, dynamically scheduled 

processor 

– hides long latency events 
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Figure 3.28 How four different approaches use the functional unit execution slots of a superscalar 

processor. The horizontal dimension represents the instruction execution capability in each clock cycle. The 

vertical dimension represents a sequence of clock cycles. An empty (white) box indicates that the corresponding 

execution slot is unused in that clock cycle. The shades of gray and black correspond to four different threads in 

the multithreading processors. Black is also used to indicate the occupied issue slots in the case of the 

superscalar without multithreading support. The Sun T1 and T2 (aka Niagara) processors are fine-grained 

multithreaded processors, while the Intel Core i7 and IBM Power7 processors use SMT. The T2 has eight threads, 

the Power7 has four, and the Intel i7 has two. In all existing SMTs, instructions issue from only one thread at a 

time. The difference in SMT is that the subsequent decision to execute an instruction is decoupled and could 

execute the operations coming from several different instructions in the same clock cycle.  

Multithreading Approaches 
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Multithreading: outra figura 

http://www.realworldtech.com/alpha-ev8-smt/  

http://www.realworldtech.com/alpha-ev8-smt/
http://www.realworldtech.com/alpha-ev8-smt/
http://www.realworldtech.com/alpha-ev8-smt/
http://www.realworldtech.com/alpha-ev8-smt/
http://www.realworldtech.com/alpha-ev8-smt/
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FG Multithreading na SUN T1 

• Foco: explorar paralelismo via TLP (e não ILP). (2005) 

• FGMT 1 thread / cycle 

• Core: single-issue, six-stage pipeline (5 estágios do MIPS clássico + 1 

estágio para thread switch) 

• Loads/branches  3 cycle latency  hidden by other threads 
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Figure 3.30 The relative change in the miss rates and miss latencies when executing with one thread per 

core versus four threads per core on the TPC-C benchmark. The latencies are the actual time to return the 

requested data after a miss. In the four-thread case, the execution of other threads could potentially hide much of 

this latency.  

Effect of FGMT on T1 cache performance 
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Figure 3.31 Breakdown of the status on an average thread. “Executing” indicates the thread issues an 

instruction in that cycle. “Ready but not chosen” means it could issue but another thread has been chosen, and 

“not ready” indicates that the thread is awaiting the completion of an event (a pipeline delay or cache miss, for 

example).  

Effect of FGMT on T1 cache performance 
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Figure 3.32 The breakdown of causes for a thread being not ready. The contribution to the “other” category 

varies. In PC-C, store buffer full is the largest contributor; in SPEC-JBB, atomic instructions are the largest 

contributor; and in SPECWeb99, both factors contribute.  

Thread not ready 

cache misses: 

50-75% 
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CPI  

• CPI / thread ideal = 4 

– cada thread consome 1 ciclo em 4 

• CPI / core ideal = 1 

• Resultados do T1 em 2005, parecidos com processadores 

muito maiores e complexos, com ILP agressivo 

– 8 cores (T1) vs 2-4 outros processadores 

• 2005: T1 melhor desempenho para inteiros 
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Effectiveness of SMT on Superscalar 

• Estudos feitos em 2000-2001  ganhos modestos 

– H & P: condições dos experimentos tem  problemas 

– Na época, grandes expectativas com ILP agressivo 

• Experimentos em 2011 

– Desempenho e energy efficiency (tempo tarefa /consumo) no Intel i7 

e i5 (Fig 3.35). Benchmarks usados (Fig 3.34) 

– Experimentos: um único core do i7 (ou i5), comparação entre 1 

thread e SMT 

• Resultados: SMT em um processador com especulação 

agressiva  aumento do desempenho de forma eficiente 

quanto ao consumo de energia 

– ILP não consegue o mesmo em 2011 

• Hoje: melhor mais cores mais simples com SMT do que 

menos cores complexos 

– experimentos com o i5 e Atom  ainda melhores resultados 
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Figure 3.35 The speedup from using multithreading on one core on an i7 processor averages 1.28 for the 

Java benchmarks and 1.31 for the PARSEC benchmarks (using an unweighted harmonic mean, which 

implies a workload where the total time spent executing each benchmark in the single-threaded base set 

was the same). The energy efficiency averages 0.99 and 1.07, respectively (using the harmonic mean). Recall 

that anything above 1.0 for energy efficiency indicates that the feature reduces execution time by more than it 

increases average power. Two of the Java benchmarks experience little speedup and have significant negative 

energy efficiency because of this. Turbo Boost is off in all cases. These data were collected and analyzed by 

Esmaeilzadeh et al. [2011] using the Oracle (Sun) HotSpot build 16.3-b01 Java 1.6.0 Virtual Machine and the gcc 

v4.4.1 native compiler.  

Speedup e Energia no i7, com e sem SMT 
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3.13 O ARM Cortex-A8 e o Intel Core i7 

• Intel Core i7 

– High end, dynamically scheduled, speculative processor  high-end 

desktops and servers 

 

• ARM Cortex-A8 

– Uso em smartphones e tablets 

– Dual issue, statically scheduled superscalar, dynamic issue detection 

(1-2 instructions/cycle) 

– Dynamic brach predictor, 512-entry 2-way set associative branch 

targe buffer, 4k-entry global history buffer 
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Figure 3.36 The basic structure of the A8 pipeline is 13 stages. Three cycles are used for instruction fetch 

and four for instruction decode, in addition to a five-cycle integer pipeline. This yields a 13-cycle branch 

misprediction penalty. The instruction fetch unit tries to keep the 12-entry instruction queue filled.  

A8: pipeline structure 
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Figure 3.37 The five-stage instruction decode of the A8. In the first stage, a PC produced by the fetch unit 

(either from the branch target buffer or the PC incrementer) is used to retrieve an 8-byte block from the cache. Up 

to two instructions are decoded and placed into the decode queue; if neither instruction is a branch, the PC is 

incremented for the next fetch. Once in the decode queue, the scoreboard logic decides when the instructions can 

issue. In the issue, the register operands are read; recall that in a simple scoreboard, the operands always come 

from the registers. The register operands and opcode are sent to the instruction execution portion of the pipeline.  

A8: Instruction Decode Pipeline 
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Figure 3.38 The six-stage execution pipeline of the A8.  

Multiply operations are always performed in ALU pipeline 0.  

A8: Execution Pipeline 
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Figure 3.39 The estimated composition of the CPI on the ARM A8 shows that pipeline stalls are the 

primary addition to the base CPI. Benchmark eon deserves some special mention, as it does integer-based 

graphics calculations (ray tracing) and has very few cache misses. It is computationally intensive with heavy use 

of multiples, and the single multiply pipeline becomes a major bottleneck. This estimate is obtained by using the 

L1 and L2 miss rates and penalties to compute the L1 and L2 generated stalls per instruction. These are 

subtracted from the CPI measured by a detailed simulator to obtain the pipeline stalls. Pipeline stalls include all 

three hazards plus minor effects such as way misprediction.  

A8: CPI 

composition 
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Figure 3.40 The performance ratio for the A9 compared to the A8, both using a 1 GHz clock and the same 

size caches for L1 and L2, shows that the A9 is about 1.28 times faster. Both runs use a 32 KB primary cache 

and a 1 MB secondary cache, which is 8-way set associative for the A8 and 16-way for the A9. The block sizes in 

the caches are 64 bytes for the A8 and 32 bytes for the A9. As mentioned in the caption of Figure 3.39, eon makes 

intensive use of integer multiply, and the combination of dynamic scheduling and a faster multiply pipeline 

significantly improves performance on the A9. twolf experiences a small slowdown, likely due to the fact that its 

cache behavior is worse with the smaller L1 block size of the A9.  

A9  

vs  

A8 
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Intel Core i7 

• Aggressive out-of-order speculative microarchitecture; Deep 

pipelines. Multiple issue. High clock rates. 

• Pipeline structure 

– IF: Multi level branch target buffer. Return address stack. Fetch 16B 

– 16B predecode instruction buffer. Micro-op fusion. x86 instructions 

– Micro-op decode: x86 instructions  micro-ops (simple MIPS-like 

instructions)  28-entry micro-op buffer 

– Micro-op buffer: Loop stream detection (análise de loops curtos) and 

microfusion (fusão de instruções).  

– Basic Instruction Issue: Look up register tables. Renaming. Allocating 

ROB. Send to reservation stations 

– RS: 36-entry centralized RS shared by 6 FU. 6 micro-ops can be 

dispatched to FUs / cycle 

– Execution: Results  RS+register retirement unit. Instr complete. 

– ROB: Instructions at head  pending writes executed. 
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Figure 3.41 The Intel Core i7 pipeline structure shown with the memory system components. The total 

pipeline depth is 14 stages, with branch mispredictions costing 17 cycles. There are 48 load and 32 store buffers. 

The six independent functional units can each begin execution of a ready micro-op in the same cycle.  

i7 
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Figure 3.42 The amount of “wasted work” is plotted by taking the ratio of dispatched micro-ops that do 

not graduate to all dispatched micro-ops. For example, the ratio is 25% for sjeng, meaning that 25% of the 

dispatched and executed micro-ops are thrown away. The data in this section were collected by Professor Lu 

Peng and Ph.D. student Ying Zhang, both of Louisiana State University.  
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Figure 3.43 The CPI for the 19 SPECCPU2006 benchmarks shows an average CPI for 0.83 for both the FP 

and integer benchmarks, although the behavior is quite different. In the integer case, the CPI values range 

from 0.44 to 2.66 with a standard deviation of 0.77, while the variation in the FP case is from 0.62 to 1.38 with a 

standard deviation of 0.25. The data in this section were collected by Professor Lu Peng and Ph.D. student Ying 

Zhang, both of Louisiana State University.  
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3.14 

Fallacies 

and Pitfalls 
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Comparison 

Figure 3.45 The relative performance and energy efficiency for a set of single-threaded benchmarks 

shows the i7 920 is 4 to over 10 times faster than the Atom 230 but that it is about 2 times less power 

efficient on average! Performance is shown in the columns as i7 relative to Atom, which is execution time 

(i7)/execution time (Atom). Energy is shown with the line as Energy (Atom)/Energy (i7). The i7 never beats the 

Atom in energy efficiency, although it is essentially as good on four benchmarks, three of which are floating point. 

The data shown here were collected by Esmaeilzadeh et al. [2011]. The SPEC benchmarks were compiled with 

optimization on using the standard Intel compiler, while the Java benchmarks use the Sun (Oracle) Hotspot Java 

VM. Only one core is active on the i7, and the rest are in deep power saving mode. Turbo Boost is used on the i7, 

which increases its performance advantage but slightly decreases its relative energy efficiency.  
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Fallacy 

• Processors with lower CPIs will always be faster 

• Processors with faster clock rates will always be faster 
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3.15 What´s ahead 

• 2000: ILP at peak 

• 2005:  

– mudança de rumos  TLP e multi-core 

– data level parallelism (DLP) 

• Unlikely: more increase in width of issue 
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Processadores da IBM: Evolução 


