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 Desempenho de Cache: 10 otimizacoes

« Memoria: tecnologia e otimizacdes

* Protecdo: memoria virtual e maquinas virtuais
« Hierarquia de memaria

* Hierarquia de memoria do ARM Cortex-A8 e do
ntel Core i/
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2.1 Introduction :

2,

e Programmers want unlimited amounts of memory with low =
latency

« Fast memory technology is more expensive per bit than
slower memory

« Solution: organize memory system into a hierarchy

— Entire addressable memory space available in largest, slowest
memory

— Incrementally smaller and faster memories, each containing a subset
of the memory below it, proceed in steps up toward the processor
« Temporal and spatial locality insures that nearly all
references can be found in smaller memories

— Gives the illusion of a large, fast memory being presented to the
processor
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(b) Memory hierarchy for a personal mobile device

Figure 2.1 The levels in a typical memory hierarchy in a server computer shown on
top (a) and in a personal mobile device (PMD) on the bottom (b). As we move farther
away from the processor, the memory in the level below becomes slower and larger.
Note that the time units change by a factor of 10°—from picoseconds to millisec-
onds—and that the size units change by a factor of 10'>—from bytes to terabytes. The
PMD has a slower clock rate and smaller caches and main memory. A key difference is
that servers and desktops use disk storage as the lowest level in the hierarchy while
PMDs use Flash, which is built from EEPROM technology.
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Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance,
measured as the difference in the time between processor memory requests {for a
single processor or core) and the latency of a DRAM access, is plotted over time.
Note that the vertical axis must be on a logarithmic scale to record the size of the
processor-DRAM performance gap. The memory baseline is 64 KB DRAM in 1980, with
a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The
processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement
until 2000, a 1.20 improvement between 2000 and 2005, and no change in processor

performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1.
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Memory Hierarchy Design

IC-UNICAMP

 Memory hierarchy design becomes more crucial with recent
multi-core processors:

— Aggregate peak bandwidth grows with # cores:
 Intel Core i7 can generate two references per core per clock
« Four cores and 3.2 GHz clock

— 25.6 billion 64-bit data references/second +

— 12.8 billion 128-bit instruction references

— =409.6 GB/s!
« DRAM bandwidth is only 6% of this (25 GB/s)
* Requires:

— Multi-port, pipelined caches

— Two levels of cache per core

— Shared third-level cache on chip

uondNPOU|



Performance and Power
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* High-end microprocessors have >10 MB on-chip cache
— Consumes large amount of area and power budget

— Consumo de energia das caches
* inativa (leakage)
- ativa (poténcia dinamica)

— Problema ainda mais grave em PMDs: power budget 50x menor
« caches podem ser responsaveis por 25-50% do consumo

uondNPOU|



Metricas de desempenho da cache
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1. Reduzir miss rate
2. Reduzir miss penalty
3. Reduzir tempo de hit na cache

AMAT = HitTime + MissRate x MissPenalty

Consider also
Cache bandwidth
Power consumption



2.2 Ten Advanced Optimizations
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 Reducéao do Hit Time (e menor consumo de poténcia)
— 1: Small and simple L1

— 2: Way prediction
Aumento da cache bandwidth

— 3: Pipelined caches

— 4: Multibanked caches

— 5: Nonblocking caches

Reducao da Miss Penalty

— 6: Critical word fist

— 7: Merging write buffers

Reducao da Miss Rate

— 8: Compiler optimization

Reducao de Miss Rate/Penalty via paralelismo

— 9: Hardware prefetching
— 10: Compiler prefetching

suoneziwndQ palsueApy



1- Small and simple L1
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Reduce hit time and power (ver figuras adiante)

Critical timing path:

— addressing tag memory, then

— comparing tags, then

— selecting correct set (if set-associative)

Direct-mapped caches can overlap tag compare and
transmission of data (nao é preciso selecionar os dados pois
nao associativo)

Lower associativity reduces power because fewer cache
lines are accessed

Crescimento de L1 em uProcessadores era tendéncia;
agora estabilizou
— decisao de projeto
 associatividade - reducao de miss rate; mas
« associatividade - aumento de hit time e power

suoneziwndQ palsueApy
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Access time in picrosecornds
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Fig 2.3: Access time vs. size and associativity
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Example

Answer

Exmpl p80: associatividade

Using the data in Figure B.8 in Appendix B and Figure 2.3, determine whether a
32 KB four-way set associative L1 cache has a faster memory access time than a
32 KB two-way set associative L1 cache. Assume the miss penalty to L2 is 15
times the access time for the faster L1 cache. lgnore misses beyond L2. Which
has the faster average memory access time?

Let the access time for the two-way set associative cache be 1. Then, for the two-
way cache:

Average memory access time, . = Hittime + Miss rate x Miss penalty

=1+0038x15 = 1.38

For the four-way cache, the access time is 1.4 times longer. The elapsed time of
the miss penalty is 15/1.4 = 10.1. Assume 10 for simplicity:
Average memory access time dway = Hit limez_w}, x 1.4 + Miss rate x Miss penalty
= 1.4+0037x10 = 1.77
Clearly, the higher associativity looks like a bad trade-off; however, since cache

access in modern processors is often pipelined, the exact impact on the clock
cycle time 1s difficult to assess.
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2- Way Prediction
e To improve hit time, predict the way to pre-set mux
— Adicionar bits de predicdo do proximo acesso a cada bloco
— Mis-prediction gives longer hit time
— Prediction accuracy
* > 90% for two-way

* > 80% for four-way
 |-cache has better accuracy than D-cache

— First used on MIPS R10000 in mid-90s
— Used on ARM Cortex-A8

 Extend to activate block as well

— “Way selection”
— Saves power: only predicted block is accessed. OK if hit

— Increases mis-prediction penalty

suoneziwndQ palsueApy
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@ Exmpl p82: way prediction

Example

Answer

Inoue, Ishihara, and
Murakami [1999] estimated that using the way selection approach with a four-
way set associative cache increases the average access time for the I-cache by
1.04 and for the D-cache by 1.13 on the SPEC95 benchmarks, but 1t yields an
average cache power consumption relative 1o a normal four-way set associative
cache that is 0.28 for the I-cache and 0.35 for the D-cache. One significant draw-
back for way selection is that it makes it difficult to pipeline the cache access.

Assume that there are half as many D-cache accesses as I-cache accesses, and
that the I-cache and D-cache are responsible for 25% and 15% of the processor’s
power consumption in a normal four-way set associative implementation. Deter-
mine if way selection improves performance per watt based on the estimates
from the study above.

For the [-cache, the savings in power is 25 X (.28 = (.07 of the total power, while
for the D-cache it is 15 x 0.35 = 0.05 for a total savings of 0.12. The way predic-
tion version requires 0.88 of the power requirement of the standard 4-way cache.
The increase in cache access time is the increase in I-cache average access time
plus one-half the increase in D-cache access time, or 1.04 + 0.5 x 0.13 = 1.11
times longer. This result means that way selection has (.90 of the performance of

- a standard four-way cache. Thus, way selection improves performance per joule

very slightly by a ratio of 0.90/0.88 = 1.02. This optimization is best used where
power rather than performance is the key objective.

15



3- Pipelining Cache
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Pipeline cache access to improve bandwidth

— Examples:
* Pentium: 1 cycle
* Pentium Pro — Pentium Ill: 2 cycles
* Pentium 4 — Core i7. 4 cycles

High bandwidth but large latency
Increases branch mis-prediction penalty
Makes it easier to increase associativity

suoneziwndQ palsueApy
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4- Nonblocking caches to increase BW
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 Em processadores com execucao for a de ordem e pipeline

— Em um Miss, Cache (I e D) podem continuar com o proximo acesso
e nao ficam bloqueadas (hit under miss) - reducao do Miss Penalty

 |déia basica: hit under miss
— Vantagens aumentam se hit “under multiple miss”, etc

« Nonblocking = lockup free

suoneziwndQ palsueApy
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Laténcia de nonblocking caches
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Figure 2.5 The effectiveness of a nonblocking cache is evaluated by allowing 1, 2, or 64 hits under a
cache miss with 9 SPECINT (on the left) and 9 SPECFP (on the right) benchmarks. The data memory
system modeled after the Intel i7 consists of a 32KB L1 cache with a four cycle access latency. The L2
cache (shared with instructions) is 256 KB with a 10 clock cycle access latency. The L3 is 2 MB and a 36-
cycle access latency. All the caches are eight-way set associative and have a 64-byte block size. Allowing
one hit under miss reduces the miss penalty by 9% for the integer benchmarks and 12.5% for the floating
point. Allowing a second hit improves these results to 10% and 16%, and allowing 64 results in little
additional improvement.
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Exmpl p83: non blocking caches
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Example Which is more important for floating-point programs: two-way set associativity or
hit under one miss for the primary data caches? What about integer programs?
Assume the following average miss rates for 32 KB data caches: 5.2% for floating-
point programs with a direct-mapped cache, 4.9% for these programs with a two-
way set associative cache, 3.5% for integer programs with a direct-mapped cache,
and 3.2% for integer programs with a two-way set associative cache. Assume the
miss penalty to L2 is 10 cycles, and the L2 misses and penalties are the same.

Answer For floating-point programs, the average memory stall times are

Miss ratep, X Miss penalty = 5.2% x 10 = (.52
Miss rate,_,,, X Miss penalty = 4.9% x 10 = 0.49

19



Exmpl p83: non blocking caches (cont)
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The cache access latency (including stalls) for two-way associativity is 0.49/0.52
or 94% of direct-mapped cache. The caption of Figure 2.5 says hit under one
miss reduces the average data cache access latency for floating point programs to
87.5% of a blocking cache. Hence, for floating-point programs, the direct
mapped data cache supporting one hit under one miss gives better performance
than a two-way set-associative cache that blocks on a miss.

For integer programs, the calculation is

Miss ratep,s X Miss penalty = 3.5% x 10 =0.35
Miss rate,_,,,, X Miss penalty = 3.2% x 10 = 0.32

The data cache access latency of a two-way set associative cache is thus 0.32/0.35
or 91% of direct-mapped cache, while the reduction In access latency when
allowing a hit under one miss is 9%, making the two choices about equal.

20



Nonblocking Caches
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* Allow hits before
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Exmpl p85: non blocking caches
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Example Assume a main memory access time of 36 ns and a memory system capable of a
sustained transfer rate of 16 GB/sec. If the block size is 64 bytes, what is the
maximum number of outstanding misses we need to support assuming that we
can maintain the peak bandwidth given the request stream and that accesses
never conflict. If the probability of a reference colliding with one of the previous
four 1s 50%, and we assume that the access has to wait until the earlier access
completes, estimate the number of maximum outstanding references. For sim-
plicity, ignore the time between misses.

Answer In the first case, assuming that we can maintain the peak bandwidth, the mem-
ory system can support (16 X IU}"J’64 250 million references per second. Since
each reference takes 36 ns, we can support 250 x 10° x 36 x 10~ = 9 refer-
ences. If the probability of a collision is greater than 0, then we need more out-
standing references, since we cannot start work on those references; the
memory system needs more independent references not fewer! To approxi-
mate this, we can simply assume that half the memory references need not be
issued to the memory. This means that we must support twice as many out-
standing references, or 18.

22



5- Multibanked Caches
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« QOrganize cache as independent banks to support
simultaneous access

— ARM Cortex-A8 supports 1-4 banks for L2
— Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 i 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

suoneziwndQ pasueApy
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6- Critical Word First, Early Restart
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 Critical word first
— Request missed word from memory first
— Send it to the processor as soon as it arrives (e continua
preenchendo o bloco da cache com as outras palavras)
« Early restart
— Request words in normal order (dentro do bloco)

— Send missed word to the processor as soon as it arrives (e
continua preenchendo o bloco....)

« Effectiveness of these strategies depends on block size
(maior vantagem se o bloco é grande) and likelihood of
another access to the portion of the block that has not
yet been fetched

suoneziwndQ palsueApy
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When storing to a block
that is already pending in
the write buffer, update
write buffer

— mesma palavra ou outra
palavra do bloco

Reduces stalls due to full
write buffer

Do not apply to 1/0
addresses

Figure 2.7 To illustrate write merging, the write buffer on top does not use it while
the write buffer on the bottom does. The four writes are merged into a single buffer
entry with write merging; without it, the buffer is full even though three-fourths of each
entry is wasted, The buffer has four entries, and each entry holds four 64-bit words. The
address for each entry is on the left, with a valid bit (V) indicating whether the next
sequential 8 bytes in this entry are occupied. (Without write merging, the words to the
right in the upper part of the figure would only be used for instructions that wrote mul-

(- Merging Write Buffer

Write address  V S e m
100 1 | Mem[100]
108 1 | Mem[108]
116 1 | Mem[1186]
124 1 | Mem[124]

Write address  V C O m
100 1 | Mem[100] Mem[108] Mem[118] Mem[124]

tiple words at the same time.)

suoneziwndQ pasueApy
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8- Compiler Optimizations
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* Loop Interchange (- localidade espacial)
— Swap nested loops to access memory in sequential order
— exemplo: matriz 5000 x 100, row major (X[i,j] vizinho de x[l,j+1])
» nested loop: inner loop deve serem je ndao emi
« senao “strides” de 100 a cada iteragcao no loop interno

« Blocking (- localidade temporal)

— Instead of accessing entire rows or columns, subdivide matrices
into blocks

— Requires more memory accesses but improves locality of
accesses

— exemplo multiplicacdo de matrizes NxN (sO escolha apropriada
de row or column major n&o resolve )

* Problema é capacity miss: se a cache pode conter as 3 matrizes (X
=Y x Z) entdo nao ha problemas

« Sub blocos evitam capacity misses (no caso de matrizes grandes)

suoneziwndQ palsueApy
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Multiplicacao matrizes 6x6 sem blocking

j K j

o1 2 345 Y 0 1 2 3 45 % 01 2 3 4 5

0 0

| 1

2 2
i K

3 3

4 4

5 5

X=YXxZ

Figure 2.8 A snapshot of the three arrays x, y, and zwhen N =6 and i = 1. The age of accesses
to the array elements is indicated by shade: white means not yet touched, light means older
accesses, and dark means newer accesses. Compared to Figure 2.9, elements of y and z are read
repeatedly to calculate new elements of x. The variables i, j, and k are shown along the rows or
columns used to access the arrays.
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© Multiplicagao matrizes 6x6 com blocking
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X J k Z J
0o 1 2 3 45 Y 0 1 2 3 4 5 0 1 2 3 4 5

0 0 0

1 - 1

2 2 2

i i K

3 3 3

4 4 4

5 5 5

Figure 2.9 The age of accesses to the arrays X, y, and z when B = 3. Note that, in contrast to
Figure 2.8, a smaller number of elements is accessed.
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9- Hardware Prefetching
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* Fetch two blocks on miss (include next sequential block)
— para instrucoes (6bvio) e dados

suoneziwndQ pasueApy
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Figure 2.10 Speedup due to hardware prefetching on Intel Pentium 4 with hardware prefetching turned on for
2 of 12 SPECint2000 benchmarks and 9 of 14 SPECfp2000 benchmarks. Only the programs that benefit the most
from prefetching are shown; prefetching speeds up the missing 15 SPEC benchmarks by less than 15% [Singhal 2004]. )



10- Compiler Prefetching
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Insert prefetch instructions before data is needed

Non-faulting: prefetch doesn’t cause exceptions (page
fault or protection violation)
— se fault - prefetch instruction transformada em no-op

Register prefetch
— Loads data into register

Cache prefetch
— Loads data into cache

Pode ser “semantically invisible” - nao afeta conteudo
de registradores e memaoria e nao causa page fault

Combine with loop unrolling and software pipelining

suoneziwndQ palsueApy
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Example

Exmpl p93: compiler inserted
prefetch instructions

For the code below, determine which accesses are likely to cause data cache
misses. Next, insert prefetch instructions to reduce misses. Finally, calculate the
number of prefetch instructions executed and the misses avoided by prefetching.
Let’s assume we have an 8 KB direct-mapped data cache with 16-byte blocks,
and it is a write-back cache that does write allocate. The elements of a and b are 8
bytes long since they are double-precision floating-point arrays. There are 3 rows
and 100 columns for a and 10| rows and 3 columns for b. Let’s also assume they
are not in the cache at the start of the program.

for (i =0; 1 <3; 1 =1i+]1)
for (j = 0; j < 100; j = j+1)
al[i][3] = b[j][0] * b[j+1][0];

31
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Answer

Exmpl p93: compiler inserted
prefetch instructions (cont)

The compiler will first determine which accesses are likely to cause cache
misses; otherwise, we will waste time on issuing prefetch instructions for data
that would be hits. Elements of a are written in the order that they are stored in
memory, so a will benefit from spatial locality: The even values of J will miss
and the odd values will hit. Since a has 3 rows and 100 columns, its accesses will
lead to 3 X (100/2), or 150 misses.

The array b does not benefit from spatial locality since the accesses are not in
the order it is stored. The array b does benefit twice from temporal locality: The
same elements are accessed for each iteration of 1, and each iteration of j uses
the same value of b as the last iteration. Ignoring potential conflict misses, the
misses due to b will be for b[j+1] [0] accesses when i = 0, and also the first
access to b[j][0] when j =0. Since j goes from 0 to 99 when i = 0, accesses to
b lead to 100 + 1, or 101 misses.

Thus, this loop will miss the data cache approximately 150 times for a plus
101 times for b, or 251 misses.
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Exmpl p93: compiler inserted
prefetch instructions (cont)

To simplify our optimization, we will not worry about prefetching the first
accesses of the loop. These may already be in the cache, or we will pay the miss
penalty of the first few elements of a or b. Nor will we worry about suppressing
the prefetches at the end of the loop that try to prefetch beyond the end of a
(a[i]1[100] ...a[i][106])and the end of b (b[101] [0] ...b[107] [0]). If these
were faulting prefetches, we could not take this luxury. Let’s assume that the miss
penalty is so large we need to start prefetching at least, say, seven iterations in
advance. (Stated alternatively, we assume prefetching has no benefit until the eighth
iteration.) We underline the changes to the code above needed to add prefetching.

for (j =05 j <100; j = j+1) {
prefetch(b[i+7][0]);
/* b(j,0) for 7 iterations later */
prefetch(a[0] [j+7]);
/* a(0,j) for 7 iterations later */
al0][5] = b[31[0] * b[j*+1][0)s];
for (i = 1; 1 < 3; i = i+l)
for (j = 0; j <100; § = j+1) {
prefetch(ali][j+7]);
)

J/* a(i,j) for 47 iterations */

ali][i] = b[31[0] * b[3+1][0];}
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Exmpl p93: compiler inserted

S#we  prefetch instructions (cont)

This revised code prefetches a[i] [7] through a[i][99] and b[7][0] through
b[100] [0], reducing the number of nonprefetched misses to

7 misses for elements b[0] [0], b[1] [0], ..., b[6][0] in the first loop

4 misses ([72]) for elements a[0] [0], a[0][1], ..., a[0][6] in the first
loop (spatial locality reduces misses to 1 per 16-byte cache block)

4 misses ([72]) for elements a[1] [0],a[1][1],..., a[1][6] in the second
loop |

4 misses ([7/2]) for elements a[2] [0], a[2][1], ..., a[2] [6] in the second

loop

or a total of 19 nonprefetched misses. The cost of avoiding 232 cache misses is
executing 400 prefetch instructions, likely a good trade-off.
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Exmpl p94: compiler inserted
prefetch instructions

Example Calculate the time saved in the example above. Ignore instruction cache misses
and assume there are no conflict or capacity misses in the data cache. Assume
that prefetches can overlap with each other and with cache misses, thereby
transferring at the maximum memory bandwidth. Here are the key loop times
ignoring cache misses: The original loop takes 7 clock cycles per iteration, the
first prefetch loop takes 9 clock cycles per iteration, and the second prefetch loop
takes 8 clock cycles per iteration (including the overhead of the outer for loop).
A miss takes 100 clock cycles.
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Answer

Exmpl p94: compiler inserted
prefetch instructions

The original doubly nested loop executes the multiply 3 x 100 or 300 times.
Since the loop takes 7 clock cycles per iteration, the total is 300 x 7 or 2100 clock
cycles plus cache misses. Cache misses add 251 x 100 or 25,100 clock cycles,
giving a total of 27,200 clock cycles. The first prefetch loop iterates 100 times; at
9 clock cycles per iteration the total is 900 clock cycles plus cache misses. Now
add 11 x 100 or 1100 clock cycles for cache misses, giving a total of 2000. The
second loop executes 2 x 100 or 200 times, and at 8 clock cycles per iteration it
takes 1600 clock cycles plus 8 x 100 or 800 clock cycles for cache misses. This
gives a total of 2400 clock cycles. From the prior example, we know that this
code executes 400 prefetch instructions during the 2000 + 2400 or 4400 clock
cycles to execute these two loops. If we assume that the prefetches are com-
pletely overlapped with the rest of the execution, then the prefetch code is
27,200/4400, or 6.2 times faster.
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Summary: 10 optimizations
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Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined cache access - + 1 Widely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in L2 of both 17 and
Cortex-AS8

Critical word first + 2 Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software 1s a challenge, but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + — 2 instr., Most provide prefetch

of instructions and data 3 data mstructions; modern high-

end processors also
automatically prefetch in

hardware.
Compiler-controlled + + 3 Needs nonblocking cache:
prefetching possible instruction overhead:

in many CPUs




2.3 Memory Technology

* Performance metrics
— Latency is concern of cache
— Bandwidth is concern of multiprocessors and 1/O
— Access time
« Time between read request and when desired word arrives
— Cycle time
* Minimum time between unrelated requests to memory

« DRAM used for main memory, SRAM used for cache

ABojouyoa| AlowaN
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Memory Technology

SRAM

— Requires low power to retain bit
— Requires 6 transistors/bit

DRAM

— Must be re-written after being read
— Must also be periodically refeshed
« Every ~8 ms
« Each row can be refreshed simultaneously
« Goal: tempo gasto em refreshing = 5% tempo total
— One transistor/bit
— Address lines are multiplexed:
» Upper half of address: row access strobe (RAS)
« Lower half of address: column access strobe (CAS)

ABojouyoa| AlowaN
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DRAM: organizacao interna

IC-UNICAMP
Bank |
Column ]
I

Rd/Wr

Act

- Pre

Row

Figure 2.12 Internal organization of a DRAM. Modern DRAMs are organized in banks,
typically four for DDR3. Each bank consists of a series of rows. Sending a PRE (precharge)
command opens or closes a bank. A row address is sent with an Act (activate), which causes the
row to transfer to a buffer. When the row is in the buffer, it can be transferred by successive
column addresses at whatever the width of the DRAM is (typically 4, 8, or 16 bits in DDR3) or
by specifying a block transfer and the starting address. Each command, as well as block
transfers, are synchronized with a clock.



Memory Technology

« Amdahl:

— Memory capacity should grow linearly with processor speed

— Unfortunately, memory capacity and speed has not kept pace with
processors (fig 2.13). Aumento anual: 4x (ate1996) e 2x depois

ABojouyoa| AlowaN

« Some optimizations:
— Multiple accesses to same row (buffer pode manter linha armazenada)

— Synchronous DRAM - SDRAM

* Added clock to DRAM interface (tratou overhead de sincronizagao nas assincr.)
« Burst mode with critical word first (enviar pacote de dados)

— Wider interfaces (4bits; depois em 2010 DDR2 e DDR3 - 16 bhits)
— Double data rate (DDR): data transfer on rising and falling edges of clock

— Multiple banks (2-8) on each DRAM device: vantagens de interleaving e
gestao de energia

» endereco: banco, row, column. Acesso subsequente no mesmo banco é mais
rapido
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Memory Evolution

Row access strobe (RAS)

Slowest Fastest Column access strobe (CAS)/ Cycle
Production year Chipsize DRAMType DRAM(ns) DRAM (ns) data transfer time (ns)  time (ns)
1980 64K bit DRAM 180 150 75 250
1983 256K bit DRAM 150 120 50 220
1986 IM bit DRAM 120 100 25 190
1989 4M bit DRAM 100 80 20 165
1992 16M bit DRAM 80 60 15 120
1996 64M bit SDRAM 70 50 2 110
1998 128M bit SDRAM 70 50 10 100
2000 256M bit DDRI1 635 45 7 90
2002 S12M bit DDRI1 60 40 5 80
2004 1G bit DDR2 55 35 5 70
2006 2G bit DDR2 50 30 2.5 60
2010 4G bit DDR3 36 28 1 37
2012 8G bit DDR3 30 24 0.5 31

Figure 2.13 Times of fast and slow DRAMs vary with each generation. (Cycle time is defined on page 95.) Perfor-
mance improvement of row access time is about 5% per year. The improvement by a factor of 2 in column access in
1986 accompanied the switch from NMOS DRAMs to CMOS DRAMs. The introduction of various burst transfer
modes in the mid-1990s and SDRAMs in the late 1990s has significantly complicated the calculation of access time
for blocks of data; we discuss this later in this section when we talk about SDRAM access time and power. The DDR4
designs are due for introduction in mid- to late 2012. We discuss these various forms of DRAMs in the next few pages.

ABojouyoa| AlowaN
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Memory Optimizations

 DDR:
— Packaging DIMM
* Nome = DIMM bw; ex: DIMM PC2100 - 133Mz x 2 x8B = 2100 MB/s
 Nome DDR = bits/sec; ex DDR de 133Mz - DDR266
— DDR?2
* Lower power (2.5V ->1.8V)
« Higher clock rates (266 MHz, 333 MHz, 400 MHZz)

— DDRS3
« 1.5V e 800 MHz

— DDRA4
« 1-1.2V e 1600 MHz

« GDDR5 is graphics memory based on DDR3

ABojouyoa| AlowaN

43



Tipos DDR, nome e velocidades

IC-UNICAMP
Standard Clock rate (MHz) M transfers per second DRAM name MB/sec /DIMM DIMM name
DDR 133 266 DDR266 2128 PC2100
DDR 150 300 DDR300 2400 PC2400
DDR 200 400 DDR400 3200 PC3200
DDR2 266 533 DDR2-533 4264 PC4300
DDR2 333 667 DDR2-667 5336 PC5300
DDR2 400 800 DDR2-800 6400 PC6400
DDR3 533 1066 DDR3-1066 8528 PC8500
DDR3 666 1333 DDR3-1333 10,664 PC10700
DDR3 800 1600 DDR3-1600 12,800 PC12800
DDR4 1066—1600 2133-3200 DDR4-3200 17.,056-25,600 PC25600

Figure 2.14 Clock rates, bandwidth, and names of DDR DRAMS and DIMMs in 2010. Note the numerical relation-
ship between the columns. The third column is twice the second, and the fourth uses the number from the third col-
umn in the name of the DRAM chip. The fifth column is eight times the third column, and a rounded version of this
number is used in the name of the DIMM. Although not shown in this figure, DDRs also specify latency in clock cycles
as four numbers, which are specified by the DDR standard. For example, DDR3-2000 CL 9 has latencies of 9-9-9-28.
What does this mean? With a 1 ns clock (clock cycle is one-half the transfer rate), this indicate 9 ns for row to columns
address (RAS time), 9 ns for column access to data (CAS time), and a minimum read time of 28 ns. Closing the row
takes 9 ns for precharge but happens only when the reads from that row are finished. In burst mode, transfers occur
on every clock on both edges, when the first RAS and CAS times have elapsed. Furthermore, the precharge in not
needed until the entire row is read. DDR4 will be produced in 2012 and is expected to reach clock rates of 1600 MHz
in 2014, when DDR5 is expected to take over. The exercises explore these details further.
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Memory Optimizations

« Graphics memory:

— Achieve 2-5 X bandwidth per DRAM vs. DDR3
« Wider interfaces (32 vs. 16 bit)

« Higher clock rate

— Possible because they are attached via soldering instead of socketted DIMM
modules

* Reducing power in SDRAMS:
— Lower voltage
— Uso de bancos: acesso a uma linha de um unico banco por RD
— Low power mode (ignores clock, continues to refresh)

ABojouyoa| AlowaN
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&~ Memory Power Consumption

600 -
500 -
400 -

300 -
200 -

Power in mW

100 ~

0

B Read, write, terminate
power

O Activate power
B Background power

Figure 2.15 Power consumption for a DDR3 SDRAM operating under three condi-
tions: low power (shutdown) mode, typical system mode (DRAM is active 30% of the
time for reads and 15% for writes), and fully active mode, where the DRAM is contin-
uously reading or writing when not in precharge. Reads and writes assume bursts of 8

Typlcal

power usage

Fully
active

transfers. These data are based on a Micron 1.5V 2Gb DDR3-1066.
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Flash Memory

 Type of EEPROM

 Must be erased (in blocks) before being overwritten
« Non volatile

« Consome pouca (ou nenhuma) energia se inativa

* Limited number of write cycles (+- 100 000)
— ha medidas para distribuir uso e evitar desgaste localizado

« Cheaper than SDRAM, more expensive than disk
« Slower than SRAM, faster than disk

ABojouyoa| AlowaN
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Memory Dependability

IC-UNICAMP

Memory Is susceptible to cosmic rays
Soft errors: dynamic errors
— Detected and fixed by error correcting codes (ECC)

Hard errors: permanent errors
— Use spare rows to replace defective rows

Chipkill: a RAID-like error recovery technique

Exemplo: 10000 servidores, 4GB/servidor > MTBF

— somente com paridade: 17 minutos
— ECC: 7.5 horas
— Chipkill: 2 meses

ABojouyoa| AlowaN
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2.4 Virtual Memory

* Protection via virtual memory
— Keeps processes in their own memory space

* Role of architecture:
— Provide user mode and supervisor mode
— Protect certain aspects of CPU state

— Provide mechanisms for switching between user mode and
supervisor mode

— Provide mechanisms to limit memory accesses
— Provide TLB to translate addresses

Saulyde\ [enuiA pue Alowsay [enuiA
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Virtual Machines

Velhas VMs: 1960°s, nos mainframes IBM

Ignorada posteriormente, volta agora porque:

— Supports isolation and security

— Maior seguranca do que a obtida com OS tradicionais
— Sharing a computer among many unrelated users

— Enabled by raw speed of processors, making the overhead more
acceptable

Allows different ISAs and operating systems to be presented to user
programs (emulation)

— “System Virtual Machines”: matching ISA (VM and host hardware)
 usuario: ilusdo de ter uma maquina inteira sob seu controle

— SVM software is called “virtual machine monitor (VMM)” or “hypervisor”

— Individual virtual machines run under the monitor are called “guest
VMs”

Vantagens adicionais (atratividade atual)
— Gestéao de software: SW e OS legados

— Gestao de HW: vis&o unificada de hw diverso e redundante (usado em
cloud computing)

Saulyde\ [enuiA pue Alowsay [enuiA
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Impact of VMSs on Virtual Memory

IC-UNICAMP

« Each guest OS maintains its own set of page tables

— VMM adds a level of memory between physical and virtual
memory called “real memory”

— Guest OS maps virtual memory to real memory (its page table)
— VMM page table maps real memory to physical memory

— To avoid extra level of indirection, VMM maintains shadow page
table that maps guest virtual addresses to physical addresses
* Requires VMM to detect guest’s changes to its own page table

« Occurs naturally if accessing the page table pointer is a privileged
operation

Saulyde\ [enuiA pue Alowsay [enuiA
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2.5 Crosscutting issues: design of hierar.

IC-UNICAMP

* Protection and ISA
— Protecao: trabalho conjunto do OS e arquitetura
— Mas pode haver interferéncia do ISA
— EX: problemas com Interrupt Enable e virtualizacéo no

80x86
« Coherency of cached data in I/O operations
— 1/O < cache ou /O < Memoria ?

— Se cache - processador vé dado atualizado, mas 1/O
Interfere na cache (acesso ou substituicao) - stall

— Muitos sistemas preferem I/0O < Memodria (que serve
como |/O buffer). Se write through:
» operacoes de 10 out veem dado atualizado

» operacOes de IO in : a) flush pagina da cache; ou b) marcar pag
de 10 como uncacheable



2.6 Putting 1t all Together

IC-UNICAMP

Exemplos de Hierarquias de Memoria
— ARM Cortex-A8
— Intel Core i7
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Fig 2.16: 0 ARM Cortex A8
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Fig 2.16: 0 ARM
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Fig 2.17: Miss Rate (A8)
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The average memory
access penalty per
data memory
reference coming from
L1 and L2 is shown
for the ARM
processor when
running Minniespec.
Although the miss rates
for L1 are significantly
higher, the L2 miss
penalty, which is more
than five times higher,
means that the L2
misses can contribute
significantly.

4.5

3.5

2.5

Miss penalty per data reference

1.5

0.5

Fig 2.18: Miss Penaly (AS8)
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O Intel 17: caracteristicas

TLB
Characteristic Instruction TLB Data TLB Second Level TLB
Size 128 64 512
Associativity 4-way 4-way 4-way
Replacement pseudo LRU pseudo LRU pseudo LRU
Access Latency 1 cycle 2 cycle 6 cycle
Miss 7 cycles 8 cycles >100 (page table)
Caches
Characteristic L1 L2 L3
Size 32 kb (I and D) 256 KB 2 MB per core
Associativity 4-way (), 8-way (D) 8-way 16-way
Access Latency 4 cycles, pipelined 10 cycles, 35 cycles,
Replacement pseudo LRU pseudo LRU pseudo LRU
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Fig 2.21: Hier.
de Mem. do
Intel 17

The Intel i7 memory
hierarchy and the steps
in both instruction and
data access. We show
only reads for data. Writes
are similar, in that they
begin with a read (since
caches are write back).
Misses are handled by
simply placing the data in
a write buffer, since the L1
cache is not write
allocated.
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Fig 2.22: Data cache miss rate

IC-UNICAMP
50%
- L1 D misses/L1 D cache references
A8% —4— L1 D misses/graduated loads
The Ll data Cache 400/0 B A S e Ok 3 R A R e S T o R S S R T o o S T O S T S s A I s S T O O I O A T s S A e
miss rate for 17
SPECCPU2006 350/0 A MR S e e 60 S 8 S OB 0 A 556 A MW VDO S N A SRR I 5646 B S AN M AE M0 4 SNV SN S S 0N KSR OB NS S A KK e 6 A S S S AN AR e s
benchmarks is shown
|n tWO Ways relative to 300/0 Bl R I T P AT T A R A A o K o A e S R N T R e s T A R R S 3 TS A S SR A I L T A P A S A
the actual loads that
Complete executlon 250/0 B o P e B S S O o O T A T T O T T o T T e T o R T O e e O O T S A e S S Py
successfully and
. D% frsorenssssnssnsmhnncelalensaasnssssomsnsnsssnsnssenensssnnniesnassssnamsssassanssnsassss enesassressonnssossamsuvasanrsssenssaassssss
relative to all the
references to Ll’ 150/0 B R T 3 R es s i R P T T Ry
which also includes
prefetches, speculative .
10 /o | S/ [ [oapaan, [ [ ey
loads that do not
complete, and writes, 5% do N
which count as k ‘
references, but do not 0%

1 1 1 I I I

enerate misses.
’ S Q\L&
<> F e
Q& (GO
& \§7



Fig 2.24: Miss Ratede L2 e L3
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The L2 and L3 data cache
miss rates for 17
SPECCPU2006
benchmarks are shown
relative to all the references
to L1, which also includes
prefetches, speculative
loads that do not complete,
and program—generated
loads and stores.
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* (ver texto)

Fallacies and Pitfalls
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Predizer cache performance de um
programa com base em outro

160
140 4 —A— D: lucas —®— D:gcc —¥— |:. gcc
—— D:gap —l.gap - l:lucas
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Figure 2.26 Instruction and data misses per 1000 instructions as cache size varies from 4
KB to 4096 KB. Instruction misses for gcc are 30,000 to 40,000 times larger than lucas, and,
conversely, data misses for lucas are 2 to 60 times larger than gcc. The programs gap, gcc, and
lucas are from the SPEC2000 benchmark suite.

4096
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Misses: basear em
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Figure 2.27 Instruction misses per 1000
references for five inputs to the perl
benchmark from SPEC2000. There is
little variation in misses and little
difference between the five inputs for the
first 1.9 billion instructions. Running to
completion shows how misses vary over
the life of the program and how they
depend on the input. The top graph shows
the running average misses for the first
1.9 billion instructions, which starts at
about 2.5 and ends at about 4.7 misses per
1000 references for all five inputs. The
bottom graph shows the running average
misses to run to completion, which takes
16 to 41 billion instructions depending on
the input. After the first 1.9 billion
instructions, the misses per 1000
references vary from 2.4 to 7.9 depending
on the input. The simulations were for the
Alpha processor using separate L1 caches
for instructions and data, each two-way
64 KB with LRU, and a unified 1 MB
direct-mapped L2 cache.
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