IC-UNICAMP M 040 1

|C/Unicamp

Prof Mario Cortes

Apéendice C:
Conceltos basicos de pipelining

TOopicos

IC-UNICAMP

* Funcionamento basico

 Hazards: estrutural, dados, controle
 Dificuldades na implementacao de pipelines
« Extensao: operacoes multi-ciclo

Pipeline

IC-UNICAMP

* Objetivo: aumentar o throughput
— se balanceado: speedup do throughput = n° estagios

* No Ap C: ISA do MIPS64

* Dependendo da referéncia (baseline)
— reduzir o CPI das instrucdes: meta - CPI =1

— reduzir o cycle time: mais estagios menores e mais
simples - menor cycle time

Instrucoes no pipeline: visao de tempo

IC-UNICAMP

Clock number
Instruction number 1 2 3 4 5 6 7 B g
i;strur:tiun i IF ID EX MEM WB
Instruction i + | IF ID EX MEM WB
Instruction i +2 F ID EX MEM WB
Instruction { + 3 IF ID EX MEM WB
_ Instruction i + 4 IF D EX MEM WEB

Figure C.1 Simple RISC pipeline. On each clock cycle, another instruction is fetched and begins its five-cycle execu-
tion. If an instruction is started every clock cycle, the performance will be up to five times that of a processor that is
not pipelined. The names for the stages in the pipeline are the same as those used for the cycles in the unpipelined
implementation: IF = instruction fetch, ID = instruction decode, EX = execution, MEM = memory access, and WB =
write-back.

Pipeline: moédulos no tempo

Time (in clock cycles) >

cc1 i cc2 i ©cc3 i ©cc4a i ©ccs5 i cce i €C7 | C€C8 i CC9

DM 1 Reg :

Program execution order (in instructions)

Reg

DM -1 Reg

I7

Figure C.2 The pipeline can be thought of as a series of data paths shifted in time. This shows the overlap among the parts of
the data path, with clock cycle 5 (CC 5) showing the steady-state situation. Because the register file is used as a source in the ID
stage and as a destination in the WB stage, it appears twice. We show that it is read in one part of the stage and written in another
by using a solid line, on the right or left, respectively, and a dashed line on the other side. The abbreviation IM is used for
instruction memory, DM for data memory, and CC for clock cycle.

IC-UNICAMP

Time (in clock cyclesy

CC 1

cCcz2

CcC3

Figure C.3 A pipeline showing the pipeline registers between successive pipeline stages. Notice that the registers prevent
interference between two different instructions in adjacent stages in the pipeline. The registers also play the critical role of carrying
data for a given instruction from one stage to the other. The edge-triggered property of registers—that is, that the values change
instantaneously on a clock edge—is critical. Otherwise, the data from one instruction could interfere with the execution of another!

=]
U il

cC 4

||

CcC 6

DM

IM

O pipeline basico do MIPS: registradores

IM

Exmpl C-10: Desempenho do pipeline

|C_U|CAMP Consider the unpipelined processor in the previous section. Assume that it has a |
ns clock cycle and that it uses 4 cycles for ALU operations and branches and 5
cycles for memory operations. Assume that the relative frequencies of these
operations are 40%, 20%. and 40%, respectively. Suppose that due to clock skew
and setup, pipelining the processor adds 0.2 ns of overhead to the clock. Ignoring
any latency impact, how much speedup in the instruction execution rate will we
gain from a pipeline?

Answer The average instruction execution time on the unpipelined processor is

Average instruction execution time = Clock cycle x Average CPI

I ns x [(40% + 20%) x4 + 40% x 5]
= Insx44

= 4.4 ns

In the pipelined implementation, the clock must run at the speed of the slowest
stage plus overhead, which will be | + 0.2 or 1.2 ns; this is the average instruc-
tion execution time. Thus, the speedup from pipelining is

Average mstruction time unpipelined

Speedup from pipelining = . — =
e A s e Average instruction time pipelined
= 44 ns = 3.7 times
1.2 ns

The 0.2 ns overhead essentially establishes a limit on the effectiveness of pipelin-
ing. If the overhead is not affected by changes in the clock cycle, Amdahl’s law
tells us that the overhead limits the speedup.

C-2: Limites de Pipelining
* Hazards: impedem que a proxima instrucao seja
executada no ciclo de clock “previsto” para ela

—Structural hazards: O HW nao suporta uma dada
combinacao de instrucoes (falta de recurso)

—Data hazards: Uma Instrucao depende do
resultado da instrucao anterior gue ainda esta no
pipeline

—Control hazards: Causado pelo delay entre o
fetching de uma instrucao e a decisao sobre a
mudanca do fluxo de execucao (branches e
jumps).

Desempenho pipelines com stalls

IC-UNICAMP . L .
Average instruction time unpipelined

Average instruction time pipelined

Speedup from pipelining =

_ CPI unpipelined x Clock cycle unpipelined
~ CPI pipelined x Clock cycle pipelined

_ CPI unpipelined y Clock cycle unpipelined
CPI pipelined Clock cycle pipelined

* Objetivo do Pipeline: diminuir CPI ou cycletime
* Primeiro caso: diminuir CPI (CPI ideal com pipeline = 1)
CPI pipelined = Ideal CPI + Pipeline stall clock cycles per instruction
= | + Pipeline stall clock cycles per instruction

« Assumindo overhead=0, pipeline balanceado, cycletimes iguais
CPI unpipelined
1 + Pipeline stall cycles per instruction

Speedup =

« Caso especial (frequente), laténcia de todas instrucdes = estagios
Pipeline depth

Speedup = — : ;
peedup 1 + Pipeline stall cycles per instruction

* Intuicao OK: se stall = 0, speedup = pipeline depth

Desempenho pipelines com stalls (cont)

IC-UNICAMP

« Segundo caso: diminuir cycletime - CPIl =1 com ou sem pipeline

CPI unpipelined « Clock cycle unpipelined
CPI pipelined Clock cycle pipelined

Speedup from pipelining

l Clock cycle unpipelined
T : — X "
I + Pipeline stall cycles per instruction Clock cycle pipelined

« Se pipeline balanceado e overhead = 0 = ganho no cycletime = pipeline

depth Clock cycle unpipelined

Clock cycle pipelined =
ock cycle pipeline Pipeline depth

Clock cycle unpipelined

Pipeline depth =
el P Clock cycle pipelined

! « Clock cycle unpipelined
! + Pipeline stall cycles per instruction Clock cycle pipelined

! L .
= X
1 + Pipeline stall cycles per instruction Pipeline depth

* Intuicdo OK: se stall = 0, speedup = pipeline depth

Speedup from pipelining =

10

Hazard estrutural

Time (in clock cycles)

IC-UNICAMP

CCAH1 cc2 CcC3 cC4 CC5 CC6 CC7 cC8
e
Instruction 1 Mem
Instruction 2 Mem r_-‘MF.i»eg | st
: : / :_
Instruction 3 Mem

Instruction 4

Figure C.4 A processor with only one memory port will generate a conflict whenever a
memory reference occurs. In this example the load instruction uses the memory for a data access
at the same time instruction 3 wants to fetch an instruction from memory.

11

Hazard estrutural

IC-UNICAMP

Clock cycle number
Instruction 1 2 3 4 5 6 7 B 9 10
Load instruction IF ID EX MEM WB
[nstruction i + | IF ID EX MEM WB
[nstruction i + 2 IF D EX MEM WB
[nstruction f + 3 sull I ID EX MEM WB
[nstruction { + 4 IF 1D EX MEM WB
Mtion i+ 5 [F 1D EX MEM
[nstruction i + 6 IF D EX

Figure C.5 A pipeline stalled for a structural hazard—a load with one memory port. As shown here, the load
instruction effectively steals an instruction-fetch cycle, causing the pipeline to stall—no instruction is initiated on
clock cycle 4 (which normally would initiate instruction i + 3). Because the instruction being fetched is stalled, all
other instructions in the pipeline before the stalled instruction can proceed normally. The stall cycle will continue to
pass through the pipeline, so that no instruction completes on clock cycle 8. Sometimes these pipeline diagrams are
drawn with the stall occupying an entire horizontal row and instruction 3 being moved to the next row; in either
case, the effect is the same, since instruction i + 3 does not begin execution until cycle 5. We use the form above,
since it takes less space in the figure. Note that this figure assumes that instructions i + 1 and i + 2 are not memaory
references.

Hazard de dados: RAW

IC-UNICAMP

» Dado produzido por uma instrucéao é lido pelas

subseguentes

— DADD Rl1, R2, R3
— DSUB R4, R1l, R5
— AND R6, R1l, R7
- OR R8, R1l, RO

— XOR R10, R1, R11

Hazard de dados

IC-UNICAMP

Time (in clock cycles)

CC1 CcC2 CC3 CC4

DADD R1, RZ, R3 IM

ALU

=
l
|?§ F
V]

DSUB R4, R1, RS

)|

AND R6, R1, R7

Program execution order (in instructions)

OR R8, R1, R9

XOR R10, RI1, RI11

Figure C.6 The use of the result of the DADD instruction in the next three instructions causes a hazard,

since the register is not written until after those instructions read it.

CCe6

14

Solucao por forwarding

IC-UNICAMP

Time (in clock cycles)

CCH1 cC2 CcC3 CC4 CC5 CcCe6

DADD R1, R2, R3 IM

DSUB R4, RI, RS

AND R6, R1, R7

Program execution order (in instructions)

OR R8, R1, R9

XOR R10, R1, RI1

Figure C.7 A set of instructions that depends on the DADD result uses forwarding paths to avoid the data hazard. The inputs
for the DSUB and AND instructions forward from the pipeline registers to the first ALU input. The OR receives its result by
forwarding through the register file, which is easily accomplished by reading the registers in the second half of the cycle and
writing in the first half, as the dashed lines on the registers indicate. Notice that the forwarded result can go to either ALU input; in
fact, both ALU inputs could use forwarded inputs from either the same pipeline register or from different pipeline registers. This
would occur, for example, if the AND instruction was AND R6,R1,R4.

15

Forwarding: instrucoes LD e SD

IC-UNICAMP

Time (in clock cycles) -

CC 1 cC2 cC3 CC 4 cC5 cC6
DADD R1, R2, R3 IM '_ Reg % —I DM |— Reg |

LD R4, O(RI)

=
L
sy
o
(]
ALU

Program execution order (in instructions)

LU

SO R4,12(R1) M

[

|

Figure C.8 Forwarding of operand required by stores during MEM. The result of the load is forwarded from the memory
output to the memory input to be stored. In addition, the ALU output is forwarded to the ALU input for the address calculation of
both the load and the store (this is no different than forwarding to another ALU operation). If the store depended on an immediately
preceding ALU operation (not shown above), the result would need to be forwarded to prevent a stall.

16

LD seguido de Arith: hazard

IC-UNICAMP

\j

Time (in clock cycles)

cct ccz2 cc3 cc4 CC5
n
5 lis—s o
§ LD RL, 0(R2) M = Reg 2 Reg
}2; ean——d /. 1M | 1 S /B Ml YRR ...
IS - - -
@
'g r 3
O DSUB R4, R1, RS M [" Reg gM —
S L
= 7 [
3 = = &
x
@
E
©
>
e
o

— e
AND R6, R1, R7 M '_ Reg /2
H Esil
OR R8, R1, R9 IM Reg
’ :....,.— /

Figure C.9 The load instruction can bypass its results to the AND and OR instructions, but not to the
DSUB, since that would mean forwarding the result in “negative time.”

17

LD seguido de arith: stall

IC-UNICAMP

0 RLO0(RZ) IF ID EX MEM _ WB T
DSUB R4,R1,R5 IF ID EX MEM WB

AND R6,R1,R7 IF D EX MEM WB

OR R8,RI1,RY IF D EX MEM WB

D RI1,0(R2) IF ID EX MEM WB

DSUB R4,R1,RS IF D stall EX MEM WB

AND R6,RL,R7 IF stall ID EX -~ MEM WB

OR R8,RL,R9 stall IF ID EX MEM WB

Figure C.10 In the top half, we can see why a stall is needed: The MEM cycle of the load produces a value that is
needed in the EX cycle of the BSUB, which occurs at the same time. This problem is solved by inserting a stall, as
shown in the bottom half.

18

Branch Hazards

IC-UNICAMP

« Em desvio condicional, quando condicéo é
calculada, ja houve IF da proxima instrucao
— uma solucao: refazer o IF

Branch instruction IF D EX MEM Wi

Branch successor IF [F 1D EX MEM WB
Branch successor + | IF 1D EX MEM
Branch successor + 2 IF 1D EX

Figure C.11 A branch causes a one-cycle stall in the five-stage pipeline. The instruc-
tion after the branch is fetched, but the instruction is ignored, and the fetch is restarted
once the branch target is known. It is probably obvious that if the branch is not taken,
the second IF for branch successor is redundant. This will be addressed shortly.

Reducao da penalidade do branch

IC-UNICAMP

* Neste Apéndice, quatro solucdes simples no tempo
de compilacao
— 1: freeze or flush the pipeline; nao reduz penalidade
(figura C-11)
— 2: predict not taken
— 3. predict taken
— 4. delayed branch

20

Predict not taken / taken

IC-UNICAMP

Unigken branch instruction~~ IF~ ID EX MEM _ WB

Instruction i + | IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction § + 3 IF D EX MEM WB
Instruction + 4 IF ID EX MEM WB
Taken branch instruction IF 1D EX MEM WB

Instruction ¢ + | IF idle idle idle idle

Branch target IF ID EX MEM WB

Branch target + | IF ID EX MEM WB

Branch target + 2 IF ID EX MEM WB

Figure C.12 The predicted-not-taken scheme and the pipeline sequence when the branch is untaken (top) and
taken (bottom). When the branch is untaken, determined during ID, we fetch the fall-through and just continue. if
the branch is taken during ID, we restart the fetch at the branch target This causes all instructions following the
branch to stall 1 clock cycle.

21

IC-UNICAMP

Delayed branch

Un;::k‘tn branc_l'n-inslru-::tiun IF E EX MEM_ WB -
Branch delay instruction (i + 1) IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB
Instruction i + 4 IF ID EX MEM WB
_'-Iak:n branch instruction IF ID EX MEM WB

H_ranr.:h delay instruction (i + 1) IF 1D EX MEM WB

Branch target IF 1D EX MEM WB

Branch target + |

IF 1D EX MEM WH

Branch target + 2

R

IF ID EX MEM WB

Figure C.13 The behavior of a delayed branch is the same whether or not the branch is taken. The instructions in
the delay slot (there is only one delay slot for MIPS) are executed. If the branch is untaken, execution continues with
the instruction after the branch delay instruction; if the branch is taken, execution continues at the branch target.
When the instruction in the branch delay slot is also a branch, the meaning is unclear: If the branch is not taken, what
should happen to the branch in the branch delay slot? Because of this confusion, architectures with delay branches

often disallow putting a branch in the delay slot.

22

DADD R1, R2, R3 DADD R1, R2, R3
DSUB R4, RS, R6 <—
5 if R2 = 0 then if R1 = 0 then
IC-UNICAMP Delaysiot | DADD R1, R2, R3 | Delay slot
if R1 = 0 then OR R7, R8, R9
Delayed | | [—

b r an C h becomes becomes becomes

DSUB R4, RS, R6 DADD R1, R2, R3
_—
if R2 = 0 then if R1 = 0 then
DADD R1, R2, R3 DADD R1, R2, R3 | orw, Re, RO
if R1 = 0 then
| DsuB R4, R5, RE | DSUB R4, RS, R6 <—

(a) From before (b) From target (c) From fall-through

Figure C.14 Scheduling the branch delay slot. The top box in each pair shows the code before scheduling; the bottom box shows
the scheduled code. In (a), the delay slot is scheduled with an independent instruction from before the branch. This is the best
choice. Strategies (b) and (c) are used when (a) is not possible. In the code sequences for (b) and (c), the use of R1 in the branch
condition prevents the DADD instruction (whose destination is R1) from being moved after the branch. In (b), the branch delay slot
is scheduled from the target of the branch; usually the target instruction will need to be copied because it can be reached by another
path. Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch. Finally, the branch may be
scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it must be OK to execute the
moved instruction when the branch goes in the unexpected direction. By OK we mean that the work is wasted, but the program will
still execute correctly. This is the case, for example, in (c) if R7 were an unused temporary register when the branch goes in the
unexpected direction.

Desempenho das alternativas

IC-UNICAMP

Pipeline depth

Pipeline speedup =
1 + Stall cycles from branches

Stall cycles from branches = Branch frequency x Branch penalty

Pipeline depth

Pipeline speedup =
1 + Branch frequency x Branch penalty

24

Exmpl p C-25: desempenho das altern.

IC-UNICAMP

Example For a deeper pipeline, such as that in a MIPS R4000, it takes at least three pipe-
line stages before the branch-target address is known and an additional cycle
before the branch condition is evaluated, assuming no stalls on the registers in the
conditional comparison. A three-stage delay leads to the branch penalties for the
three simplest prediction schemes listed in Figure C.15.

Find the effective addition to the CPI arising from branches for this pipeline,
assuming the following frequencies:
Unconditional branch 4%
Conditional branch, untaken 6%
Conditional branch, taken 10%
Branch scheme Penalty unconditional Penalty untaken Penalty taken
Flush pipeline 2 3 3
Predicted taken 2 3 2
Predicted untaken 2 0 3

Figure C.15 Branch penalties for the three simplest prediction schemes for a deeper pipeline,

25

IC-UNICAMP

Exmpl p C-25: desempenho das altern.

Additions to the CPl from branch costs

Unconditional Untaken conditional Taken conditional
Branch scheme branthes branches branches All branches
l-:rf:qucnt:}r of event 4% 6% 10% 20%
Stall pipeline 0.08 0.18 0.30 .56
Predicted taken 0.08 0.18 0.20 0.46
Predicted untaken 0.08 (.00 0.30 (.38

e

Figure C,16 CPI penalties for three branch-prediction schemes and a deeper pipeline.

Answer

We find the CPIs by multiplying the relative frequency of unconditional, condi-

tional untaken, and conditional taken branches by the respective penalties. The

results are shown in Figure C.16.

The differences among the schemes are substantially increased with this lon-
ger delay. If the base CPI were 1 and branches were the only source of stalls, the
ideal pipeline would be 1.56 times faster than a pipeline that used the stall-pipe-
line scheme. The predicted-untaken scheme would be 1.13 times better than the

stall-pipeline scheme under the same assumptions.

26

Predicao: reducao dos custos

 Static branch prediction

— menor custo: decisoes tomadas no tempo de compilacao
com base em dados estatisticos (profile from earlier runs)

— ver desempenho: fig C-17

» desempenho ruim para benchmarks inteiros (além disso,
frequencia de desvios é maior nestes benchmarks) - solucao
pouco usada

* Dynamic branch prediction

— decisOes tomadas dinamicamente em tempo de
execucao, com base no comportamento do programa

27

Erro na predicao estatica

IC-UNICAMP
25% A

22%

20% - 18%

1 o
15% - 2%

o] o
12% WL .
10% - 9% o’

Misprediction rate

59 6%

5% -

5 X 0 L N O o8 O S

& N P L S
PO A
Integer Floating-point

_ _ o Benchmark _ _ _ _
Figure C.17 Misprediction rate on SPEC92 for a profile-based predictor varies widely but is

generally better for the floating-point programs, which have an average misprediction rate of
9% with a standard deviation of 4%, than for the integer programs, which have an average
misprediction rate of 15% with a standard deviation of 5%. The actual performance depends on
both the prediction accuracy and the branch frequency, which vary from 3% to 24%.

28

Dynamic Branch Prediction

IC-UNICAMP

* Branch prediction buffer or table
« Solucaol
— pequena memoaria indexada pelos bits inferiores do

endereco da instrucédo de desvio contém bit indicando se
0 desvio fol tomado na ultima vez

— pode ter registro de outro branch (mesmo indice)
« Deficiéncia: mesmo gue um desvio seja quase

sempre tomado-> dois erros de predicao: ao sair
do loop e ao entrar

29

Dynamic Branch Prediction com 2 bits

IC-UNICAMP

« Solucao: 2 bits. Predicao deve errar duas vezes
para causar a inversao

* Implementacao
— “cache” indexada pela instrugao ainda em IF ou 2 bits
anexados a cada bloco na cache de instrucao
« Se instrucao é decodificada como branch e
predicao é “taken”, novo fetch usa endereco de
desvio assim que é conhecido

30

FSM de 2 bits: predicao dinamica

IC-UNICAMP

Taken
Not taken
Predict taken 7 Predict taken
11 10
Taken
Taken Not taken
Not taken
Predict not taken Predict not taken
01 00
Taken

Not taken

Figure C.18 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly favors taken or
not taken—as many branches do—will be mispredicted less often than with a 1-bit predictor. The 2 bits are used to encode
the four states in the system. The 2-bit scheme is actually a specialization of a more general scheme that has an n-bit
saturating counter for each entry in the prediction buffer. With an n-bit counter, the counter can take on values between 0 and
2n — 1: When the counter is greater than or equal to one-half of its maximum value (2n — 1), the branch is predicted as taken;
otherwise, it is predicted as untaken. Studies of n-bit predictors have shown that the 2-bit predictors do almost as well, thus
most systems rely on 2-bit branch predictors rather than the more general n-bit predictors. 31

Erro de predicao: buffer de 4K

IC-UNICAMP
nasa7 1%

matrix300 0%

tomcatv 1%

doduc

spice 9%

como melhorar?

foppp
 aumento do buffer?

gcc

SPEC89 benchmarks

» melhor estratégia?
espresso

eqntott 18%

li 10%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions
Figure C.19 Prediction accuracy of a 4096-entry 2-bit prediction buffer for the SPEC89 benchmarks. The misprediction
rate for the integer benchmarks (gcc, espresso, eqgntott, and li) is substantially higher (average of 11%) than that for the
floating-point programs (average of 4%). Omitting the floating-point kernels (nasa7, matrix300, and tomcatv) still yields a
higher accuracy for the FP benchmarks than for the integer benchmarks. These data, as well as the rest of the data in this
section, are taken from a branch-prediction study done using the IBM Power architecture and optimized code for that system.
See Pan, So, and Rameh [1992]. Although these data are for an older version of a subset of the SPEC benchmarks, the newer
benchmarks are larger and would show slightly worse behavior, especially for the integer benchmarks. 37

IC-UNICAMP

nasa7
matrix300
tomcatv
doduc
spice

foppp

SPECS89 benchmarks

gce

espresso

eqntott

Efeito do tamanho do buffer

L 1%
0%
0% [4096 entries:
0% 2 bits per entry
. [Unlimited entries:
. 1% 2 bits per entry

0%

5%
5%

9%
9%

9%
9%

12%
11%

5%
5%

— 18%
18%

10%
10%

|

1

T T T T T T T T T 1
0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Frequency of mispredictions

Figure C.20 Prediction accuracy of a 4096-entry 2-bit prediction buffer versus an infinite buffer for the SPEC89
benchmarks. Although these data are for an older version of a subset of the SPEC benchmarks, the results would be

comparable for newer versions with perhaps as many as 8K entries needed to match an infinite 2-bit predictor.

33

C-3: Implementacao do pipeline

IC-UNICAMP

e ver secao C-3 (pags C30 — C42)
— material semelhante ao visto em HW/SW Interface

34

C-4: ComplicacOes adicionals

IC-UNICAMP

* EXcecoes
 Dificuldades causadas pelo ISA

35

IC-UNICAMP

Pipelines e excecoes

« EXxcecoes: interrupcoes, traps etc
« Aguns tipos

|O request

System call from user program

Tracing instruction execution

Breakpoint (programmer requested interrupt)
Integer arithmetic overflow

FP arithmetic anomaly

Page fault

Misaligned memory access (if alingment is required)
Memory protection violation

Using na undefined or unimplemented instruction
Hardware malfunctions

Power failure

36

IC-UNICAMP

Nomes
tipicos

Exception event IBM 360 VAX Maotorola 680x0 Intel 80x86
IO device request Input/output Device interrupt Exception (L0 to L7 Vectored interrupt
inferruption autovector)
Invoking the operating Supervisor call Exception (change Exception Interrupt
system service froma interruption mode supervisor trap) (unimplemented (INT instruction)
user program instruction)—
on Macintosh
Tracing instruction Not applicable Exception (trace fault) Exception (trace) Interrupt (single-
execulion ' step trap)
Breakpoint Not applicable Exception Exception (illegal Interrupt
(breakpoint fault) instruction or {break point rap)
breakpoint)
Integer anthmetic Program interruption Exception (integer Exception Intermupt (overflow
overflow or underflow; (overflow or overflow trap or (floating-point trap or math unit
FP trap underflow exception) floating underflow coprocessor errors) exceplion)
fault)
Page fault Not applicabie Exception (translaton Exception (memory- Intermupt
(not in main memory) (only in 370) not valid fault) manageiment unit (page fault)
errors)
Misaligned memory Program interruption Not applicable Exception Not applicable
ACCESSESs (specification (address error)
exception)
Memory protection Program interruption Exception {(access Exception Interrupt
violations {protection exception) control violation (bus error) {protection
fault) exception)

Using undefined Prograim interruption Exception {opcode Exception (illegal Interrupt (invalid
instructions {operation exception) privileged/reserved instruction or break- opcode)
fault) pointunimplemented
instruction)

Hardware Machine-check Exception (machine- Exception Mot applicable
malfunctions intermuption check abor) (bus error)
Power failure Machine-check Urgent interrupt Not applicable Nonmaskable

interruption interrupt

Categorias de excecao
User

Within vs.
Synchronousvs. Userrequest maskable vs. between - Resume vs,

Exception type asynchronous vs.coerced nonmaskable instructions terminate
Fﬁ_devim: request Asynchronous Coerced Nonmaskable Between _ Resume
Invoke operaling system Synchronous User request Nonmaskable Between Resume
Tracing instruction execution Synchronous User request User maskable Between Resume
Brﬂﬂkpﬂin{ Synchronous User request User maskable Between Resume
Integer arithmetic overflow Synchronous Coerced User maskable Within Resume
Floating-point arithmetic Synchronous Coerced User maskable ~ Within Resume
overflow or underflow

P_agc fault Synchronous Coerced Nonmaskable Within Resume
Misaligned memory accesses Synchronous Coerced User maskable Within -F_.cmme
Memory protection violations Synchronous Coerced Nonmaskable Within Resume
Using undefined instructions Synchronous Coerced Nonmaskable Withun Terminate
Hardware malfunctions Asynchronous Coerced Nonmaskable Within Terminate
Power failure Asynchronous Coerced Nonmaskable Within Terminate

— e — i

Figure C.31 Five categories are used to define what actions are needed for the different exception types shown
in Figure C.30. Exceptions that must allow resumption are marked as resume, although the software may often
choose to terminate the program. Synchronous, coerced exceptions occurring within instructions that can be
resumed are the most difficult to implement. We might expect that memory protection access violations would
always result in termination; however, modern operating systems use memory protection to detect events such as
the first attempt to use a page or the first write to a page. Thus, CPUs should be able to resume after such exceptions.

Stopping and restarting execution

IC-UNICAMP

» Maior dificuldade:

— excecao ocorre no meio da instrucao

— execucao precisa ser retomada apos tratamento
* No pipeline:

— forcar IF=trap no proximo IF

— “desabilitar” todas instrucOes ja no pipeline (desligar
writes), inclusive a que gerou a excecao

— arotina de tratamento de excecao salva o PC
« Se delayed branch é usado

— s0 medidas acima: nao é possivel retomar execucao
— necessario salvar varios PCs desde o desvio

39

ExcecoOes no pipeline do MIPS

IC-UNICAMP

Pipeline stage Problem exceptions eccurring

-

IF Page fault on instruction fetch; misaligned memory access; memory
protection violation

ID Undefined or illegal opcode

EX Arithmetic exception B

MEM Page fault on data fetch; misaligned memory access; memory

B protection violation

WB None

Figure C.32 Exceptions that may occur in the MIPS pipeline. Exceptions raised from
instruction or data memory access account for six out of eight cases.

40

Impacto do ISA nas excecoes

IC-UNICAMP

« Def: Precise exception — quando €& possivel retomar
o fluxo de execucao apdos o seu tratamento

 No MIPS, é simples garantir:
— Instrugcdes s tem um resultado
— estado do processador (memoria e regs) so alterado no
final (de Mem - WB) = commit
* Ha processadores em que é mais complicado:

— Exemplo: Autoincremento (VAX, 1A-32, IBM) altera um
registrador no meio do pipeline; antes de garantir que
essa e instrucdes predecessoras possam “‘commit”

— Exemplo: StringCopy (VAX, IBM) muda estado da
memaoria no meio do pipeline

* Pipeline MIPS multiciclo (adiante) - problemas

41

C-5 Operacoes multi-ciclo no MIPS

IC-UNICAMP

« Estagio EX para FP exige multiplos ciclos

ou aumento inaceitavel do cycle time

 Modelo de concepcao, pipeline int = fp, mas:

EX pode ser repetido inUmeras vezes
Multiplas unidades funcionais de FP

« Hipotese nesta secao: 4 unidades disponiveis

1.

-

Unidade principal de inteiros: loads/stores, ALU inteiro e
branches

Multiplicador inteiro e FP
Somador FP: add, sub, conversion
Divisor inteiro e FP

42

Pipeline do MIPS multiciclo

Ic-t

Integer unit

Supor estagio EX
EX nao pipelined:
FP/integer instruc;f)es

ltipl '
multiply posteriores - stall
IE ID MEM WB

EX

FP adder

EX

FP/integer
divider

Figure C.33 The MIPS pipeline with three additional unpipelined, floating-point, functional units.
Because only one instruction issues on every clock cycle, all instructions go through the standard pipeline for
integer operations. The FP operations simply loop when they reach the EX stage. After they have finished the

EX stage, they proceed to MEM and WB to complete execution.
43

Para EX = pipeline

IC-UNICAMP

« Laténcia: n° ciclos entre uma instrucao gue produz
um resultado e outra que usa o resultado

* |nitiation interval: n° ciclos entre duas instrucoes do
mesmo tipo

Functional unit Latency Initiation interval
Integer ALU 0 I

Data memory (integer and FP loads) 1]

FP add 3]

FP multiply (also integer multiply) 6 |

FP divide (also integer divide) 24 25

Figure C.34 Latencies and initiation intervals for functional units.

| aténclas e intervalos

IC-UNICAMP

Em geral: laténcia =n° estagios depois de EX p/
produzir resultado
— excecao stores: consome valor 1 ciclo depois

Para obter menor clock cicle - maior n° de
estagios no pipeline - maior laténcia

Functional unit Latency Initiation interval
Integer ALU 0 I

Data memory (integer and FP loads) 1]

FP add 3]

FP multiply (also integer multiply) 6 |

FP divide (also integer divide) 24 25

Figure C.34 Latencies and initiation intervals for functional units.

45

~ Pipeline do MIPS: suporte a multiplas
operacOes FP pendentes

Integer unit Opera(}Oes
EX pendentes

FP/integer multiply Mu |t

M1 M2 M3 M4 M5
IF ID

FP adder
Al A2 A3

FP Add

FP/integer divider
D -
< Div
1

Figure C.35 A pipeline that supports multiple outstanding FP operations. The FP multiplier and adder are fully
pipelined and have a depth of seven and four stages, respectively. The FP divider is not pipelined, but requires 24
clock cycles to complete. The latency in instructions between the issue of an FP operation and the use of the result of
that operation without incurring a RAW stall is determined by the number of cycles spent in the execution stages. For
example, the fourth instruction after an FP add can use the result of the FP add. For integer ALU operations, the depth
of the execution pipeline is always one and the next instruction can use the results. 16

Integer unit

, EXI
IC-UNICAMP

FP/integer multiply

M1 M2 M3 I M4 I M5 I M6 M7
IF ID MEM WB
FP adder
Al I A2I A3I A4

AI g u m aS FP/integer divider
- ~ D
INStrucoes

MUL.D IF [D_ M M2 M3 M4 M35 Mé M7 MEM WB

ADD.D IF iD Al A2 A3 | Ad | |MEM WB

L.D IF ID EX MEM| WB

5.0 IF ID EX MEM WB

Figure C.36 The pipeline timing of a set of independent FP operations. The stages in itafics show where[data are
while the stages in bold show where a[result is availablg. The *.D" extension on the instruction mnemonic
indicates double-precision (64-bit) floating-point operations. FF loads and stores use a 64-bit path to memory so
that the pipelining timing is just like an integer load or store.

47

Harzards em um pipeline mais longo

IC-UNICAMP

 Division not pipelined: Possible structural hazard

* N°de reg wr em um ciclo pode ser > 1

Instrucbes - WB fora de ordem - WAW possivel
WB fora de ordem - precise exception dificll
Longer latency = more frequent RAW frequentes

Clock cycle number

Instruction 1 2 3 4 5 6 7 8 9% 10 11 12 13 14 15 16 17

L.D F4,0(R2) IF ID EX MEM WB

MJL.D FO,F4,F6 IF ID Stall M) M2 M3 M4 M5 M6 M7 MEM WB

ADD.D F2,FO,F8 IF Sall ID Stall Stall Stall Stall Stall Stall Al A2 A3 A4 MEM WB
.0 F2,0(R?) IF Stall Stall Stall Stall Stall Stall [ID EX Stall Stall Stall MEM

Figure C.37 A typical FP code sequence showing the stalls arising from RAW hazards. The longer pipeline sub-
stantially raises the frequency of stalls versus the shallower integer pipeline, Each instruction in this sequence is
dependent on the previous and proceeds as soon as data are available, which assumes the pipeline has full bypass-
ing and forwarding. The S.D must be stalled an extra cycle so that its MEM does not conflict with the ADD.D. Extra
hardware could easily handle this case. 48

MW Add/subtract/convert
(0 Compares

B Multiply

154 | m Divide

[Divide structural

: doduc
IC-UNICAMP

ear

Desempenho
do pipeline
MIPS FP

hydro2d

FP SPEC benchmarks

mdljdp
24.5

su2cor
18.6

0.0 5.0 10.0 15.0 20.0 25.0

Number of stalls
Figure C.39 Stalls per FP operation for each major type of FP operation for the SPEC89 FP benchmarks. Except for

the divide structural hazards, these data do not depend on the frequency of an operation, only on its latency and the
number of cycles before the result is used. The number of stalls from RAW hazards roughly tracks the latency of the FP
unit. For example, the average number of stalls per FP add, subtract, or convert is 1.7 cycles, or 56% of the latency (3
cycles). Likewise, the average number of stalls for multiplies and divides are 2.8 and 14.2, respectively, or 46% and 59%
of the corresponding latency. Structural hazards for divides are rare, since the divide frequency is low. 49

IC-UNICAMP N
doduc
M FP result stalls
(] FP compare stalls
0.52 @ Branch/load stalls
] car M FP structural
S
=
S
Desempenho & hroz
®)
_ i Ll
o
d 0
O plpellne 3—_ mdljdp -

MIPS FP

su2cor

000 040 020 030 040 050 0.60 070 080 0.90 1.00
Number of stalls
Figure C.40 The stalls occurring for the MIPS FP pipeline for five of the SPEC89 FP benchmarks.
The total number of stalls per instruction ranges from 0.65 for su2cor to 1.21 for doduc, with an average
of 0.87. FP result stalls dominate in all cases, with an average of 0.71 stalls per instruction, or 82% of the
stalled cycles. Compares generate an average of 0.1 stalls per instruction and are the second largest
source. The divide structural hazard is only significant for doduc. 50

C-6 The MIPS R4000 pipeline

IC-UNICAMP

* (text book)

51

C-7 Crosscutting Issues
e Dynamically scheduled pipeline

* Pipeline schedulling:

— statically: pelo compilador
* in-order issue and execution; potential OOO completion

— dynamically: pelo HW, durante execucao
 scoreboarding (CDC 6600), introducao ao Alg. Tomasulo (cap3)
 In-order issue, OOO execution and completion

* |ID gquebrado em dois estagios
— Issue: decode, check for structural hazards
— Read operands: wait for hazards, read operands

52

Dynamically schedule w/ scoreboarding

IC-UNICAMP

* In-order issue

* Problemas podem aparecer > WAR
— DIV.D FO, F2, F'4
— ADD.D F10, FO, F8
- SUB.D F8, F8, Fl14

« Com out-of-order execution(commit), SUB.D pode
ser executado antes de ADD.D - erro. Anti-
dependéncia

» Scoreboarding:
— stalls a segunda instrucao envolvida na anti-dependéncia

— objetivo: manter taxa de execucao em 1 instrucao / ciclo
(se nao houver hazard estrutural), inserindo (issue) nova

Instrucao se ocorrer hazard -

) Scoreboarding

IC-UNICAMP

« Requisito: multiplas unidades funcionais e/or
pipelining

« CDC 6600: 16 unidades =4 FPU + 5 memoaria +7
Inteiros

 No MIPS foco em FP: 2 multiplicadores, 1 somador,
1 divisor, 1 unidade inteira (para ALU, referéncias a
memoaria e branch)

— scoreboard determina quando
e uma instrucao pode ler operandos e iniciar execucao
e uma instrucao pode escrever resultados no registrador

« Hazard detection and resolution centralizado no
scoreboarding

54

Registers Data buses

|

IC-UNICAMP

Yy yvy

FP mult
FP mult

\A
M
o
o
=
o
o

Scoreboarding:
MIPS

Yy
I_n
—U
V]
Q.
o

YY

Integer unit i
A

»| Scoreboard -
Control/ Control/

status status

Figure C.54 The basic structure of a MIPS processor with a scoreboard. The scoreboard’s function is to
control instruction execution (vertical control lines). All of the data flow between the register file and the
functional units over the buses (the horizontal lines, called trunks in the CDC 6600). There are two FP
multipliers, an FP divider, an FP adder, and an integer unit. One set of buses (two inputs and one output)
serves a group of functional units. The details of the scoreboard are shown in Figures C.55 to C.58. 55

Scoreboard: 4 passos
e (substitui estagios ID, EX e WB)

* 1- Issue (substitui parcialmente ID)

e Se existe unidade desocupada - emite instrucao e
atualiza sua estrutura de dados interna

« garante que nao ha outra unidade tentando escrever no mesmo
registrador - evita WAW

« se necessario (hazard estrutural, por ex.) = stall (pode ir
armazenando stalled issues em um buffer)

« 2- Read operands (substitui ID juntamente com 1)

« verifica se ha operandos disponiveis (nenhuma
Instrucao anterior vai escrever nele) e avisa a unidade
funcional que registrador pronto. Resolve RAW,
permitindo execucao fora da ordem

56

Scoreboard: 4 passos

IC-UNICAMP (CO nt)

3- Execucao (substitui EX)
« Unidade executa e avisa o0 scoreboard no final

4- Write result (WB)

« verifica WAR e se necessario, stall. No exemplo
anterior, stalls SUB.D no estagio de escrita até que

ADD.D leia seus operandos

Observar gue scoreboard nao faz forwarding

Recurso importante no scoreboard: barramentos

de comunicacao interna

- falta deles pode causar hazard estrutural causado pelo
proprio circuito de scoreboarding

S7

Figure C.55 Components of the scoreboard. Each instruction that has issued or is pending issue has an entry in

the instruction status table. There is one entr

©

y in the functional unit status table for each functional unit, Once an

IC-UNICAMP

Instruction status

%5' Instruction Issue Read operands Execution complete Write result
— L.D F6,34(R2) \ N N N -
8 L.D F2,45(R3) N Y \
O MUL.D FO,F2,F4 N)
8 g SUB.D FB,F6,F2 \
O DIV.D F10,F0,F6 v
8 G)I' ADD.D F6,F8,F2
-
8 CG Functional unit status
W S Name Busy Op Fi Fj Fk Qj Qk Rj Rk
GJI) Integer Yes Load F2 R3 No
ult es ult 4 nleger 0 es
E Mult] Y Mul FO F2 e 1 N Y
O S Mult?2 No
- $ Add Yes Sub F8 F6 F2 Integer Yes No
O Drvide Yes Div F10 FO F6 Multl No Yes
g Register result status
U Fo F2 F4 F6 F8 F10 F12 F30
FU Mult] Integer Add Divide

® Campos de status: Unidades Funcionals

Functional unit status

Name Busy Op Fi Fj Fk Qj Qk Rj Rk

Integer Yes [L.oad F2 R3 No

Multl Yes Mult FO F2 F4 Integer No Yes
Muli2 No

Add Yes Sub F& Fé F2 Integer Yes No
Divide Yes Div Fi0 FO Fo Multl No Yes

Busy: ocupada ou nao
Op: operacao
FI. registrador destino; Fj e Fk: regs operandos

QJ, Qk: Unidades que produzem operandos para
esta unidade

R], Rk: flags indicando se os operandos Fj e Fk
estao prontos ou nao

59

Hazards no codigo

IC-UNICAMP

I1 L.D F6,34(R2)d

* RAW:. 12 .0 (F2)45(R3)
—:de I2 paraI3, I4, I6) 13 ML.D (O)X(2)F4
—(de I3 para 1I5 \ 14 5u8.0 (B)(EI)
—|de 14 para 16 15 0IV.D F10,60)(6)

. WAR: I6 ADD.D
—|de 14 para 16 }

—[de I5 para 16 }

 Estrutural na unidade funcional Add

- I4 eI6

60

IC-UNICA

Fig
C56

Write

Instruction Issue Read operands Execution complete result
L.D F6,34(R2) \ v v V
L.D F2,45(R3) V v y V
MUL.D FO,F2,F4 v v v
SUB.D F8,F6,F2 v V v v
DIV.D FI10,FO,F6 y
ADD.D F6,F8,F2 y v v
Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Mulcl Yes Mult FO F2 F4 No No
Mult2 No
Add Yes Add Fé6 F8 F2 No No
Divide Yes Div Fi0 FO F6 Mult| No Yes
Register result status
FO F2 F4 F6 F8 F10 F12 ... F30
FU Mult | Add Divide

Figure C.56 Scoreboard tables just befare the MUL.D goes to write result. The DIV, D has not yet read either of its
operands, since it has a dependence on the result of the multiply. The ADD.D has read its operands and is in execu-
tion, although it was forced to wait until the SUB. D finished to get the functional unit. ADD. D cannot proceed to write
result because of the WAR hazard on F6, which is used by the DIV. D. The Q fields are only relevant when a functional
unit i< waiting for another unit

61

Write

Instruction Issue Read operands Execution complete result
: L.D F6,34(R2)d J J J J
IC-UNICA
L.D F2,45(R3) y W v v
MUL.D FO,F2,F4 , y y v v
SUB.D F8,F6,F2 Y Y v N
pIV.D F10,F0,F6 y y v
. ADD.D F6,F8,F2 y y v v
Fig
C57 Functional unit status
Name Busy Op Fi Fj Fk Qj Qk Rj Rk
Integer No
Multl Yes Mult FO F2 F4 No No
Mult2 No
Add Yes Add F6 F8 F2 No No
Divide Yes Dhv FID F F6 No Yes
Register result status
FO F2 F4 Fé F8 F10 F12 F30
FU Mult 1 Add Divide

Figure C.57 Scoreboard tables just before the DIV.D goes to write result. ADD.D was able to complete as soon as
DIV.D passed through read operands and got a copy of F6. Only the DIV.D remains to finish.

62

Verificacoes em um scoreboard

IC-UNICAMP

Instruction status Wait until Eunﬁkeeping

Issue Not busy [FU] and not result [D] Busy{FU]&vyes; Op[FUJ«op; Fi[FU]«D;
Fj[FU]&S1; Fk[FU]«S2;
Qje«Result[S1]; Qke Result[S2];
Rjenot Qj; Rk« not Qk; Result[D]«FU;

Read operands Rj and Rk Rje No; Rk« No; Qj«0; Qke0

Execution complete Functional unit done

Write result VA((Fj[f] | FifFU] or Rj[f1=No) & Vf(if Qi[f]=FU then Rj[f]«VYes);

(FK[f 11 Fi[FU] or RK[f]=No)) ~ Vf(if Qk[f1=FU then Rk[f]«VYes);
Result[Fi[FU]]« 0; Busy[FU]« No

— —

Figure C.58 Required checks and bookkeeping actions for each step in instruction execution. FU stands for the
functional unit used by the instruction, D is the destination register name, S1 and S2 are the source register names,
and op is the operation to be done. To access the scoreboard entry named Fj for functional unit FU we use the nota-
tion Fj[FU]. Result[D] is the name of the functional unit that will write register D. The test on the write result case pre-
vents the write when there is a WAR hazard, which exists if another instruction has this instruction’s destination
(Fi(FU]) as a source (Fj[f] or Fk[f]} and if some other instruction has written the register (Rj = Yes or Rk = Yes). The vari-
able fis used for any functional unit.

63

