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Nivels em uma Hierarquia de Memarias
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Principio da Localidadde
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* Principio da Localidade:

— Programas acessam relativamente uma pequena porcao
do espaco de enderecamento em um dado instante de
tempo.

* Dols tipos de Localidade:

— Localidadde Temporal (Localidade no Tempo): Se um
item é referenciado, ele tende a ser referenciado outra
vez em um curto espaco de tempo (loops)

— Localidade Espacial (Localidade no Espaco): Se um item
é referenciado, itens proximos também tendem a serem
referenciados em um curto espaco de tempo (acesso a
array)




Hierarquia de Memorias: Terminologia
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 Hit: o dado esta no upper level (exemplo: Block X)
— Hit Rate: taxa de hit no upper level no acesso a memoaria
— Hit Time: Tempo para 0 acesso no upper level, consiste em:
RAM access time + Time to determine hit/miss
* Miss: o dado precisa ser buscado em um bloco no lower
level (Block Y)
— Miss Rate =1 - (Hit Rate)
— Miss Penalty: Tempo para colocar um bloco no upper level +
Tempo para disponibilizar o dado para o processador

« Hit Time << Miss Penalty (500 instrucdes no 21264!)

Lower Level
To Processor | Upper Level Memory
Memory
Blk X
From Processor - Blk Y




cache: Direct Mapped
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Memory _
Address Memory 4 Bhytle (Ii)lrect Mapped cache
0 C(F;IC € 1naex
1
2
3

« Posicao 0 pode ser ocupada por dados
dos enderecos em memoaria:

— 0,4, 8, ... etc.
— Em geral: qg endereco cujos 2 LSBs séo
Os

— Address<1:0> => cache index
* Qual dado deve ser colocado na cache?

« Como definir o local, na cache, para
cada dado?
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1 KB Direct Mapped cache, 32B blocks
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« Para uma cache de 2 ** N byte:
— Os (32 - N) bits de mais alta ordem s&o “cache Tag”
— Os M bits de mais baixa ordem sao “Byte Select” (Block Size = 2 ** M)

31 9 4 0
cache Tag Example: 0x50 cache Index Byte Select
Ex: 0x01 Ex: 0x00
Stored as part
of the cache “state”
Valid Bit  cache Tag cache Data
Byte31] " |Bytel |Bytd0 |0
0x50 Y Byte 63| " * | Byte 33| Byte 32| 1+—
2
3

Byte 1023 " Byte 992 | 31




Two-way Set Associative cache
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* N-way set associative: N entradas para cada cache Index
— N direct mapped caches opera em paralelo (N tipico: 2 a 4)
« Examplo: Two-way set associative cache
— cache Index: seleciona um “set” na cache
— As duas tags no set sdo comparadas em paralelo
— O Dado ¢ selecionado basedo no resultado da comparacéao das tag

Valid cache Tag

cache Data

cache Block 0

cache Index

cache Data

cache Tag Valid

cache Block 0

A

. cache Block

ompare)+———




Desvantagem de Set Assoclative cache
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* N-way Set Associative cache v. Direct Mapped cache:
— N comparadores vs. 1
— MUX extra, atrasa 0 acesso ao dado
— Dado disponivel APOS Hit/Miss
» Direct mapped cache: cache Block disponivel ANTES do Hit/Miss:
E possivel assumir um hit e continuar. Se miss, Recover.

cache Index
Valid cache Tag cache Data cache Data cache Tag Valid

cache Block 0 cache Block 0

Adr Tag YN\
Compar j‘ﬁsell 1 Mux O Sem/_( ompare)+——

] l 1 cache Block
Hit 10
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Termos em revisao na secao B.1

cache
virtual memory
memory stall cycles

direct mapped
valid bit

block address

write-through

instruction cache

average memory access time
cache hit

page

miss penalty

fully associative
dirty bit

block offset
write-back

data cache

hit time

cache miss

page fault

miss rate

n-way set associative
least recently used

tag field

write allocate
unified cache

misses per instruction
block

locality

address trace

set

random replacement
index field

no-write allocate
write buffer

write stall
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Level 1 2 3 4

ﬁ;l';lc Registers Cache ~ Main memory Disk storage

Typical size <1 KB 32 KB-8 MB <512 GB >1 TB

Implementation technology Custom memory with  On-chip CMOS CMOS DRAM Magnetic disk

multiple ports, CMOS SRAM

Access time (ns) 0.15-0.30 0.5-15 30-200 5,000,000

Bandwidth (MB/sec) 100,000-1,000,000 10,000-40,000 5000-20,000 50-500

Managed by Compiler Hardware Operating system  Operating
system/
operator

Backed by Cache Main memory Disk Other disks
and DVD

Figure B.1 The typical levels in the hierarchy slow down and get larger as we move away from the processor for
a large workstation or small server. Embedded computers might have no disk storage and much smaller memories
and caches. The access times increase as we move to lower levels of the hierarchy, which makes it feasible to manage
the transfer less responsively. The implementation technology shows the typical technology used for these func-
tions. The access time is given in nanoseconds for typical values in 2006; these times will decrease over time. Band-
width is given in megabytes per second between levels in the memory hierarchy. Bandwidth for disk storage
includes both the media and the buffered interfaces.
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cache performance
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CPU execution time = (CPU clock cycles + Memory stall cycles ) * cycle time

Memory stall cycles = # Misses . Miss penalty

—IC. Misses

= _ . Miss penalty
Instruction

—IC Memory accesses

: . Miss rate . Miss penalty
Instruction

Obs: assumindo mesmo comportamento para Wr e Rd

13
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Example

Answer

Exemplo pag B-5

Assume we have a computer where the cycles per instruction (CPI) is 1.0 when
all memory accesses hit in the cache. The only data accesses are loads and stores,
and these total 50% of the instructions. If the miss penalty is 25 clock cycles and
the miss rate is 2%, how much faster would the computer be if all instructions
were cache hits?

First compute the performance for the computer that always hits:

CPU execution time = (CPU clock cycles + Memory stall cycles) x Clock cycle
= (IC x CPI+ 0) x Clock cycle
= IC x 1.0 x Clock cycle

Now for the computer with the real cache, first we compute memory stall cycles:

Memory accesses
Instruction

= ICx(1+0.5)x0.02x 25
= ICx0.75

IC x

Memory stall cycles X Miss rate X Miss penalty

where the middle term (1 + 0.5) represents one instruction access and 0.5 data
accesses per instruction. The total performance is thus

CPU execution time = (ICx 1.0+ IC x 0.75) X Clock cycle

= 1.75 xIC x Clock cycle

cache

14



IC-UNICAMP

The performance ratio is the inverse of the execution times:

CPU execution time_, .. 175 x IC x Clock cycle
CPU execution time 1.0 x IC x Clock cycle

= 1.75

The computer with no cache misses is 1.75 times faster.

Some designers prefer measuring miss rate as misses per instruction rather
than misses per memory reference. These two are related:

Misses _ Miss rate x Memory accesses _ Miss rate x Memory accesses
Instruction Instruction count Instruction

The latter formula is useful when you know the average number of memory
accesses per instruction because it allows you to convert miss rate into misses per
instruction, and vice versa. For example, we can turn the miss rate per memory
reference in the previous example into misses per instruction:

Misses Memory accesses

——— = Miss rate X -
Instruction Instruction

= 002x(1.5) = 0.030

By the way, misses per instruction are often reported as misses per 1000
instructions to show integers instead of fractions. Thus, the answer above could
also be expressed as 30 misses per 1000 instructions.

15



Exemplo pag B-6
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Example To show equivalency between the two miss rate equations, let’s redo the example
above, this time assuming a miss rate per 1000 instructions of 30. What is mem-
ory stall time in terms of instruction count?

Answer Recomputing the memory stall cycles:

Memory stall cycles = Number of misses x Miss penalty

= 1Cx M X Miss penalty
Instruction

Misses .
IC /1000 x [rtroction % 1000 % Miss penalty

= IC/1000 % 30 x 25
= IC/1000x 750
- ICx0.75

We get the same answer as on page B-5, showing equivalence of the two equations.

16



Hierarquia de Memoria: 4 Questoes
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* Q1: Em que lugar colocar um bloco no upper level?
-> (Block placement)

* Q2: Como localizar o bloco se ele esta no upper
level? - (Block identification)

* Q3: Qual bloco deve ser trocado em um miss? -
(Block replacement)

* Q4: O que ocorre em um write? - .(Write strategy)

17



Q1: Em que lugar colocar um bloco no
<weupper level? (politica de enderecamento)

* Colocar o Bloco 12 em uma cache de 8 blocos :
— Fully associative, direct mapped, 2-way set associative
— S.A. Mapping = (Block Address) mod (# Sets in cache)

Direct Mapped  2-Way Assoc

Full Mapped (15 mod 8)= 4 (12 mod 4)= 0
01234567/ 01234567/ 01234567/
cache
1111111111222222222233
0123456078901234507890123456073901
Memory

18



Fully associative: Direct mapped: Set associative:

> block 12 can go block 12 can go block 12 can go
IC-UNICAMP anywhere only into block 4 anywhere in set 0
(12 MOD 8) (12 MOD 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Cache
Set Set Set Set
O 1 2 3
Block frame address
Block 111111111 12222222222383
no. 01234567890123456789012345678901

Memory

Figure B.2 This example cache has eight block frames and memory has 32 blocks. The three options for caches are shown left
to right. In fully associative, block 12 from the lower level can go into any of the eight block frames of the cache. With direct
mapped, block 12 can only be placed into block frame 4 (12 modulo 8). Set associative, which has some of both features, allows
the block to be placed anywhere in set 0 (12 modulo 4). With two blocks per set, this means block 12 can be placed either in block
0 or in block 1 of the cache. Real caches contain thousands of block frames, and real memories contain millions of blocks. The set
associative organization has four sets with two blocks per set, called two-way set associative. Assume that there is nothing in the
cache and that the block address in question identifies lower-level block 12.

19



Q2: Como localizar o bloco se ele esta

no upper level?
 Tag em cada bloco
—Na&ao é necessario testar o index ou block offset

« O aumento da associatividade reduz o index e
aumenta a tag

Block Address Block
Offset

Tag Index

>

Aumento associatividade

20
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« Set Associative or Fully Associative:

Q3: Qual bloco deve ser trocado em um
miss? (politica de substituicao)
« Facil para Direct Mapped

— Random

— LRU (Least Recently Used)

— FIFO

Associativity
Two-way Four-way Eight-way

Size LRU  Random FIFO LRU Random  FIFO LRU  Random FIFO
I6KB  114.] 117.3 115.5 111.7 115.1 113.3 109.0 111.8 1104
64KB 1034 1043 103.9 102.4 102.3 103.1 99.7 100.5 100.3
256 KB 92.2 92.1 92.5 92.1 92.1 -92.5 92.1 92.1 92.5

Figure B.4 Data cache misses per 1000 instructions comparing least recently used, random, and first in, first out
replacement for several sizes and associativities. There is little difference between LRU and random for the largest
size cache, with LRU outperforming the others for smalier caches. FIFO generally outperforms random in the smaller
cache sizes. These data were collected for a block size of 64 bytes for the Alpha architecture using 10 SPEC2000
benchmarks. Five are from SPECint2000 (gap, gcc, gzip, mcf, and perl} and five are from SPEC{p2000 (applu, art,
equake, lucas, and swim). We will use this computer and these benchmarks in most figures in this appendix.

21



Q4: O que ocorre em um write?

(politica de escrita)

Write through — A informacéo é escrita tanto no bloco da
cache quanto no bloco do lower-level memory.

Write back — A informacao e escrita somente no bloco da
cache. O bloco da cache modificado é escrito na memoria
principal somente quando ele é trocaddo.

— block clean or dirty?

Prés e Contras?
— WT: cache is clean: read misses don”’t cause WB substitution
— WB: n&o ha repeticdo de writes na mesma posicao

WT, em geral, € combinado com write buffers, assim nao ha
espera pelo lower level memory
Write miss:

— WR allocate: semelhante a Rd miss seguido de Wr
— No WR-allocate: escrita direta no nivel inferior; cache ndo afetada

22



Write Buffer para Write Through
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< *| cache |«=—
Processor DRAM

Write Buffer

« Um Write Buffer colocado entre a cache e a Memory
— Processador: escreve o dado na cache e no write buffer
— Memory controller: escreve o conteudo do buffer na memoaria

* Write buffer € uma FIFO:

— NUmero tipico de entradas: 4
— Trabalha bem se: frequiéncia de escrita (w.r.t. time) << 1 / DRAM
write cycle
« Memory system € um pesadelo para o projetista :
— frequéncia de escrita (w.r.t. time) -> 1/ DRAM write cycle
— Saturacao do Write buffer
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Example

Answer

Exmpl B-12

Assume a fully associative write-back cache with many cache entries that starts
empty. Below is a sequence of five memory operations (the address is in square
brackets):

Write Mem[100];
Write Mem[100];
Read Mem[200];
Write Mem[200];
Write Mem[100].

What are the number of hits and misses when using no-write allocate versus
write allocate?

For no-write allocate, the address 100 1s not 1n the cache, and there is no alloca-
tion on write, so the first two writes will result in misses. Address 200 is also not

in the cache, so the read is also a miss. The subsequent write to address 200 is a.

hit. The last wnte to 100 1s still a miss. The result for no-write allocate is four
misses and one hit.

For write allocate, the first accesses to 100 and 200 are misses, and the rest
are hits since 100 and 200 are both found in the cache. Thus, the result for write
allocate 1s two misses and three hits.

24



Block
Block address  offset @ CPU
IC-UNICAMP i el address
Tag | Index | | . Data Data
in out
Valid Tag Data
<1> <25> <64> vy y
; (512 @
Flg B- blocks) > =
6: Data ® M
cache — ® 'y
(512 = -
Opteron blocks) "

Victim
buffer

Y
Lower-level memory

Figure B.5 The organization of the data cache in the Opteron microprocessor. The 64 KB cache is two-way set associative
with 64-byte blocks. The 9-bit index selects among 512 sets. The four steps of a read hit, shown as circled numbers in order of
occurrence, label this organization. Three bits of the block offset join the index to supply the RAM address to select the proper 8
bytes. Thus, the cache holds two groups of 4096 64-bit words, with each group containing half of the 512 sets. Although not
exercised in this example, the line from lower-level memory to the cache is used on a miss to load the cache. The size of address
leaving the processor is 40 bits because it is a physical address and not a virtual address. Figure B.24 on page B-47 explains how
the Opteron maps from virtual to physical for a cache access. o5



caches unificadas ou 1&D
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Instruction Uniﬁs.;d
Size (KB) cache Data cache cache
8 8.16 44.0 63.0
16 3.82 40.9 51.0
32 1.36 38.4 433
64 0.61 36.9 394
128 0.30 353 36.2
256 0.02 32.6 329

—

Figure B.6 Miss per 1000 instructions for instruction, data, and unified caches of dif-
ferent sizes. The percentage of instruction references is about 74%. The data are for
two-way associative caches with 64-byte blocks for the same computer and bench-

marks as Figure B.4.

uondNPOU|
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B-2: cache performance
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* Medida béasica de desempenho:
Average Memory Access Time = AMAT =

Total Acess Time / Total # accesses =

(total time when hit + total time when miss) / # accesses =
Ave HitTime + (total time when miss) / # accesses =

Ave HitTime + (# misses * miss time) / #accesses =

HitTime + (# missess / # accesses) * Miss penalty

AMAT = HitTime + Miss rate x Miss penalty

uondNPOU|
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EXx
B.16

Example

Answer

Which has the lower miss rate: a 16 KB instruction cache with a 16 KB data
cache or a 32 KB unified cache? Use the miss rates in Figure B.6 to help calcu-
late the correct answer, assuming 36% of the instructions are data transfer
instructions. Assume a hit takes 1 clock cycle and the miss penalty is 100 clock
cycles. A load or store hit takes 1 extra clock cycle on a unified cache if there is
only one cache port to satisfy two simultaneous requests. Using the pipelining
terminology of Chapter 3, the unified cache leads to a structural hazard. What is
the average memory access time in each case? Assume write-through caches with
a write buffer and ignore stalls due to the write buffer.

First let's convert misses per 1000 instructions into miss rates. Solving the gen-
eral formula from above, the miss rate is
Misses
1000 Instructions

Memory accesses
Instruction

Miss rate =

Since every instruction access has exactly one memory access to fetch the
instruction, the instruction miss rate is

_ 3.81000 _

16 KB instruction — 1.00 0.004

Miss rate

Since 36% of the instructions are data transfers, the data miss rate is

: 40.91000

28
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EX
B.16

(2)

The unified miss rate needs to account for instruction and data accesses:

43.3/1000

TO0303€ = 0.0318

Miss rat€ss kg unified =

uonNoONpPOU|

As stated above, about 74% of the memory accesses are instruction references.
Thus, the overall miss rate for the split caches is

(74% x 0.004) + (26% x 0.114) = 0.0326

Thus, a 32 KB unified cache has a slightly lower effective miss rate than two
16 KB caches.

The average memory access time formula can be divided into instruction and
data accesses:

Average memory access ime
= % instructions X (Hit time + Instruction miss rate x Miss penalty)
+ % data x (Hit ime + Data miss rate X Miss penalty)

Therefore, the time for each organization is

Average memory access time,;,
= 74% x (1 +0.004 x 200) + 26% x (1 +0.114 x 200)
= (74% % 1.80) + (26% x 23.80) = 1.332+6.188 = 7.52

Average memory access tlmeunified

= 74% x (1 +0.0318 x 200) + 26% x (1 + 1 + 0.0318 x 200)
= (74% % 7.36) + (26% x 8.36) = 5446 +2.174 = 7.62 29



Example Let's use an in-order execution computer for the first example. Assume that the

cache miss penalty is 200 clock cycles, and all instructions normally take 1.0

clock cycles (ignoring memory stalls). Assume that the average miss rate is 2%,

there is an average of 1.5 memory references per instruction, and the average

number of cache misses per 1000 instructions is 30. What is the impact on perfor-

Ex mance when behavior of the cache is included? Calculate the impact using both
R 18 misses per instruction and miss rate.

IC-UNICAMP

Answer CPU time = IC X (CPI , Memory stall clock cycles

_ : x Clock cycle time
RREOUGR [nstruction ) y

The performance, including cache misses, is

CPU time i cache = 1C X [1.0 + (30/1000 X 200)] x Clock cycle time
= |C X 7.00 X Clock cycle time

Now calculating performance using miss rate:

_ Memory accesses
.+ Miss rate x -
cxeculion Instruction

CPU time = IC x (CPI x Miss penalty) x Clock cycle time

CPU timey;, cache = IC X [1.0 + (1.5 X 2% x 200)] X Clock cycle time
= [C X 7.00 X Clock cycle time

The clock cycle time and instruction count are the same, with or without a
cache. Thus, CPU time increases sevenfold, with CPI from 1.00 for a “perfect
cache” to 7.00 with a cache that can miss. Without any memory hierarchy at all
the CPI would increase again to 1.0 + 200 x 1.5 or 301—a factor of more than 40
times longer than a system with a cache!



Example

©

IC-UNI

EX
B.19

Answer

What is the impact of two different cache organizations on the performance of a
processor? Assume that the CPI with a perfect cache 1s 1.6, the clock cycle time
is (.35 ns, there are 1.4 memory references per instruction, the size of both
caches is 128 KB, and both have a block size of 64 bytes. One cache is direct
mapped and the other is two-way set associative. Figure B.5 shows that for set
associative caches we must add a multiplexor to select between the blocks in the
set depending on the tag match. Since the speed of the processor can be tied
directly to the speed of a cache hit, assume the processor clock cycle time must
be stretched 1.35 times to accommodate the selection multiplexor of the set asso-
ciative cache. To the first approximation, the cache miss penalty is 65 ns for
either cache organization. (In practice, it is normally rounded up or down to an
integer number of clock cycles.) First, calculate the average memory access time
and then processor performance. Assume the hit time is | clock cycle, the miss
rate of a direct-mapped 128 KB cache is 2.1%, and the miss rate for a two-way
set associative cache of the same size i1s 1.9%.

Average memory access time is

Average memory access time = Hit time + Miss rate x Miss penalty
Thus, the time for each organization is

Average memory access timey ., = 0.35 + (021 X 65) = 172 ns
Average memory access time, .., = 0.35 X 1.35+ (019 X 65) = 1.71 ns

31



IC-UNICAMP The average memory access time is better for the two-way set-associative cache.
Ex The processor performance is

uonNoONpPOU|

: 4 Misses : :
B.19 CPU time = ICx M(l‘lf’lﬁmum:m + fnstruction x Miss penaity] X Clock cycle time
(2)

= ICx _[CPI X Clock cycle time]

execulion

Memory accesses
Instruction

4 (Miss rate X x Miss penalty x Clock cycle time”

Substituting 635 ns for (Miss penalty x Clock cycle time), the performance of each
cache organization 1s

CPU time |, = ICX[1.6x0.35 +(0.021 X 1.4x 65)] = 247 x IC
CPU time, . = ICx [1.6x 035 x 135+ (0.019 x 1.4x65)] = 249 xIC

and relative performance is

CPU timey oo 2.49 X Instruction count _ 2.49
CPU time, .. 2.47 X Instruction count ~ 2.47

= L01

32



Miss penalty: out-of-order execution
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* Qut-or-order execution: how miss penalty Is
defined?

— Account for the full latency?
— Or just the “exposed” or “non-overlapped” latency?

* New definition of Miss Penalty for OOO

Memory stall cycles _  Misses (Total miss latency — Overlapped miss latency)
Instruction Instruction

uondNPOU|
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Example

Answer

Ex B.21

Let’s redo the example above, but this time we assume the processor with the
longer clock cycle time supports out-of-order execution yet still has a direct-
mapped cache. Assume 30% of the 65 ns miss penalty can be overlapped; that is,
the average CPU memory stall time 1s now 45.5 ns.

Average memory access time for the out-of-order (OOQO) computer is
Average memory access time ... poo = 0.35 X 1.35 + (0.021 x45.5) = 143 ns
The performance of the OOQ cache 1s
CPU time |y, 000 = ICX [1.6%0.35 x 1.35 +(0.021 x 1.4x455)] = 2.09 xIC
Hence, despite a much slower clock cycle time and the higher miss rate of a

direct-mapped cache, the out-of-order computer can be slightly faster if it can
hide 30% of the miss penalty.

34



& EquacOes de desempenho: Resumo

gindex _ Cache size
Block size x Set associativity

CPU execution tume = (CPU clock cycles + Memory stall cycles) x Clock cycle time
Memory stall cycles = Number of misses x Miss penalty

Misses 1
Memory stall cycles = [C X ———— X Miss penait
& y Instruction Pty
Misses : Memory accesses
——— = MISs rate X -
[nstruction [nstruction

Average memory access time = Hit time + Miss rate X Miss penalty

Memory stall clock cycles
RaecHion Instruction

CPU execution time = IC x (CPI J x Clock cycle time

Misses

\
. 4 ———— X Miss penalty | X Clock cycle time
execution © [nstruction pe y/ y

CPU execution time = IC x (CPI

T ; Memory accesses ; ;
CPU execution time = IC X (CPI‘ .+ Miss rate x - x Miss penalty | x Clock cycle time
SRECUtIN [nstruction PEn 4
Memory stall cycles isses : :
g - M — X (Total miss latency — Overlapped miss latency)
Instruction Instruction

Average memory access time = Hit time; , + Miss rate; | X (Hit ime , + Miss rate , X Miss penalty, ,)

Memory stall cycles Misses " Misses
D o S L)« Hit ume, , + -——u-
Instruction

[nstruction Instruction

X Miss penalty, ,

uoNoONpPOU|



B-3: Memory Hierarchy Basics
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* SIX basic cache optimizations:

— 1 Larger block size
* Reduces compulsory misses
* Increases capacity and conflict misses, increases miss penalty

— 2 Larger total cache capacity to reduce miss rate
* Increases hit time, increases power consumption

— 3 Higher associativity
* Reduces conflict misses
* Increases hit time, increases power consumption

— 4 Higher number of cache levels
* Reduces overall memory access time

— 5 Giving priority to read misses over writes
* Reduces miss penalty

— 6 Avoiding address translation in cache indexing
* Reduces hit time

uondNPOU|
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Para melhorar o desempenho da cache

IC-UNICAMP

w N

. Red
. Red

. Red

uzir miss rate
uzir miss penalty
uzir tempo de hit na cache

AMAT = HitTime + iVlissRate x MissPenalty

P. Centoducatte 37



Tipos de miss

IC-UNICAMP
 Compulsory
— Cold-start or first-reference
« Capacity
— (n&o cabe)
« Conflict
— Colisdo ou coeréncia

P. Centoducatte 38
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& 0.07 \ @ 1-way
Q BN W 2-way
2 0.06 N @ 4-way
o) 0 8-way
% 0.05 A B Capacity
© 0O Compulsory
o 0.04
R]
= 0.03
0.02
0.01
0.00
4 8 16 32 64 128 256 512 1024
Cache size (KB)
100%
80%
@
a
2 60%
()]
a
2
© W 1-way
2 40% & 2-way
= W 4-way
0 8-way
20% B Capacity

0O Compulsory

- 8 16 32 64 128 256 512 1024
Cache size (KB)

Figure B.9 Total miss rate (top) and distribution of miss rate (bottom) for each size cache according to the three C’s for the
data in Figure B.8. The top diagram shows the actual data cache miss rates, while the bottom diagram shows the percentage in each
category. (Space allows the graphs to show one extra cache size than can fit in Figure B.8.)
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1- Larger block size

IC-UNICAMP

» Positive effect:
— Reduces compulsory misses: prefetched data/instructions

* Negative effect :
— Increases capacity misses: fewer blocks in cache
— Increases conflict misses: fewer blocks - higher chance of conflict
— Increases miss penalty: larger block = harder to handle
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- Miss Penalty e Miss Rate
vs Tamanho do Bloco

 Maior tamanho do bloco =
— =2 maior miss penalty
— =2 menor miss rate

Miss % Miss => Avg.
Penalty Rate Memory
Access
Miss Transfer  Miss Average Time
penalty time rate access
Access time
Block Size Block Size Block Size
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Miss rate x block size

1 00/o e o e e

5% -

-9
(\
o o —0 64K

e _a 256K

Miss rate

—h A—
OO/O 1 || | |
16 32 64 128 256
Block size

Figure B.10 Miss rate versus block size for five different-sized caches. Note that miss rate actually goes up if the block size is
too large relative to the cache size. Each line represents a cache of different size. Figure B.11 shows the data used to plot these
lines. Unfortunately, SPEC2000 traces would take too long if block size were included, so these data are based on SPEC92 on a
DECstation 5000 [Gee et al. 1993].
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Exmpl
pag
B-27:
Miss
rate e
block
Size

Example Figure B.11 shows the actual miss rates plotted in Figure B.10. Assume the mem-
ory system takes 80 clock cycles of overhead and then delivers 16 bytes every 2
clock cycles. Thus, it can supply 16 bytes in 82 clock cycles, 32 bytes in 84 clock
cycles, and so on. Which block size has the smallest average memory access time

for each cache size in Figure B.117

Answer  Average mermory access time 1$

If we assume the hit time is | clock cycle independent of block size, then the
access time for a 16-byte block in a 4 KB cache is

and for a 256-byte block in a 256 KB cache the average memory access time is

Average memory access time = Hit time + Miss rate x Miss penalty

Average memory access time = | +(8.57% x 82) = 8.027 clock cycles

Average memory access time = | +(0.49% x 112) = 1,549 clock cycles

Cache size
Block size 4K 16K 64K 256K
16 8.57% 3.94% 2.04% 1.09%
32 71.24% 2.87% 1.35% 0.70%
64 7.00% 2.64% 1.06% 0.51%
128 1.78% 2.77% 1.02% 0.49%
256 9.51% 3.29% 1.15% 0.49%

Figure B.11 Actual miss rate versus block size for the five different-sized caches in
Figure B.10. Note that for a 4 KB cache, 256-byte blocks have a higher miss rate than
32-byte blocks. In this example, the cache would have to be 256 KB in order for a
256-bvte block to decrease misses.
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Exmpl p B-27: Miss rate e block size (2)
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Cache size
Block size Miss penalty 4K 16K 64K 256K
16 82 8.027 4231 2,673 1.894
42 #4 7.082 3.411 2.134 1.588
4 28 7.160 3.323 1.933 1.449
128 26 R.469 3.659 1.979 1.470
256 112 11.651 4,685 2288 1.549

Figure B.12 Average memory access time versus block size for five different-sized
caches in Figure B.10. Block sizes of 32 and 64 bytes dominate. The smallest average
time per cache size is boldfaced.



2- Larger total cache capacit
g pacity

to reduce miss rate
* Positive effect:
— Reduces capacity misses

* Negative effect :
— Increases hit time: large - slower
— Increases power consumption
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3- Higher associativity

IC-UNICAMP

« Positive effect
— Reduces conflict misses: possible to have k potentially conflicting
copies present in a k-associative cache
* Negative effects:

— Increases hit time: mux in the way, impossible to speculate (use data
before hit/miss result)

— Increases power consumption: a given index “activates” all blocks in
that set
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3Cs - Miss Rate Absoluto (SPEC92)
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cache Misses

miss rate 1-way associative cache size X
= miss rate 2-way associative cache size X/2
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IC-UICAMP 3CS I\/IiSS Rate Relativo

Flaws: for fixed block size
Good: insight => invention
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Exmpl B-29: 3rd optimization
(associativity)

Example Assume that higher associativity would increase the clock cycle time as listed
below:

Clock cycle time; o, = 1.36 X Clock cycle time .,
Clock cycle timey. 5, = 1.44 X Clock cycle time,_way
Clock cycle timeg ., = 1.52 X Clock cycle time,

Assume that the hit ume is 1 clock cycle, that the miss penalty for the direct-
mapped case is 25 clock cycles to a level 2 cache (see next subsection) that never
misses, and that the miss penalty need not be rounded to an integral number of
clock cycles. Using Figure B.8 for miss rates, for which cache sizes are each of
these three statements true?

Average memory access timeg ,,,, < Average memory access time,. ,,
Average memory access time, ... < AvVerage memory access time; ,,
Average memory access time, . < Average memory access time, .,
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& Exmpl B-29: 3rd optimization (cont)

Answer Average memory access time for each associativity is

Average memory access Uimeg.,,,, = Hat Limeﬂ_m}. + Miss rateg yqy X Miss pﬁf‘lﬂhj’g_WH}.
= 152 + Miss rateg.,, X 25

Average memory access Umey ,,, = [.44+ Miss rate ,, X 15

Average memory access limey ., = 1.360+ Miss ratey ,,, X 25

Average memory access timey..,, = 1.00+ Miss rate, ,, X 25

The miss penalty is the same time in each case, so we leave it as 25 clock cycles.
For example, the average memory access time for a 4 KB direct-mapped cache is

Average memory access timey ., = 1.00 + (0.098 x 25) = 3.44
and the time for a 512 KB, eight-way set associative cache is
Average memory access imeg.., = [.52 + (0.006 x 25) = 1.66

Using these formulas and the miss rates from Figure B.8, Figure B.13 shows the
average memaory access time for each cache and assaciativity. The figure shows
that the formulas in this example hold for caches less than or equal 10 8 KB for up
to four-way associativity. Starting with 16 KB, the greater hit time of larger asso-
ciativity outweighs the time saved due to the reduction in misses,

Note that we did not account for the slower clock rate on the rest of the program
in this example, thereby understating the advantage of direct-mapped cache.
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Exmpl B-29: 3rd optimization (cont)
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Associativity
Cache size (KB) 1-way 2-way 4-way 8-way
4 344 3.25 3.22 (328
8 2.69 2.58 2.55 (262
16 23 [240]  [as] s3]
2 206 [aw) (1) (o
o4 .92 214 2.8 225
128 .52 [ 1.84 (1.92 | (2,00
256 132 (1.66 (174 (182
512 120 (1.55] 159 ] (1.6

Figure B.13 Average memnory access time using miss rates in Figure B.8 for parame-
ters in the example. Boldface type means that this time is higher than the number to
the left, that is, higher associativity increases average memory access time,
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4- Higher number of cache levels

IC-UNICAMP

* Reduces overall memory access time (supor 2 niveis)
 AMAT = Hit time , + Miss Rate ; X Miss Penalty, ,
* Miss Penalty, ; = Hit time, + Miss Rate,, x Miss Penalty, ,

 AMAT = Hit time, + Miss Rate, ; X
(Hit time , + Miss Rate,, X Miss Penalty, ,)
» DefinicOes
— Local Miss Rate = total de misses nesta cache / total de acessos a

esta cache
« para L1 = MissRate , e para L2 = MissRate,
— Global Miss Rate = total de misses nesta cache / total de acessos de
memoria
« para L1 = MissRate , e para L2 = MissRate, ; X MissRate,,

— Ave Mem Stalls per Instruction = (Misses/Instruction, ;) x (HitTime, ) +
(Misses/Instruction,,) x (MissPenalty, ,)
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Exmpl B-31: multilevel caches

Example Suppose that in 1000 memory references there are 40 misses in the first-level
cache and 20 misses in the second-level cache. What are the various miss rates?
Assume the miss penalty from the L2 cache to memory is 200 clock cycles, the
hit time of the .2 cache is 10 clock cycles, the hit time of L1 is 1 clock cycle, and
there are 1.5 memory references per instruction. What is the average memory
access time and average stall cycles per instruction? Ignore the impact of writes.

IC-UNICAMP

Answer The miss rate (either local or global) for the first-level cache is 40/1000 or 4%.
The local miss rate for the second-level cache is 20/40 or 50%. The global miss
rate of the second-level cache 1s 20/1000 or 2%. Then

Average memory access time = Hit time ; + Miss rate; | X (Hit time , + Miss rate , X Miss penalty, 5)
=1+4%x (10 + 50% x 200) = 1 + 4% x 110 = 5.4 clock cycles

To see how many misses we get per instruction, we divide 1000 memory refer-
ences by 1.5 memory references per instruction, which yields 667 instructions.
Thus, we need to multiply the misses by 1.5 to get the number of misses per 1000
instructions. We have 40 x .5 or 60 L1 misses, and 20 x 1.5 or 30 L2 misses, per
1000 instructions. For average memory stalls per instruction, assuming the
misses are distributed uniformly between instructions and data:
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Exmpl B-31: multilevel caches
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Average memory stalls per instruction = Misses per instruction; | x Hit time, , + Misses per instruction; ,
x Miss penalty ,
= (60/1000) x 10 + (30/1000) x 200
= (0.060 x 10 + 0.030 x 200 = 6.6 clock cycles

If we subtract the L1 hit time from the average memory access time (AMAT) and
then multiply by the average number of memory references per instruction, we
get the same average memory stalls per instruction:

(54-1.0)x 1.5=44x1.5 = 6.6 clock cycles

As this example shows, there may be less confusion with multilevel caches when
calculating using misses per instruction versus miss rates.
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Miss rate em cache (single e L2) | soiisze

IC-UNICAMP
100% -
99% 99% 98%
90% 96% —&— Local miss rate ]_
80% - —— Global miss rate
—&— Single cache miss rate
70%
® 60% -
©
o 50% A
A
= 40% A
39%
300/0_ = > 5 : : : = 5 : 340/0
20% -
o
10% 6'/ O 4% 4% 4% 3% 2% 2% 2% 1% 1%
0% A% 4% 8% 3% 1 C—— = B

4 8 16 32 64 128 256 512 1024 2048 4096

Cache size (KB) L2

Figure B.14 Miss rates versus cache size for multilevel caches. Second-level caches smaller than the sum of the two 64 KB first-
level caches make little sense, as reflected in the high miss rates. After 256 KB the single cache is within 10% of the global miss
rates. The miss rate of a single-level cache versus size is plotted against the local miss rate and global miss rate of a second-level
cache using a 32 KB first-level cache. The L2 caches (unified) were two-way set associative with replacement. Each had split L1
instruction and data caches that were 64 KB two-way set associative with LRU replacement. The block size for both L1 and L2
caches was 64 bytes. Data were collected as in Figure B.4
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B L2 hit = 8 clock cycles
1.02
8192 1.06 O L2 hit = 16 clock cycles

o0 LT,

v [— 150

o I— 75
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s [ —

1.00 1.25 1.50 1.75 2.00 2.25 2.50
Relative execution time

IC-UNICAMP

Second-level cache size (KB)

Figure B.15 Relative execution time by second-level cache size. The two bars are for different clock cycles for an L2 cache
hit. The reference execution time of 1.00 is for an 8192 KB second-level cache with a 1-clock-cycle latency on a second-level hit.
These data were collected the same way as in Figure B.14, using a simulator to imitate the Alpha 21264.
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Example

Exmpl B-33: associativity in L27?

Given the data below, what is the impact of second-level cache associativity on
its miss penalty?

Hit time, , for direct mapped = 10 clock cycles.

Two-way set associativity increases hit time by 0.1 clock cycle to 10.1 clock

cycles.
Local miss rate, , for direct mapped = 25%.
Local miss rate, , for two-way set associative = 20%.

Miss penalty, » = 200 clock cycles.
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Exmpl B-33: multilevel caches (cont)
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Answer For a direct-mapped second-level cache, the first-level cache miss penalty is
Miss penalty .., 12 = 10 + 25% x 200 = 60.0 clock cycles

Adding the cost of associativity increases the hit cost only 0.1 clock cycle, mak-
ing the new first-level cache miss penaity:

Miss penalty,. 3= 10.1 +20% x 200 = 50.1 clock cycles

In reality, second-level caches are almost always synchronized with the first-
level cache and processor. Accordingly, the second-level hit time must be an inte-
gral number of clock cycles. If we are lucky, we shave the second-level hit ime
to 10 cycles; if not, we round up to 11 cycles. Either choice is an improvement
over the direct-mapped second-level cache:

Miss penaltyy.yqy 12 = 10 + 20% x 200 = 50.0 clock cycles
Miss penalty;. .o 1 2= 11 + 20% x 200 = 51.0 clock cycles
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5- Glving priority to

read misses over writes
 Reduces miss penalty
— Read posterior “esconde” miss penalty do write

 Em caches com write-through: write buffer
— pode trazer complicacoes RAW
— solucao: read verifica se ha writes pendentes no buffer

 Em caches com write-back
— funcionamento idéntico: substituicao de block dirty - write buffer
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Example

Answer

Exmpl B-35: priority to read miss

Look at this code sequence:.

SW R3, 512(R0) 1M[512] « R3 (cache index 0)
LW R1, 1024(RO)  ;R1 &« M[1024] (cache index 0)
LW R2, 512(R0) 1R2 « M[512] (cache index 0)

Assume a direct-mapped, write-through cache that maps 512 and 1024 1o the
same block, and a four-word write buffer that is not checked on a read miss. Will
the value in R2 always be equal to the value in R3?

Using the terminology from Chapter 2, this is a read-after-write data hazard in
memory. Let's follow a cache access to see the danger. The data in R3 are placed
into the write buffer after the store. The following load uses the same cache index
and is therefore a miss. The second load instruction tries to put the value in loca-
tion 512 into register R2; this also results in a miss. If the write buffer hasn’t
completed writing to location 512 in memory, the read of location 512 will put
the old, wrong value into the cache block, and then into R2. Without proper pre-
cautions, R3 would not be equal to R2!

61



6- Avoiding address translation
s in cache indexing = Hit time

« 2 tarefas acesso a cache: indexar a cache e comparar tag

« Alternatival: cache (com endereco) virtual:
— traducéao zero: na indexacéo e na comp. c tag

— Problemas com cache virtual:
« protecao: é verificada na traducéo v - p (solucéo no App B)

* na mudanca de contexto, dados na cache séo inuteis - flush the cache
(solucao no App B) (usar PID para s6 descartar do processo)

« OS e user programs podem usar dois enderecos virtuais para 0 mesmo
endereco fisico> aliasing ou synonyms. Podem haver duas copias do
mesmo end. fisico (“coeréncia’?) (solucédo no App B)

 1/0O usa endereco fisico = necessaria traducao em op de I/O
« Alternativa2, virtually indexed, physically tagged
— Indexacao: usar parte da page offset do end virtual (sem traducéao)
» probl: cache size (direct) <= page size

— simultaneamente, traduzir parte do end virtual e comparar com tag
(end fisico)
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Figure B.16 Miss rate versus virtually addressed cache size of a program measured three ways: without process switches
(uniprocess), with process switches using a process-identifier tag (PID), and with process switches but without PIDs (purge).
PIDs increase the uniprocess absolute miss rate by 0.3% to 0.6% and save 0.6% to 4.3% over purging. Agarwal [1987] collected
these statistics for the Ultrix operating system running on a VAX, assuming direct-mapped caches with a block size of 16 bytes.
Note that the miss rate goes up from 128K to 256K. Such nonintuitive behavior can occur in caches because changing size changes
the mapping of memory blocks onto cache blocks, which can change the conflict miss rate.
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| Virtual address <64> |

IC-UNICAMP | Virtual page number <50> I Page offset <14> l

|TLB tag compare address <43>|TLB index <7>| IL1 cache index < >] Block offset <6>|

To P

TLB tag <43> TLB data <26>

L1 cache tag <26> L1 data <512>

L1 tag compare address <26>

[ Physical address <40> ]

I L2 tag compare address <21> | L2 cache index <14= | Block offset <6>|

To P

L2 cache tag <21> L2 data <512>

To L1 cacheor P

Figure B.17 The overall picture of a hypothetical memory hierarchy going from virtual address to L2 cache access. The
page size is 16 KB. The TLB is two-way set associative with 256 entries. The L1 cache is a direct-mapped 16 KB, and the L2
cache is a four-way set associative with a total of 4 MB. Both use 64-byte blocks. The virtual address is 64 bits and the physical

address is 40 bits.
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Resumo das técnicas de otimizacao

IC-UNICAMP
Hit Miss Miss  Hardware
Technique time penalty rate complexity Comment
Larger block size - + 0 Trivial: Pentium 4 L2 uses 128 bytes
Larger cache size - + l Widely used, especially for 1.2
caches
Higher associativity - + | Widely used
Multilevel caches + 2 Costly hardware; harder if L1 block
) size # L2 block size; widely used
Read priority over writes + ] Widely used
Avoiding address translation during + } Widely used

cache indexing

Figure B.18 Summary of basic cache optimizations showing impact on cache performance and complexity for
the techniques in this appendix. Generally a technique helps only one factor. + means that the technique improves
the factor, - means it hurts that factor, and blank means it has no impact. The complexity measure is subjective, with

0 being the easiest and 3 being a challenge.
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B.4 Memoria virtual

IC-UNICAMP

* Divide espaco fisico em blocos e os aloca para
Processos
— Protecao: acesso somente ao seu espaco privado

— Reducao do tempo para iniciar um programa: néo é
necessario carregar o programa todo

— Execucéao de programas maiores do que a memaria
fisica

— Facilita carga de programas e sua relocacao

(Antes do aparecimento da memaria virtual, essas funcoes

tinham que ser implementadas manualmente pelo
programador)
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Programa em espaco virtual contiguo
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Virtual Physical
address address
0 A 0
4K B [' 4K C
8K C 8K
12K D 12K Physical
— 16K A main memory
Virtual memory 20K
— 24K B
28K

=amnl -
I

Disk

Figure B.19 The logical program in its contiguous virtual address space is shown on the left. It consists of four pages, A,
B, C, and D. The actual location of three of the blocks is in physical main memory and the other is located on the disk.
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cache L1 vs Memodria Virtual
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Parameter First-level cache Virtual memory

Block (page) size  16-128 bytes 4096-65,536 bytes

Hit time 1-3 clock cycles 100-200 clock cycles

Miss penalty 8-200 clock cycles 1,000,000-10,000,000 clock cycles
(access time) (6-160 clock cycles) (800,000-8,000,000 clock cycles)
(transfer time) (2=40 clock cycles) (200,000-2,000,000 clock cycles)

Miss rate 0.1-10% 0.00001-0.001%

Address mapping  25-45-bit physical address ~ 32-64-bit virtual address to
to 14-20-bit cache address ~ 25-45-bit physical address

Figure B.20 Typical ranges of parameters for caches and virtual memaory. Virtual
memory parameters represent increases of 10 to 1,000,000 times over cache para-
meters. Normally, first-level caches contain at most 1 MB of data, whereas physical
memory contains 256 MB to 1 TB.
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Paginacao e segmentacao
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Code Data

Paging

Segmentation

Figure B.21 Example of how paging and segmentation divide a program.



Virtual = Physical Mapping

Virtual address

I Virtual page number ‘ Page offset I

IC-UNICAMP

Main
memory

t

Page =
table Physical address

Figure B.23 The mapping of a virtual address to a physical address via a page table.
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Virtual page  Page
number offset
<36> <12>

<28>

<1> .. <1><1> <36>
@ @ V. RW U/S D A Tag Physical address

Ywywwy

Y

| BEER ' ' Y

\

40:1 mux

©@

TLB: mapeamento rapido

(Low-order 12 bits
of address)

<12>
/

, = 40-bit
<28> @ physical
Z

/
(High-order 28 bits of address)

= address

Figure B.24 Operation of the Opteron data TLB during address translation. The four steps of a TLB
hit are shown as circled numbers. This TLB has 40 entries. Section B.5 describes the various protection

and access fields of an Opteron page table entry.
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l Virtual address <64> |

Virtual page number <51 | Page offset <13> |

IC-UNICAMP l

‘TLB tag compare address <43>|TLB index <8>| |L1 cache index < >|Block offset <6>]

To P

TLB tag <43> TLB data <28>

L1 cache tag <43> L1 data <512>

Virtual - fisico
% Ll + L2 L1 tagcomparleaddress<28>

I Physical address <41> |

| L2 tag compare address <19> L2 cache index <162 | Block offset <6>]

To P

L2 cache tag <19> L2 data <512>

ToL1cacheor P

Figure B.25 The overall picture of a hypothetical memory hierarchy going from virtual address
to L2 cache access. The page size is 8 KB. The TLB is direct mapped with 256 entries. The L1 cache
Is a direct-mapped 8 KB, and the L2 cache is a direct-mapped 4 MB. Both use 64-byte blocks. The
virtual address is 64 bits and the physical address is 41 bits. The primary difference between this
simple figure and a real-cache is replication of pieces of this figure.
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