IC—DI(CAMP MO401

|C/Unicamp

Prof Mario Cortes

Appendix A: ISA Principles

Topicos

IC-UNICAMP

« Tipos de ISA (Instruction Set Architectures)
 Enderecamento de memaria

* Tipos de operandos

* Operacoes no ISA

* Instrucoes de controle de fluxo de execucao
* Codificacao

O ISA do MIPS 64

IC-UNICAMP Processor

TOS

v ||| W

Memo

(a) Stack (b) Accumulator (c) Register-memory (d) Register-register/
load-store

Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the
operand is an input or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter
shades indicate inputs, and the dark shade indicates the result. In (a), a Top Of Stack register (TOS) points to the top
input operand, which is combined with the operand below. The first operand is removed from the stack, the result takes
the place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (b), the
Accumulator is both an implicit input operand and a result. In (c), one input operand is a register, one is in memory, and
the result goes to a register. All operands are registers in (d) and, like the stack architecture, can be transferred to
memory only via separate instructions: push or pop for (a) and load or store for (d).

IC-UNICAMP

Addressing mode Example instruction Meaning When used

Register Add R4,R3 Regs[R4] « Regs[R4] When a value is in a register.
' + Regs[R3]

I]Tmediatc Add R4, 4#3 Regs[R4] « Regs[R4] + 3 For constants.

Displacement

Add R4, 100(R1)

Regs[R4] « Regs[R4]
+ Mem[100 + Regs[R1]]

Accessing local variables
(+ simulates register indirect,
direct addressing modes).

Register indirect

Add R4, (R1)

Regs[R4] « Regs[R4]
+ Mem[Reas [R1]]

Accessing using a pointer or a
computed address.

Indexed Add R3, (Rl + R2) Regs[R3] « Regs[R3] Sometimes useful in array
+ Mem[Regs[R1] + Regs[R2]] addressing: R1 = base of amray;
RZ = index amount.
Direct or Add R1, (1001) Regs[R1] « Regs[R1] Sometimes useful for accessing
absolute + Mem[1001] static data; address constant may

need to be large.

Memory indirect

Add R1,8(R3)

Regs[R1] « Regs[R1]
+ Mem[Mem[Regs[R3]]]

If R3 is the address of a pointer p,

. then mode yields «p.

Autoincrement Add R1,(R2)+ Regs[R1] « Regs[R1] Useful for stepping through arrays
+ Mem[Regs[R2]] within a loop. R2 points to start of
Regs[R2] « Regs[R2] + d array; each reference increments
RZ by size of an element, d.
Autodecrement Add R1, —(R2) Regs[R2] « Regs[R2] - d Same use as autoincrement.
Regs[R1] « Regs[R1] Autodecrement/-increment can
+ Mem[Regs [R2]] also act as push/pop to implement
a stack.
Scaled Add R1,100(R2)[R3] Regs[R1] « Regs[R1] Used to index arrays. May be

+ Mem[100 + Regs[R2]
+ Regs[R3] « d]

applied to any indexed addressing
maode in some computers,

Figure A6 Selection of addressing modes with examples, meaning, and usage. In autoincrement/-decrement
and scaled addressing modes, the variable d designates the size of the data item being accessed (i.e., whether the
instruction is accessing 1, 2, 4, or B bytes). These addressing modes are only useful when the elements being
accessed are adjacent in memory. RISC computers use displacement addressing to simulate register indirect with 0
for the address and to simulate direct addressing using 0 in the base register. in our measurements, we use the first
name shown for each mode. The extensions to C used as hardware descriptions are defined on page A-36.

IC-UNICAMP o TeX [1%

Memory indirect spice 6%
gCC 1 O/O
TeX |0%

Scaled spice 16%

gce 6%
TeX 24%

Register indirect ¢p;i 3%
i e 11%
gcc |
TeX 43%

Immediate gpj 17%
e ———
gcc |
S TeX 32%
isplacement .. 55%
S 107,
gcc
0% 10% 20% 30% 40% 50% 60%

Frequency of the addressing mode

Figure A.7 Summary of use of memory addressing modes (including immediates). These major addressing modes
account for all but a few percent (0% to 3%) of the memory accesses. Register modes, which are not counted, account for
one-half of the operand references, while memory addressing modes (including immediate) account for the other half. Of
course, the compiler affects what addressing modes are used; see Section A.8. The memory indirect mode on the VAX
can use displacement, autoincrement, or autodecrement to form the initial memory address; in these programs, almost all
the memory indirect references use displacement mode as the base. Displacement mode includes all displacement
lengths (8, 16, and 32 bits). The PC-relative addressing modes, used almost exclusively for branches, are not included.
Only the addressing modes with an average frequency of over 1% are shown.

IC-UNICAMP

Figure A.8 Displacement values are widely distributed. There are both a large number of small values and a fair number of
large values. The wide distribution of displacement values is due to multiple storage areas for variables and different
displacements to access them (see Section A.8) as well as the overall addressing scheme the compiler uses. The x-axis is log2 of
the displacement, that is, the size of a field needed to represent the magnitude of the displacement. Zero on the x-axis shows the
percentage of displacements of value 0. The graph does not include the sign bit, which is heavily affected by the storage layout.
Most displacements are positive, but a majority of the largest displacements (14+ bits) are negative. Since these data were
collected on a computer with 16-bit displacements, they cannot tell us about longer displacements. These data were taken on the
Alpha architecture with full optimization (see Section A.8) for SPEC CPU2000, showing the average of integer programs

40%

35% -

25% A

20% -

15% A

10% A

Percentage of displacement

5% -

30% -

0%

Integer average
Floating-point average

0 1 2 3 4 5 6 7 8 9 10 11 12 183 14 15

Number of bits of displacement

(CINT2000) and the average of floating-point programs (CFP2000).

Ic E Floating-point average
M Integer average
22%
Loads 539
ALU operations 259,

All instructions 21%

0% 5% 10% 15% 20% 25% 30%

Figure A.9 About one-quarter of data transfers and ALU operations have an immediate operand. The bottom bars show that
integer programs use immediates in about one-fifth of the instructions, while floating-point programs use immediates in about one-
sixth of the instructions. For loads, the load immediate instruction loads 16 bits into either half of a 32-bit register. Load immediates
are not loads in a strict sense because they do not access memory. Occasionally a pair of load immediates is used to load a 32-bit
constant, but this is rare. (For ALU operations, shifts by a constant amount are included as operations with immediate operands.)
The programs and computer used to collect these statistics are the same as in Figure A.8.

MO401 - Mario Cortes — IC/Unicamp

L P O l,ebddtrodts e et

IC-UNICAMP 40% - | e |

35% - L I i C i B
300/0 B B S Rt T A e S e T e e T e e A L et
L

20%

!

Integer average

1

15%

Percentage of immediates

10%

1

5%

0%

I T T I 1

4 5 6 7 8 9 10 11 12 13 14 15
Number of bits needed for immediate

Figure A.10 The distribution of immediate values. The x-axis shows the number of bits needed to represent the magnitude of
an immediate value—O0 means the immediate field value was 0. The majority of the immediate values are positive. About 20%
were negative for CINT2000, and about 30% were negative for CFP2000. These measurements were taken on an Alpha, where
the maximum immediate is 16 bits, for the same programs as in Figure A.8. A similar measurement on the VAX, which supported
32-bit immediates, showed that about 20% to 25% of immediates were longer than 16 bits. Thus, 16 bits would capture about
80% and 8 bits about 50%.

G
~NDoubls worg — 70%

(64 bits) 59%

Word Y 097

(32 bits) 26%

Half word | oy
(16 bits) 5%

B Floating-point average

Byte | 1% [Integer average
(8 bits) 10%

0% 20% 40% 60% 80%

Figure A.11 Distribution of data accesses by size for the benchmark programs. The double-word data type is used for
double-precision floating point in floating-point programs and for addresses, since the computer uses 64-bit addresses. On a
32-bit address computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all double-word accesses in
integer programs would become single-word accesses.

IC-U

8%

Call/return

Jump

Conditional branch

B Floating-point average

M Integer average

82%
75%

0%

75%
Frequency of branch instructions

100%

Figure A.14 Breakdown of control flow instructions into three classes: calls or returns, jumps, and conditional branches.
Conditional branches clearly dominate. Each type is counted in one of three bars. The programs and computer used to collect these

statistics are the same as those in Figure A.8.

MO401 - Mario Cortes — IC/Unicamp

10

IC-UNICAMP
30% -

D50, [e e

20% S
Intege

averaqge
15% - g

Floating-point average

Percentage of distance

50[6 Bl L e o R S A N N R i e e 2 B W R K NS iV R e e L e TR 0

o 1. 2 83 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bits of branch displacement

Figure A.15 Branch distances in terms of number of instructions between the target and the branch instruction. The most
frequent branches in the integer programs are to targets that can be encoded in 4 to 8 bits. This result tells us that short
displacement fields often suffice for branches and that the designer can gain some encoding density by having a shorter
instruction with a smaller branch displacement. These measurements were taken on a load-store computer (Alpha architecture)
with all instructions aligned on word boundaries. An architecture that requires fewer instructions for the same program, such as a
VAX, would have shorter branch distances. However, the number of bits needed for the displacement may increase if the
computer has variable-length instructions to be aligned on any byte boundary. The programs and computer used to collect these
statistics are the same as those in Figure A.8.

11

5% HE Floating-point average

IC-UNICAMP Not equal 29, M Integer average
16%
Fqual 18%
0%
Greater than or equal |G 11%
0%
Greater than 0%

O,
Less than or equal 44%

Less than

35%

0% 10% 20% 30% 40% 50%
Frequency of comparison types in branches

Figure A.17 Frequency of different types of compares in conditional branches. Less than (or equal) branches dominate this
combination of compiler and architecture. These measurements include both the integer and floating-point compares in branches.
The programs and computer used to collect these statistics are the same as those in Figure A.8.

MO401 - Mario Cortes — IC/Unicamp

12

Operation and | Address Address Address Address
no. of operands | specifier 1 | field 1 specifier n field n

(a) Variable (e.g., Intel 80x86, VAX)

IC-UNICAMP

Operation Address Address Address
field 1 field 2 field 3

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation Address Address
specifier field

Operation Address Address Address
specifier 1 specifier 2 field

Operation Address Address Address
specifier field 1 field 2

(c) Hybrid (e.g., IBM 360/370, MIPS16, Thumb, TI TMS320C54x)

Figure A.18 Three basic variations in instruction encoding: variable length, fixed length, and hybrid. The variable format
can support any number of operands, with each address specifier determining the addressing mode and the length of the specifier
for that operand. It generally enables the smallest code representation, since unused fields need not be included. The fixed format
always has the same number of operands, with the addressing modes (if options exist) specified as part of the opcode. It generally
results in the largest code size. Although the fields tend not to vary in their location, they will be used for different purposes by
different instructions. The hybrid approach has multiple formats specified by the opcode, adding one or two fields to specify the
addressing mode and one or two fields to specify the operand address.

13

IC-UNICAMP

Revisao: ISA MIPS64

Conjunto de Instrucoes: MIPS64

IC-UNICAMP

* Referéncia: Apéndice A (CAQAD5)

« MIPS64 é usado em todo o curso como base para
analise de todas as questdes e problemas

15

IC-UNICAMP

Figure A.22 Instruction layout for MIPS. All instructions are encoded in one of three types, with common fields in the same

location in each format.

I-type instruction
6 5 5 16

Opcode rs rt Immediate

Encodes: Loads and stores of bytes, half words, words,
double words. All immediates (rt = rs op immediate)

Conditional branch instructions (rs is register, rd unused)
Jump register, jump and link register
(rd=0, rs=destination, immediate =0)

R-type instruction
6 5 5 5 5 6

Opcode rs rt rd shamt funct

Register-register ALU operations: rd = rs funct rt

Function encodes the data path operation: Add, Sub, . ..

Read/write special registers and moves

J-type instruction
6 26

Opcode Offset added to PC

Jump and jump and link
Trap and return from exception

16

IC-UNICAN R

FR

Fl

Basic instruction formats

opcode rs rd shamt funct
31 26 25 21 20 16 15 11 10 65
opcode rs immediate
31 26 25 21 20 16 15
opcode address
31 26 25
Floating-point instruction formats
opcode fmt fs fd funct
31 26 25 21 20 16 15 11 10 65
opcode fmt immediate
31 26 25 21 20 16 15

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits long. The R format is for integer
register-to-register operations, such as DADDU, DSUBU, and so on. The | format is for data transfers, branches,
and immediate instructions, such as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for

floating-point operations, and the FI format for floating-point branches.

17

Registradores

IC-UNICAMP

* Integer Registers

— 32 reqistradores de 64 bits: GPR (general purpose
registers) 2 RO, R1, ..., R31

— RO =0 (sempre)
* Floating Point Registers

— 32 registradores de 64 bits: FPR - FO, F1, ..., F31

— permitem armazenar 32 numeros FP de precisao
simples (32b) ou dupla (64b)
— se FPR contem n° de precisao simples - metade nao ¢é
usada
« Ha instrucles para FPR <> GPR e para usar 2
dados c/ precisao simples em um unico FPR

18

Tipos de dados

IC-UNICAMP

Bytes

Meia palavra: 16 bits

Palavra: 32 bits

Palavra dupla: 64 bits

— Inteiros

— FP precisao simples (32b) ou dupla (64b)
Operacoes sobre dados

— Palavra e palavra dupla

— loads de bytes, meia palavras e palavras 2> MSB
completados com zeros ou sign extend

19

Modos de enderecamento

IC-UNICAMP

* Imediato (16bits) e displacement
— Endereco = conteudo registrador + imediato

« Para enderecamento indireto registrador Ri
— fazer imediato = 0

* Endereco de 64 bits, byte addressable
— Mode bit-> SW pode selecionar big/little endian

20

Operacoes

IC-UNICAMP

* 4 classes:

— loads e stores ; ALU; controle de fluxo; ponto flutuante
* Notacao

— bits dos registradores: 0 (MSB) - 63 (LSB)

— Regs[R1] €4, Mem[30+Regs[R2]] : transferéncia de 64
bits da posicédo de memoaria 30+R2

— Regs[R4], : bit 0 de R4

— Regs[R3];; 43 : byte menos significativo de R3
— 048 : campo com 48 zeros

— a ## b: aconcatenado com b

21

IC-UNICAMP

Load e Store

Example instruction

Instruction name

Meaning

LD R1,30(R2)

Load double word

Regs [R1] ¢, Mem[30+Regs[R2]]

LD R1,1000{R0) Load double word Regs [R1] &g, Mem[1000+0]

LW R1,60(R2) Load word Regs [R1]¢¢q (Mem[60+Regs[R2]1,)* ## Mem[60+Regs[R2]]

LB R1,40(R3) Load byte Regs [R1] e, (Mem[40+Regs[R3]],)%¢ #4
Mem[40+Regs [R3]]

LBU R1,40(R3) Load byte unsigned ~ Regs[R1]«—g; 0°° ## Mem[40+Regs[R3]]

LH R1,40(R3) Load half word Regs[R1] «¢4 (r-'lfern[:fl0+|ilf:~;r.=,[Ra]]{]}43 #4
Mem[40+Regs[R3]] ## Mem[41+Regs[R3]]

L.S F0,50(R3) Load FP single Regs [F0] «¢, Mem[50+Regs[R3]] ## 0°*

L.D FO,50(R2) Load FP double Regs [FO] «¢, Mem[50+Regs [R2]]

S0 R3,500(R4)

Store double word

Mem[560+Regs [R4]] ¢, Regs [R3]

SW R3,500(R4) Store word Mem[500+Regs [R4]] 3, Regs[R3] 3, 43
S.S F0,40(R3) Store FP single Mem[40+Regs [R3]]« 5, Regs [F0], s,
S.D FO,40(R3) Store FP double Mem[40+Regs [R3]] ¢4 Regs [FO]

SH R3,502(R2) Store half Mem[502+Regs [R2]] ¢4 Regs[R3] 4 ¢3
SB R2,41(R3) Store byte Mem[41+Regs [R3]] «; Regs [R2] s¢ 43

Figure A.23 The load and store instructions in MIPS. All use a single addressing mode and require that the mem-
ory value be aligned. Of course, both loads and stores are available for all the data types shown.

ALU

IC-UNICAMP

Example instruction Instruction name Meaning

DADDU R1,R2,R3 Add unsigned Regs [R1]« Regs [R2]+Regs[R3]

DADDIU R1,R2,#3 Add immediate unsigned Regs[R1]« Regs[R2]+3

LU RI,#42 Load upper immediate ~ Regs[R1]« 0**##424#0'°

DSLL R1,RZ,#5 Shift left logical Regs[R1] « Regs[R2]<<§

SLT R1,R2,R3 Set less than if (Regs[R2]<Regs[R3]) |
Regs[R1] « 1 else Regs|[R1]«-0

Figure A.24 Examples of arithmetic/logical instructions on MIPS, both with and
without immediates.

23

&

Controle Ee fluxo

Example
instruction Instruction name Meaning
J name Jump PCy. g3¢—name -
JAL name Jump and link Regs [R31]«-PC+8; PCy5 gy¢—name;

((PC +4)-227) < name < ((PC+4)+2%7)
JALR R? Jump and link register Regs[R31] «PC+8; PC«Regs[R2]
JR R3 Jump register PCeRegs[R3]

BEQZ R4,name

Branch equal zero

if (Regs[R4]==0) PCe—name;
((PC"‘4)-21?) < name < ((PC+4)+2”)

BNE R3,R4,name

Branch not equal zero

if (Regs[R3]!= Regs[R4]) PCe—name;
((PC+4)-2'7) < name < ((PC+8)+2")

MCVZ R1,RZ2,R3

Conditional move
if zero

if (Regs[R3]==0) Regs[R1]«Regs[R2]

E— —— S — -

Figure A,25 Typical control flow instructions in MIPS. All control instructions, except
jumps to an address in a register, are PC-relative. Note that the branch distances are
longer than the address field would suggest; since MIPS instructions are all 32 bits long,
the byte branch address is multiplied by 4 to get a longer distance.

24

Ponto flutuante

IC-UNICAMP

Floating point FP operations on DP and SP formats

ADD.D,ADD.S,ADD.PS Add DP, SP numbers, and pairs of SP numbers

SuB.D,SUB.S,SUB.PS Subtract DP, SP numbers, and pairs of SP numbers

MUL.D,MUL.S,MUL.PS Multiply DP, SP floating point, and pairs of SP numbers

MADD.D,MADD.S,MADD.PS Multiply-add DP, SP numbers, and pairs of SP numbers

DIV.D,DIV.S,DIV.PS Divide DP, SP floating point, and pairs of SP numbers

CVl. . Convert instructions: CVT. x.y converts from type X to type y, where x and y are L
(64-bit integer), W (32-bit integer), D (DP), or S (SP). Both operands are FPRs.

C. .D,C. .S DP and SP compares: “__ "= LT,GT, LE,GE, EQ,NE; sets bit in FP status register

25

eral

IC-UNICA

MO401 — Mario Cor =22

Instruction type/opcode

Instruction meaning

Data transfers

Move data between registers and memory, or between the imeger and FP or special
registers; only memory address mode is 16-bit displacement + contents of a GPR

LB, LBU, S8 Load byte, load byie unsigned, store byte (to/from integer regisiers)

LH, LHU, SH Load half word, load half word unsigned, store half word (1o/from integer registers)
LW, LWU, 5K Load word, load word unsigned, store ward (to/from integer registers)

LD,S0 Load double word, store double word (toffrom integer registers)

L.5,L.0,5.5,5.D0 Load SP float, load DP float, store 8P [loat, store DP float

MFCO,MTCO Copy from/to GPR wifrom a special register

MOV, 5, ,MOV.D Copy one SP or DP FP register to another FP register

MFC1,MTC1 Copy 32 bits to/from FP registers fromfio integer registers

Arithmetic/logical Operations on integer or logical data in GPRs; signed arithmetic trap on overflow
DADD, DADDI ,DADDY ,DADDIU Add, add immediate (all immediates are 16 bits); signed and unsigned

DSUB, DSUBL Subtract; signed and unsigned

DMUL, DMULY,DDIV, Multiply and divide, signed and unsigned; multiply-add; all operations take and yield 64-
DOIVU,MADD bit values

AND,ANDI And, and immediate

OR, ORI, X0R,XORI Or, or immediate, exclusive or, exclusive or immediate

LUt Load upper immediate; loads bits 32 10 47 of register with immediate, then sign-extends

DSLL,DSRL, DSRA,DSLLY,
DSRLV,DSRAV

Shifts: both immediate (DS_) and variable form (DS__V); shafts are shift left logical,
right logical, right arithmetic

SLY,SLYI,SLTU,SLTIU Set less than, set less than immediale; signed and unsigned

Control Conditional branches and jumps: PC-relative or through register

BEQZ,BNEZ Branch GPRs equal/not equal to zero; 16-bit offset from PC + 4

BEQ, BNE Branch GPR equal/not equal; 16-bit offset from PC + 4

BC1T,BCLF Test comparison bit in the FP status register and branch; 16-bit offset from PC + 4
MOVN, MOV Copy GPR to another GPR if third GPR is negative, zero

JJR Jumps: 26-bit offset from PC + 4 (J) or target in register (JR)

JAL,JALR Jump and link: save PC + 4 in R31, target is PC-relative (JAL) or a register (JALR)
TRAP Transfer 1o operating sysiem at a veclored address

ERET Retumn 1o user code from an exception; restore user made

Floating poim FP operations on DP and SP formars

ADD.D,ADD.5,ADD. PS Add DF, 5P numbers, and pairs of SP numbers

SUB,D,5UB,5,5UB,PS
MUL.D,MUL.5,MUL.PS
MADD. D, MADD. S, MADD. PS
DIV.D,DIV.5,DIV.PS
CvT. .

— -

.5

Subtract DP, SP numbers, and pairs of SP numbers
Multiply DP, SP floating point, and pairs of SP numbers
Multiply-add DP, SP numbers, and pairs of SP numbers
Divide DF, SP floating point, and pairs of SP numbers

Conven instructions: CYT.x.y convens from type x to type ¥, where x and y are L
(64-bt integer), W (32-bit integer), D (DP), or § (SP). Both operands are FPRs.

DP and SP compares: “__ " = LT,G6T,LE,GE, EQ, NE: sets bit in FP status register

26

ISA de outros computadores

IC-UNICAMP

* Ver apéndice K

27

