
MO401 – Mario Côrtes – IC/Unicamp 1

IC-UNICAMP MO401

IC/Unicamp

Prof Mario Côrtes

Appendix A: ISA Principles

MO401 – Mario Côrtes – IC/Unicamp 2

IC-UNICAMP

Tópicos

• Tipos de ISA (Instruction Set Architectures)

• Endereçamento de memória

• Tipos de operandos

• Operações no ISA

• Instruções de controle de fluxo de execução

• Codificação

• O ISA do MIPS 64

MO401 – Mario Côrtes – IC/Unicamp 3

IC-UNICAMP

Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the

operand is an input or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter

shades indicate inputs, and the dark shade indicates the result. In (a), a Top Of Stack register (TOS) points to the top

input operand, which is combined with the operand below. The first operand is removed from the stack, the result takes

the place of the second operand, and TOS is updated to point to the result. All operands are implicit. In (b), the

Accumulator is both an implicit input operand and a result. In (c), one input operand is a register, one is in memory, and

the result goes to a register. All operands are registers in (d) and, like the stack architecture, can be transferred to

memory only via separate instructions: push or pop for (a) and load or store for (d).

MO401 – Mario Côrtes – IC/Unicamp 4

IC-UNICAMP

MO401 – Mario Côrtes – IC/Unicamp 5

IC-UNICAMP

Figure A.7 Summary of use of memory addressing modes (including immediates). These major addressing modes

account for all but a few percent (0% to 3%) of the memory accesses. Register modes, which are not counted, account for

one-half of the operand references, while memory addressing modes (including immediate) account for the other half. Of

course, the compiler affects what addressing modes are used; see Section A.8. The memory indirect mode on the VAX

can use displacement, autoincrement, or autodecrement to form the initial memory address; in these programs, almost all

the memory indirect references use displacement mode as the base. Displacement mode includes all displacement

lengths (8, 16, and 32 bits). The PC-relative addressing modes, used almost exclusively for branches, are not included.

Only the addressing modes with an average frequency of over 1% are shown.

MO401 – Mario Côrtes – IC/Unicamp 6

IC-UNICAMP

Figure A.8 Displacement values are widely distributed. There are both a large number of small values and a fair number of

large values. The wide distribution of displacement values is due to multiple storage areas for variables and different

displacements to access them (see Section A.8) as well as the overall addressing scheme the compiler uses. The x-axis is log2 of

the displacement, that is, the size of a field needed to represent the magnitude of the displacement. Zero on the x-axis shows the

percentage of displacements of value 0. The graph does not include the sign bit, which is heavily affected by the storage layout.

Most displacements are positive, but a majority of the largest displacements (14+ bits) are negative. Since these data were

collected on a computer with 16-bit displacements, they cannot tell us about longer displacements. These data were taken on the

Alpha architecture with full optimization (see Section A.8) for SPEC CPU2000, showing the average of integer programs

(CINT2000) and the average of floating-point programs (CFP2000).

MO401 – Mario Côrtes – IC/Unicamp 7

IC-UNICAMP

Figure A.9 About one-quarter of data transfers and ALU operations have an immediate operand. The bottom bars show that

integer programs use immediates in about one-fifth of the instructions, while floating-point programs use immediates in about one-

sixth of the instructions. For loads, the load immediate instruction loads 16 bits into either half of a 32-bit register. Load immediates

are not loads in a strict sense because they do not access memory. Occasionally a pair of load immediates is used to load a 32-bit

constant, but this is rare. (For ALU operations, shifts by a constant amount are included as operations with immediate operands.)

The programs and computer used to collect these statistics are the same as in Figure A.8.

MO401 – Mario Côrtes – IC/Unicamp 8

IC-UNICAMP

Figure A.10 The distribution of immediate values. The x-axis shows the number of bits needed to represent the magnitude of

an immediate value—0 means the immediate field value was 0. The majority of the immediate values are positive. About 20%

were negative for CINT2000, and about 30% were negative for CFP2000. These measurements were taken on an Alpha, where

the maximum immediate is 16 bits, for the same programs as in Figure A.8. A similar measurement on the VAX, which supported

32-bit immediates, showed that about 20% to 25% of immediates were longer than 16 bits. Thus, 16 bits would capture about

80% and 8 bits about 50%.

MO401 – Mario Côrtes – IC/Unicamp 9

IC-UNICAMP

Figure A.11 Distribution of data accesses by size for the benchmark programs. The double-word data type is used for

double-precision floating point in floating-point programs and for addresses, since the computer uses 64-bit addresses. On a

32-bit address computer the 64-bit addresses would be replaced by 32-bit addresses, and so almost all double-word accesses in

integer programs would become single-word accesses.

MO401 – Mario Côrtes – IC/Unicamp 10

IC-UNICAMP

Figure A.14 Breakdown of control flow instructions into three classes: calls or returns, jumps, and conditional branches.

Conditional branches clearly dominate. Each type is counted in one of three bars. The programs and computer used to collect these

statistics are the same as those in Figure A.8.

MO401 – Mario Côrtes – IC/Unicamp 11

IC-UNICAMP

Figure A.15 Branch distances in terms of number of instructions between the target and the branch instruction. The most

frequent branches in the integer programs are to targets that can be encoded in 4 to 8 bits. This result tells us that short

displacement fields often suffice for branches and that the designer can gain some encoding density by having a shorter

instruction with a smaller branch displacement. These measurements were taken on a load-store computer (Alpha architecture)

with all instructions aligned on word boundaries. An architecture that requires fewer instructions for the same program, such as a

VAX, would have shorter branch distances. However, the number of bits needed for the displacement may increase if the

computer has variable-length instructions to be aligned on any byte boundary. The programs and computer used to collect these

statistics are the same as those in Figure A.8.

MO401 – Mario Côrtes – IC/Unicamp 12

IC-UNICAMP

Figure A.17 Frequency of different types of compares in conditional branches. Less than (or equal) branches dominate this

combination of compiler and architecture. These measurements include both the integer and floating-point compares in branches.

The programs and computer used to collect these statistics are the same as those in Figure A.8.

MO401 – Mario Côrtes – IC/Unicamp 13

IC-UNICAMP

Figure A.18 Three basic variations in instruction encoding: variable length, fixed length, and hybrid. The variable format

can support any number of operands, with each address specifier determining the addressing mode and the length of the specifier

for that operand. It generally enables the smallest code representation, since unused fields need not be included. The fixed format

always has the same number of operands, with the addressing modes (if options exist) specified as part of the opcode. It generally

results in the largest code size. Although the fields tend not to vary in their location, they will be used for different purposes by

different instructions. The hybrid approach has multiple formats specified by the opcode, adding one or two fields to specify the

addressing mode and one or two fields to specify the operand address.

MO401 – Mario Côrtes – IC/Unicamp 14

IC-UNICAMP

 Revisão: ISA MIPS64

MO401 – Mario Côrtes – IC/Unicamp 15

IC-UNICAMP

Conjunto de instruções: MIPS64

• Referência: Apêndice A (CAQA5)

• MIPS64 é usado em todo o curso como base para

análise de todas as questões e problemas

MO401 – Mario Côrtes – IC/Unicamp 16

IC-UNICAMP

Figure A.22 Instruction layout for MIPS. All instructions are encoded in one of three types, with common fields in the same

location in each format.

MO401 – Mario Côrtes – IC/Unicamp 17

IC-UNICAMP

Figure 1.6 MIPS64 instruction set architecture formats. All instructions are 32 bits long. The R format is for integer

register-to-register operations, such as DADDU, DSUBU, and so on. The I format is for data transfers, branches,

and immediate instructions, such as LD, SD, BEQZ, and DADDIs. The J format is for jumps, the FR format for

floating-point operations, and the FI format for floating-point branches.

MO401 – Mario Côrtes – IC/Unicamp 18

IC-UNICAMP

Registradores

• Integer Registers

– 32 registradores de 64 bits: GPR (general purpose

registers)  R0, R1, ... , R31

– R0 = 0 (sempre)

• Floating Point Registers

– 32 registradores de 64 bits: FPR  F0, F1, ... , F31

– permitem armazenar 32 números FP de precisão

simples (32b) ou dupla (64b)

– se FPR contém nº de precisão simples  metade não é

usada

• Há instruções para FPR  GPR e para usar 2

dados c/ precisão simples em um único FPR

MO401 – Mario Côrtes – IC/Unicamp 19

IC-UNICAMP

Tipos de dados

• Bytes

• Meia palavra: 16 bits

• Palavra: 32 bits

• Palavra dupla: 64 bits

– inteiros

– FP precisão simples (32b) ou dupla (64b)

• Operações sobre dados

– Palavra e palavra dupla

– loads de bytes, meia palavras e palavras  MSB

completados com zeros ou sign extend

MO401 – Mario Côrtes – IC/Unicamp 20

IC-UNICAMP

Modos de endereçamento

• Imediato (16bits) e displacement

– Endereço = conteúdo registrador + imediato

• Para endereçamento indireto registrador Ri

– fazer imediato = 0

• Endereço de 64 bits, byte addressable

– Mode bit SW pode selecionar big/little endian

MO401 – Mario Côrtes – IC/Unicamp 21

IC-UNICAMP

Operações

• 4 classes:

– loads e stores ; ALU; controle de fluxo; ponto flutuante

• Notação

– bits dos registradores: 0 (MSB)  63 (LSB)

– Regs[R1] 64 Mem[30+Regs[R2]] : transferência de 64

bits da posição de memória 30+R2

– Regs[R4]0 : bit 0 de R4

– Regs[R3]56..63 : byte menos significativo de R3

– 048 : campo com 48 zeros

– a ## b: a concatenado com b

MO401 – Mario Côrtes – IC/Unicamp 22

IC-UNICAMP

Load e Store

MO401 – Mario Côrtes – IC/Unicamp 23

IC-UNICAMP

ALU

MO401 – Mario Côrtes – IC/Unicamp 24

IC-UNICAMP

Controle de fluxo

MO401 – Mario Côrtes – IC/Unicamp 25

IC-UNICAMP

Ponto flutuante

MO401 – Mario Côrtes – IC/Unicamp 26

IC-UNICAMP

geral

MO401 – Mario Côrtes – IC/Unicamp 27

IC-UNICAMP

ISA de outros computadores

• Ver apêndice K

