Quartus Il Simulation with VHDL Designs

This tutorial introduces the basic features of the Qu@di; Simulator. It shows how the Simulator can be
used to assess the correctness and performance of a desiigned

Contents:

Example Circuit

Using the Waveform Editor
Functional Simulation
Timing Simulation

Using the Node Finder

Quartu@ Il software includes a simulator which can be used to simautta¢ behavior and performance of circuits
designed for implementation in Altera’s programmable d¢adgevices. The simulator allows the user to apply test
vectors as inputs to the designed circuit and to observetttpits generated in response. In addition to being able
to observe the simulated values on the 1/O pins of the cirdug also possible to probe the internal nodes in the
circuit. The simulator makes use of the Waveform Editor,chihinakes it easy to represent the desired signals as
waveforms.

Doing this tutorial, the reader will learn about:

Test vectors needed to test the designed circuit

Using the Quartus Il Waveform Editor to draw the test vectors

Functional simulation, which is used to verify the funcébnoorrectness of a synthesized circuit

Timing simulation, which takes into account propagatiotage due to logic elements and interconnecting
wiring

This tutorial is aimed at the reader who wishes to simulaieuds defined by using the VHDL hardware de-
scription language. An equivalent tutorial is availabletfee user who prefers the Verilog language.

PREREQUISITES
The reader is expected to have access to a computer that hasiQl software installed. The detailed examples
in the tutorial were obtained using the Quartus Il versidh But other versions of the software can also be used.

1 Example Circuit

As an example, we will use the adder/subtractor circuit shawFigure 1. The circuit can add, subtract, and
accumulate:-bit numbers using the 2's complement number representéalfioe two primary inputs are numbers
A=a,_1an_9---agandB = b, _1b,_o--- by, and the primary output i = z,,_12,_2 - - - 29. Another input
is theAddSulcontrol signal which causes = A + B to be performed wheAddSub= 0 andZ = A — B when
AddSub= 1. A second control inputSel is used to select the accumulator mode of operatiorSelt 0, the
operationZ = A + B is performed, but iSel= 1, thenB is added to or subtracted from the current valu¢of
If the addition or subtraction operations result in arithimeverflow, an output signaDverflow is asserted.

To make it easier to deal with asynchronous input signats; #ne loaded into flip-flops on a positive edge of
the clock. Thus, inputgl and B will be loaded into registerdregandBreg, while SelandAddSubwill be loaded
into flip-flops SelRandAddSubRrespectively. The adder/subtractor circuit places tealténto registeZreg

A= a,_, a, Sel B=1b, ; by AddSub
l o o 0 l l LG l l
n-bit register FIF n-bit register FIF
Areg = | areg,_, areg, Breg =| breg,_; breg,
} I AddSubR
o o o ‘ L] ‘ d
n-bit 2-to-1 MUX e
SelR
L
G= 'gn—l e e \ 9o H hn—l LRI hO
Vv
carryout n-bit adder carryin fe——- 1T
M= |m,_, Mo
. hn_l ‘ o e o
l] n-bit register Zreg
over_flow Zreg =| zreg,_, zreg,
F/F o e o
Overflow 2= Z,_4 Z,

Figure 1. The adder/subtractor circuit.

The required circuit is described by the VHDL code in Figuré=ar our example, we use a 16-bit circuit as
specified byn = 16. Implement this circuit as follows:

e Create a projecddersubtractor

¢ Include a fileaddersubtractor.vhdvhich corresponds to Figure 2, in the project. For convageethis file is
provided in the directorfDE1_tutorials design_fileswhich is included on the CD-ROM that accompanies
the DE1 board and can also be found on Altera’s DE1 web pages.

e Choose the Cyclone Il EP2C20F484C7 device, which is the FEi@§\on Altera’s DE1 board.

e Compile the design.

LIBRARY ieee;
USE ieee.std_logic_1164.all ;

—— Top-level entity
ENTITY addersubtractor IS
GENERIC (n : INTEGER :=16);

PORT (A, B : IN STD_LOGIC_VECTOR(r1 DOWNTO 0) ;
Clock, Reset, Sel, AddSub : IN STD_LOGIC;
Z : BUFFER STD_LOGIC_VECTOR(®1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC);

END addersubtractor ;

ARCHITECTURE Behavior OF addersubtractor IS
SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n : STD_LOGIC_VEGR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC;
COMPONENT mux2tol
GENERIC (k : INTEGER :=8);
PORT (VW : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0);
Selm : IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO0)) ;
END COMPONENT ;
COMPONENT adderk
GENERIC (k : INTEGER :=8);
PORT (carryin : IN STD_LOGIC;
X, Y . IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STD_LOGIC);
END COMPONENT ;
BEGIN
PROCESS (Reset, Clock)
BEGIN
IF Reset="1" THEN
Areg <= (OTHERS => '0’); Breg <= (OTHERS = '0");
Zreg<=(OTHERS =>'0’); SelR <="0"; AddSubR<="0"; Overflow <="0’;
ELSIF ClockEVENT AND Clock ='1" THEN
Areg <=A; Breg<=B; Zreg<=M;
SelR<= Sel; AddSubR<= AddSub; Overflow<= over_flow;
END IF;
END PROCESS;

nbit_adder: adderk
GENERIC MAP (k=>n)
PORT MAP (AddSubR, G, H, M, carryout) ;
multiplexer: mux2tol
GENERIC MAP (k=>n)
PORT MAP (Areg, Z, SelR,G) ;
AddSubR_n<= (OTHERS = AddSubR) ;
H <= Breg XOR AddSubR_n;
over_flow<= carryout XOR G(A-1) XOR H(n—1) XOR M(n-1) ;
Z <=Zreg;
END Behavior;
... continued in Parb

Figure 2. VHDL code for the circuit in Figure 1 (Pat

—— k-bit 2-to-1 multiplexer
LIBRARY ieee;
USE ieee.std_logic_1164.all ;

ENTITY mux2tol IS
GENERIC (k : INTEGER :=8);
PORT (VW :IN STD_LOGIC_VECTOR(k1 DOWNTO 0);
Selm :IN STD_LOGIC;
F : OUT STD_LOGIC_VECTOR(k1 DOWNTOD0));
END mux2tol ;

ARCHITECTURE Behavior OF mux2tol IS
BEGIN
PROCESS (V, W, Selm)
BEGIN
IF Selm="0" THEN
F<=V;
ELSE
F<=W,;
END IF;
END PROCESS;
END Behavior ;

—— k-bit adder

LIBRARY ieee;

USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;

ENTITY adderk IS
GENERIC (k : INTEGER :=8);
PORT (carryin : IN STD_LOGIC;
X,Y :IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

S : OUT STD_LOGIC_VECTOR(k1 DOWNTO 0);
carryout: OUT STD_LOGIC);
END adderk ;

ARCHITECTURE Behavior OF adderk IS

SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0) ;
BEGIN

Sum<=('0'& X) + (0’ & Y) + carryin ;

S <=Sum(k-1 DOWNTO 0) ;

carryout<= Sum(k) ;
END Behavior ;

Figure 2. VHDL code for the circuit in Figure 1 (Pdot

2 Using the Waveform Editor

Quartus Il software includes a simulation tool that can bedu® simulate the behavior of a designed circuit.
Before the circuit can be simulated, it is necessary to erdet desired waveforms, callegst vectorsto represent

the input signals. Itis also necessary to specify the ostastwell as possible internal points in the circuit, which
the designer wishes to observe. The simulator applies sheeetors to the model of the implemented circuit and
determines the expected response. We will use the Quaitveform Editor to draw the test vectors, as follows:

1. Open the Waveform Editor window by selectifide > New, which gives the window shown in Figure 3.
Choosevector Waveform File and clickOK.

New Pz|
SOPC Builder System ~
=I- Deszign Files
AHDL File
Block Diagram/S chematic File
EDIF File

State Machine File

Systemerlog HOL File

Tel Script File

Werilog HOL File

WHOL File
=I- Memary Files

Hexadecimal [Intel-Format] File

Memory Initislization File
=I- Yerification/Debugging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalT ap | Logic Analyzer File
Yec n File

—|- Other Files
AHDL Include File
Block Symbal File
Chain Description File
Synopsys Design Constraints File
Text File

v

Cancel

Figure 3. Need to prepare a new file.

2. The Waveform Editor window is depicted in Figure 4. Sawefite under the namaddersubtractor.vwf
note that this changes the name in the displayed window.isrfigure, we have set the desired simulation
to run from 0 to 180 ns by selectirigdit > End Time and entering 180 ns in the dialog box that pops
up. Selecting/iew > Fit in Window displays the entire simulation range of 0 to 180 ns in the winds
shown. Resize the window to its maximum size.

I addersubtractor. vwf*

Master Time Bar: 18.05 nz 4| +| Painter: 58.82 nz Interval: 40.77 nz Start: End:
\alue ot 0 pz 2D.ID nz 4D.ID nz BD.ID nz SD.ID nz 1DDiD nz 12DiD nz 14DiD nz 1BDiD nz 1800 n4
Name 18.05 nz 18.05 nz
|

Figure 4. The Waveform Editor window.

3. Next, we want to include the input and output nodes of theuttito be simulated. ClicEdit > Insert >
Insert Node or Bus to open the window in Figure 5. It is possible to type the fudrarchical name of
a signal (pin) into the Name box, but it is easier to click oa Hutton labeledNode Finder to open the
window in Figure 6. The Node Finder utility has a filter usecdhiicate what types of nodes are to be found.
Since we are interested in input and output pins, set the fitBins: all. Click theList button to find the
pin names as indicated on the left side of the figure. Obséatethe input and output signals B, andZ
can be selected either as individual nodes (denoted by &teatisubscripts) or as 16-bit vectors, which is a
more convenient form.

Insert Node or Bus Pz|
Narme: | k|
Type: [INPUT =] %
Valuetype: | FLevel | ModeFinder..
Radi: [ascn |
Buswidth: |1
Statinder |0

[Display gray code count as binary count

Figure 5. The Insert Node or Bus dialogue.

Node Finder @

Named: |i _:J Filter: |F‘ins: all ﬂ Customize... | List i% oK |
Look in: LJ J V' Include subentities I Cancel I
Nodes Found: Selected Nodes:

| Name | Assignments | Typ A I Name] Assignments | Type

B A[15] Unassigned Inp 9 |addersubtractor|Clock. Unassigned Input

B AddSub Unassigned Inp 9 |addersubtractarlReset Unassigned Input

B Unassigned Inp B |addersubtractarlSel Unassigned Input

2 B[0] Unassigned Inp 9> |addersubtractoritddSub Unassigned Input

= B[1] Unassigned Inp ¥ |addersubtractorl Unassigned Input Group
= B[2] Unassigned Inp i laddersubtractorlB Unassigned Input Group
9 B[3] Unassigned Inp 5 laddersubtractorlZ Unassigned Output Gro..
9 B[4] Unassigned Inp £ |addersubtractor|Dverflow Unassigned Output

9 B[5) Unassigned Inp lJ

5= B[E) Unassigned Inp

9 B[7] Unassigned Inp — A

B8] Unassigned Inp L|

= B[9] Unassigned Inp

1 B[10] Unassigned Inp

m=B[11] Unassigned Inp

9 B[12] Unassigned Inp

= B[13] Unassigned Inp

9 B[14] Unassigned Inp

s RT1R] Inacsinnad lnn 2

< < >

Figure 6. Selecting nodes to insert into the Waveform Editor

Use the scroll bar inside the Nodes Found box in Figure 6 totfiedClock signal. Click on this signal
and then click the> sign in the middle of the window to add it to the Selected Ndat®son the right side
of the figure. Do the same f@kesetSe| andAddSub Choose vectorsl, B and Z, as well as the output
Overflow in the same way (several nodes can be selected simultdp@oasstandard Windows manner).
Click OK to close the Node Finder window, and then clioK in the window of Figure 5. This leaves a

fully displayed Waveform Editor window, as shown in FigurdfA/ou did not select the nodes in the same
order as displayed in Figure 7, it is possible to rearrangenthTo move a waveform up or down in the
Waveform Editor window, click on the node name (in the Namlemm) and release the mouse button. The
waveform is now highlighted to show the selection. Clickiaga the waveform and drag it up or down in
the Waveform Editor.

0 addersubtractor. vwf*

Master Time Bar:

17725 ns

4| ¥| Pointer:

55.94 ng

(]i=lEd)

Interval: 38.22n: Start: End:

Name

Value at

17.73ns

0 ps

200 ns

40.0 ns B0.0 ns 80.0ns 1000 ns 120,0 ns 140,0 ns 160.0ns 180.0 n4

=0

Clock

AD

17725 ns
A

1

=2

3

=4

w21

o8

£ 55

Reset
Sel
AddSub

A

B

z
Overflow

A0
Al
A0
A (001
A (001
A [0
AR

1070]

[070]

1070]

Figure 7. The nodes needed for simulation.

4. We will now specify the logic values to be used for the ingighals during simulation. The logic values at
the outputsZ andOverflowwill be generated automatically by the simulator. To makeaisy to draw the
desired waveforms, the Waveform Editor displays (by défaudrtical guidelines and provides a drawing
feature that snaps to these lines (which can otherwise lkaéavby choosing/iew > Snap to Grid).
Observe also a solid vertical line, which can be moved bytpairto its top and dragging it horizontally.
This reference linds used in analyzing the timing of a circuit, as describedrtatnove it to theime= 0

position. The waveforms can be drawn using the Selectioth Wduch is activated by selecting the icks)

in the toolbar, or the Waveform Editing Tool, which is actae by the icor®2 . In the instructions below,
we will use the Selection Tool.

To simulate the behavior of a large circuit, it is necessargply a sufficient number of input valuations
and observe the expected values of the outputs. The numpessible input valuations may be huge, so in
practice we choose a relatively small (but representasi@e)ple of these input valuations. We will choose
a very small set of input test vectors, which is not suffickergimulate the circuit properly but is adequate
for tutorial purposes. We will use eight 20-ns time intesvial apply the test vectors as shown in Figure 8.
The values of signalReset Sel AddSub A andB are applied at the input pins as indicated in the figure.
The value ofZ at timet; is a function of the inputs at timg_,. WhenSel= 1, the accumulator feedback
loop is activated so that the current valueZbtrather thand) is used to compute the new valueof

Time Reset Sel AddSub A B Z
to 1 0 0 0 0 0
t 0 0 0 54 1850 0
to 0 0 1 132 63 1904
t3 0 0 0 0 0 69
17 0 0 1 750 120 0
ts5 0 1 0 0 31576 630
te 0 1 0 0 30000 32206
tr 0 1 0 0 0 62206

Figure 8. The required testing behavior.

The effect of the test vectors in Figure 8 is to perform théofeing computation:

to : Reset

ﬁl : Z(tl) =0

ta s Z(ts) = A(ty) + B(ty) = 54 4 1850 = 1904

ts: Z(ts) = A(ty) — B(ts) = 132 — 63 = 69

t4 : Z(t4) = A(tg) +B(t3) =0 +0 =0

ts : Z(ts) = A(ty) — B(ts) = 750 — 120 = 630

te : Z(t) = Z(ts5) + B(ts) = 630 4 31576 = 32206

tr : Z(t7) = Z(tg) + B(ts) = 32206 + 30000 = 62206 (overflow)

Initially, the circuit is reset asynchronously. Then footalock cycles the output is first the sum and then
the difference of the values of and B at that time. This is followed by setting both and B to zero to
clear the contents of registér. Then, the accumulator feedback path is tested in the neeé ttock cycles
by performing the computation

7Z = A(ty) — B(tq) + B(ts) + Bl(tg)

using the values aoft and B shown above.

We can generate the desired input waveforms as followsk Glicche waveform name for thélock node.
Once a waveform is selected, the editing commands in the MfaweEditor can be used to draw the desired
waveforms. Commands are available for defining the clocketiing the selected signal to 0, 1, unknown
(X), high impedance (Z), don’t care (DC), and inverting itgsting value (INV). Each command can be
activated by using thedit > Value command, or via the toolbar for the Waveform Editor. The Bu#nu
can also be opened by right-clicking on a waveform name.

With the Clock signal highlighted, click on th®verwrite Clock icon & in the toolbar. This leads to the
pop-up window in Figure 9. Enter the clock period value of 20 make sure that the offset (phase) is 0
and the duty cycle is 50 percent, and clioK. The desired clock signal is now displayed in the Waveform
window.

Clock 53

Time range
Start time: {0 ps -
End time: {1800 s -

Base waveform on
i

I~

+ Time period:

Period: 200 s -
Offset: 0.0 s -

Dty cycle (%) |50 g

(] 8 | Cancel |

Figure 9. Definition of the clock period, offset and duty &ycl

We will assume, for simplicity of timing, that the input s@e change coincident with the negative edges
of the clock. To reset the circuit, sBeset= 1 in the time interval 0 to 20 ns. Do this by pressing the mouse
at the start of the interval and dragging it to its end, whiidhhights the selected interval, and choosing the
logic value 1 in the toolbar. Mak8el= 1 from 100 to 160 ns, andlddSub= 1 in periods 40 to 60 ns and 80
to 100 ns. This should produce the image in Figure 10.

N addersubtracton.vwi* Q@E|
tdaster Time Bar 0ps 4| | Pointer: 167 B4 ns Interval 167 64 nz Start End
Value at 0 pz 20.0ns 40.0ns 60.0 ns 80.0 ns 100,0 ns 120,0 ns 1400 ns 160,0ns 180.0 n4
Name Ops 5| ps
=0 Clack A0
1 Fiesst A1
2 Sel A0 J —
3 AddSub Al |
[A A1070] W]
ot B AL000) 10][0]
8 z Ao 07]
£ 55 Overflow AR

Figure 10. Setting of test values for the control signals.

5. Vectors can be treated as either octal, hexadecimaledigacimal, or unsigned decimal numbers. The
vectorsA, B, andZ are initially treated as ASCII codes. For our purpose it isvemient to treat them as
signed decimal numbers, so right-click drand selecProperties in the pop-up menu to get to the window
displayed in Figure 11. Choose signed decimal as the radikemsure that the bus width is 16 bits, and
click OK. In the same manner, declare tliaand Z should be treated as signed decimal numbers.

Node Properties g|
General l
Mame: |A
Type: [InPUT -l

Walue type: FLevel

Fiadix: Signed Decimal

Bus width: |16 =

[Display gray code count as binary count

(] 8 | Cancel |

Figure 11. Definition of node properties.

The default value ofd is 0. To assign specific values in various intervals proceetbdlows. Press the

Arbitrary Value icon A2 in the toolbar, to bring up the pop-up window in Figure 12. 3&ths as the start
time and 40 ns as the end time undéme range, enter the value 54 iNumeric or named value under
Arbitrary value and clickOK. Similarly, for the subsequent 20-ns intervals 4eb the values 132, 0, 750,
and then 0 to the end. Set the corresponding value8 tf 1850, 63, 0, 120, 31576, 30000, and O, to
generate the waveforms depicted in Figure 13. ObservehbatutputsZ and Overfloware displayed as
having unknown values at this time, which is indicated by shieal pattern; their values will be determined
during simulation. Save the file.

10

Arbitrary Value §|

Time range
Start time: 20 s -
End time: 40 s -
Arbitrary value
Fiadix: Signed Decimal -
Mumeric or hamed value: |54 =

(] 8 | Cancel |

Figure 12. Specifying a value for a multibit signal.

Master Time Bar: Ops | »| Pointer: 59.81 ns Interval: 59.81 ns Start: End:

v 0 ps 20.0ns 40.0 ns B0.0 ns 80.0ns 100.0ns 120.0 ns 140.0 ns 160.0ns 180.0 n%

Name acllue at o D i 1 i i i i i
ps N

0 Clock. A0 J | J | J | J | J | J | J | | | J
1 Reset A1 |
w2 Sel AD | |
3 AddSub A0 N
4 A 50 0 Y 64 X 132 X 0 Y 750 X 0 3
D21 B S0 0 w180 ¥ 63 b 4 0 A 120 % 31576 30000 Y 0 J
38 g SX ;
£«» 55 Overflow AX

Figure 13. The specified input test vectors.

Another convenient mechanism for changing the input wawesds provided by the Waveform Editing tool,

which is activated by the ico®2 . When the mouse is dragged over some time interval in whiclvéhveform is
0 (1), the waveform will be changed to 1 (0). Experiment witis feature on signahddSub

3 Performing the Simulation

A designed circuit can be simulated in two ways. The simplest is to assume that logic elements and inter-
connection wires are perfect, thus causing no delay in gatan of signals through the circuit. This is called
functional simulation A more complex alternative is to take all propagation del@yo account, which leads to
timing simulation Typically, functional simulation is used to verify the fttironal correctness of a circuit as it is
being designed. This takes much less time, because theagiomutan be performed simply by using the logic
expressions that define the circuit.

3.1 Functional Simulation

To perform the functional simulation, sele&ssignments > Settings to open the Settings window shown in
Figure 14. On the left side of this window click @imulator Settings to display the window in Figure 15,
choosd~unctional as the simulation mode, and cli€K. The Quartus Il simulator takes the inputs and generates

11

the outputs defined in thaddersubtractor.vwfile. Before running the functional simulation it is neceyst
create the required netlist, which is done by selecBracessing > Generate Functional Simulation Netlist.

Settings - addersubtractor gj

Categony:
Files
Libraries Select the design files you want to include in the project. Click Add Al to add all design files in the
Device project directory to the project.
[+ Operating Settings and Conditions

[=I- Compilation Process Settings " . .
Fil ; i
Early Timing E stimate L —J
Incrementél Compilation File name Type Library | Design entry/s... | HOL « Add All
EDA Tool Settings addersubtractor. vhd WHOL File <None>

= Analysis & Synthesis Settings addersubtractor. vl Vector Wavef... <None>
YHDL Input

[
Werilog HOL Input
[

[+

Default Parameters
Synthesis Netlist Optimizations

I Fitter Settings "
Physical Synthesis Optimizations —I
Timing Analysis Settings
TimeQuest Timing Analyzer
=l Classic Timing Analyzer Settings
Classic Timing Analyzer Repal
Assembler
Design Assistant
SignalT ap Il Logic &nalyzer
Logic Analyzer Interface
Simulator Settings
PowerPlay Power Analyzer Settings

[+

|~
| v

|~

|ae
o
=~
o
'
=
2
o

Figure 14. Settings window.

Settings - addersubtractor

Category

Libraries ~
Device
Operating Settings and Canditions Select simulation oplions.
- Woltage
- Temperature
Compilation Process Settings
P Early Timing Estimate Simulation input:]addelsuhtracmr winf _J Add Multiple Files... I
- |neremental Compilation
EDA Tool Settings | Simulation periad
Design Entry/Synthesis & Run simulation untl all vectar stimul are used

- Gimulation
- Timing Analysis " End simulation at: ¥ X !
- Formal Verification :
+ Physical Synthesis Glitch filtefing options: iAuto ;i

Sirnulation rmode:

¢ b BoardLevel
Analysiz & Synthesis Settings More Settings...
e WHOL Input

- Verilog HOL Input
- Defaulk Parameters
- Synthesiz Netlist Optimizations
Fitter Settings

Physical Synthesis O plimization
Timing Analysis Settings

- TimeQuest Timing Analyzer

Classic Timing Analyzer Setting
.z « Clazsic Timing Analyzer R
: - Agzembler Drescription

- Design Assistant Specifies the type of simulation to perfarm for the cument Simulation focus.
-SignalTap Il Logic Analyzer
Logic Analyzer Interface

- Simulator Settings

- PowerPlay Power Analyzer Setling:

e B |

-

|~

Figure 15. Specifying the simulation mode.

12

Simulation Waveforms

Simulation mode: Functional

k Master Time Bar: Ops | »| Pointer: B1.77 ns Interval: 61.77 ns Start: End:
A (Vi 0 ps 20.0ns 40.0ns 60.0ns 80.0ns 100,0 ns 1200 ns 1400 ns 160,0ns 180.0 n4
% Name o [0ps
1
& [0 Clock aiff —, - r
1 Reset 'S
m D2 Sel Al |
o 3 AddSub Al [|
“ |4 A S 0 b4 54 132 % 0 ¥ m0 X 1
= |2 B S 0 w1850 W B3 Y 0 W20 31576 ¥ a3ooo0y o
5o, o 38 4 S 0 A 1504 X] b { 0 X630 X 32208 X 3330
4] £ 55 Overflow Al
< >

Figure 16. The result of functional simulation.
A simulation run is started b¥Processing > Start Simulation, or by using the icorfs. At the end of the
simulation, Quartus Il software indicates its successbahgletion and displays a Simulation Report illustrated in
Figure 16. As seen in the figure, the Simulator creates wavetdor the output& andOverflow As expected,
the values o7 indicate the correct sum or difference of the applied inmuts clock cycle later because of the
registers in the circuit. Note that the last valuezbfs incorrect because the expected sum of 62206 is too big to
be represented as a signed number in 16 bits, which is irdidat theOverflowsignal being set to 1.

In this simulation, we considered only the input and outpgihals, which appear on the pins of the FPGA
chip. It is also possible to look at the behavior of internghals. For example, let us consider the registered
signalsSelR AddSubRAreg Breg andZreg Open theaddersubtractor.vwfile and activate the Node Finder
window, as done for Figure 6. The filter in Figure 6 specifiids: all. There are several other choices. To find
the registered signals, set the filtelRegisters: post-fitting and press.ist. Figure 17 shows the result. Select the
signalsSelR AddSubRAreg, Breg andZreg for inclusion in theaddersubtractor.vwfile, and specify thafreg,
Breg andZreghave to be displayed as signed decimal numbers, thus algaime display in Figure 18. Save the
file and simulate the circuit using these waveforms, whidusthproduce the result shown in Figure 19.

Node Finder @

Named: ﬁ Ll Filter: |Heg|steys_ post-fitting LJ Customize... I List f% oK |
Look in: ~| J W Include subentities I Cancel I
Nodes Found: Selected Nodes:

Name l Assignments I Type | Creator ~ Name | Assignments | Type | Creal
< Breg[2] Unassigned Registered User entered @ |addersubtractorlS elR Unassigned Fegistered User
< Breg[3] Unassigned Registered User entered 4 |addersubtractoridddSubR - Unassigned Registered User
< Breg[4] Unassigned Registered User entered T laddersubtractorlbreg Unassigned Registered ... User
< Breg[5] Unassigned Reagistered User entered i |addersubtractarlBreg Unassigned Reagistered ... User
& Breg[B] Unassigned Registered User entered B laddersublractorZreg Unassigned Registered ... User
& Breq(7] Unassigned Registered User entered
< Breg(8] Unassigned Registered User entered A
< Breg[9] Unassigned Registered User entered
< Breg[10] Unassigned Registered User entered L|
< Breg[11] Unassigned Registered User entered A
< Breg[12] Unassigned Reqistered User entered
< Breq[13] Unassigned Registered User entered iJ
< Breg[14] Unassigned Registered User entered —
< Breg[15] Unassigned Registered User entered
< Overflow™r... Unassigned Registered User entered
<P SelR Unassigned Registered User entered
T Zreg Unassigned Rengistered ... User entered
G Zreg(0] Unassigned Registered User entered
& Fran] | lnassionad Danistarsd | loar antarad S8

< >

Figure 17. Finding the registered signals.

13

B addersubtractor.vwf g@@

Master Time Bar: Ops «| *| Pointer: 450ns Interval: 45.0ns Start: End:
Value al o ps ZUAIU ns 40.p ns BO.p ns 80‘.0 ns 100i0 ns 120i0 ns 14Di0 ns 160i0 ns 180.0 n4
Name Ops ? ps
0 Clock A0 | | | | |
o1 Reset A1 — |
2 Sel A0 |
3 AddSub | AD T N R
>4 A S0 0 b 54 Y 132X] N 7s0 0
21 B 50 0 W 18s0 63 b 4] W 120 W 31576 ¥ 30000 % 0
ke | @z $% X
£«» 55 Overflow BX R R R RS R RS S RS ER RRE R ERER R R R RERER IR ERERERERERRRERERERELL
56 SelR BU 1]
57 AddSubR | BU 1] >
D58 [Areg X X
P75 Breg SX X
PR Zreg §% X
< | =

Figure 18. Inclusion of registered signals in the test.

Simulation Waveforms

Simulation mode: Functional
Q. Master Time Bar: Ops | »| Painter: 140.63 ns Interval: 140.63 ns Start: End:
A Valu [PPs 20.0ns 40.0ns 60.0ns 80.0ns 100,0 ns 1200 ns 1400 ns 160,0ns 180.0 n4
<% Name 0 ?ps
& B0 Clack A J | | J | |] | |
[gl Reset a1
2 Sel & |
33 AddSub | A —+ 1t [&]
%, [A s [G G S D G I ¢ 0
— |21 B S 0 A 180 63 4 0 w120 31576 30000 0
g2, 38 2 S 0 w1904 Y] 3 [1] W B30 W 32206 X -3330
‘l 55 Overflow | B — r 1 |
ZYy |56 SelR] | L
@57 AddSubR | B | Y D
58 Areg S 0 b 4 54 b . 4 0 W 7s0 Y 0
D75 Breg S 0 A 1850 Y 63 X 0 K120 31576 30000 1
2 Zreg S 0 w1904 Y [¥ 0 W B30 W 32206 X -3330
< 2

Figure 19. The result of new simulation.

3.2 Timing Simulation

Having ascertained that the designed circuit is functigradrrect, we should now perform the timing simulation
to see how well it performs in terms of speed. Selessignments > Settings > Simulator Settings to get to
the window in Figure 15, choosEming as the simulation mode, and cli€K. Run the simulator, which should
produce the waveforms in Figure 20. Observe that there dagyslén loading the various registers as well as
longer delays in producing valid signals on the output pins.

14

Simulation Waveforms
Simulation mode: Timing

Iy Master Time Bar: 0ps || Painter 4831 ns Interval 4831 ns Start: End:
A Valu [2PS 200ns 400ns 600 ns 80.0ns 100,0 s 120,0ns 1400 ns 1600ns 180.0ng
% Name 0 0ps
f
& B0 Clock A 1 1 1 1 1 1 1 1 I
1 Reset A
2 Sel A |
53 AddSub | A
o, >4 A 5 i 54 TZ Y i 750 T
- |2 8 5 T 7850 53] T20) 356) 3000])
= [D® z 3 0) CEETI GG ¥]) TCRE T, | CRER GRE
o Overflow | B
A
2 @56 SelR B |
@57 AddSubR | B
EE Areg 5 T X 57) < T § i) G ¢ T
D75 Breg 5 q) G D ¢ 53 ¥] Y120 ¥ 3i5% 30000 0
oR Zreg 5 T) GEEAEI LR ¢ £9 1 } G D SR 3330
< >

Figure 20. The result of timing simulation.

As an aid in seeing the actual values of the delays, we carheseference line. Point to the small square handle
at the top of the reference line and drag it to the rising edgbefirst AddSubRpulse, at which time the reg-
isters are also loaded, as indicated in the figure. (To maesisible to move the reference line to any point in
the waveform display, you may have to turn off the featdiew > Snap on Grid.) This operation places the
reference line at about the 53.1 ns point, which indicatasititakes 3.1 ns to load the registers after the rising
edge of the clock (which occurs at 50 ns). The outButtains its correct value some time after this value has
been loaded int@dreg To determine the propagation delay to the output pins, tirageference line to the point
whereZ becomes valid. This can be done more accurately by enlatgandisplayed simulation waveforms by
using the Zoom Tool. Left-click on the display to enlargeritlaight-click to reduce it. Enlarge the display so that

it looks like the image in Figure 21. After enlarging the ineaglick on the Selection Tool icck . Position the
reference line wherg changes to 1904, which occurs at about 57.7 ns. The displigeites that the propagation
delay from registetZreg to the output pinsZ is 57.7 — 53.1 = 4.6 ns. It is useful to note that even before we
performed this simulation, the Quartus Il timing analyzealeated various delays in the implemented circuit and
reported them in the Compilation Report. From the CompitaiReport we can see that the worst casgClock

to Output Delay) for theZ output (pinz;) was estimated as 8.251 ns; this delay can be found by zodntmthe
simulation results at the point whefechanges to the value 630 in the 100 ns to 120 ns interval.

[y Master Time Bar: 57.81 ns j_'l Pointer: 59.99ns Interval: 218ns Start: End:
A val 40ns 500ns B0pns 700ns |
% Name 57 57.81 ns
J]
& 0 Clock £
1 Reset £
2 Sel £
>3 AddSub ¢ |
% [A 5 54 X 132 b4 i
= @21 B S 1850 A 63 b 1]
ga, 38 z S° 0 m 1304 N
A £ 55 Overflow £
¢ [om SelR ¢
@57 AddSubR | £ I S
D5 Areg 5 54 4 132) G
D75 Breg S 1850 X 63))
92 Zreg 5" 0) 4 1304) G
< 2| >

Figure 21. An enlarged image of the simulated waveforms.

15

In this discussion, we have used the numbers obtained datngimulation run. The user is likely to obtain
somewhat different numbers, depending on the version oftQail software that is used.

4 Using the Node Finder

We have used the Node Finder utility to select the signalgerbéor simulation. We set the filter Rins: all in
section 2 and t&egisters: post-fitting in section 3 to find the desired signals. In large designs yt beedifficult

to find a particular signal if it is not covered by a specificfiltThe Quartus Il compiler may modify the names of
internal signals, which can make their identification by tiser difficult. Moreover, the compiler may implement
the circuit such that a particular signal does not even apgmea separate wire.

Suppose we want to look at the sigfalwhich is one of the inputs to the adder circuit in Figure lisEignal
will not be found by using the filters mentioned above. It wiéo not be found by thBost-synthesis or Post-
compilation filters. However, it is possible to force the Quartus Il colmpto keep specially identified signals
(wires) and their original names. This is done by assoaadim attribute calleteepwith the desired signal. For
example, in the VHDL code in Figure 2 we can include the statasi

attribute keep: boolean;
attribute keep of G: signal is true;

Then, thePost-synthesis and Post-compilation filters will find this signal. It is important to note that the
inclusion ofkeepattribute has no effect on the functional behavior of thegtesd circuit, but it may have an
impact on the detailed implementation of the compiled éirand thus its timing behavior. Therefore, tkeep
attribute should not be removed after the circuit has beecessfully simulated.

Copyright(©2009 Altera Corporation. All rights reserved. Altera, Thregtammable Solutions Company, the
stylized Altera logo, specific device designations, ana#iler words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, thenratts and service marks of Altera Corporation in the
U.S. and other countries. All other product or service naareshe property of their respective holders. Altera
products are protected under numerous U.S. and foreignigaded pending applications, mask work rights, and
copyrights. Altera warrants performance of its semicomgluproducts to current specifications in accordance
with Altera’s standard warranty, but reserves the right tkenchanges to any products and services at any time
without notice. Altera assumes no responsibility or ligpiarising out of the application or use of any informa-
tion, product, or service described herein except as esiyragreed to in writing by Altera Corporation. Altera
customers are advised to obtain the latest version of deyieeifications before relying on any published infor-
mation and before placing orders for products or services.

This document is being provided on an “as-is” basis and aseonamodation and therefore all warranties, rep-

resentations or guarantees of any kind (whether expregdiguinor statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fithesssd particular purpose, are specifically disclaimed.

16

