

MC 613

IC/Unicamp
Prof Mario Côrtes

Introdução à programação baseada em diagrama esquemático

Conteúdo

- Programação da DE1 usando diagrama esquemático no Quartus
- Resumo do tutorial:
 - tut_quartus_intro_schem.pdf

Criação de novo projeto

- Abrir o Quartus
- File > New Project Wizard
 - Definir diretório onde o projeto será armazenado: tut_schem
 - Escolher nome do projeto (2 próximos campos):
 light_schem
 - Next
 - Next (mecanismo para adicionar arquivos)
 - Family device settings:
 - escolher Cyclone II EP2C20F484C7
 - Next (other EDA tools)
 - Finish

Circuito a ser criado

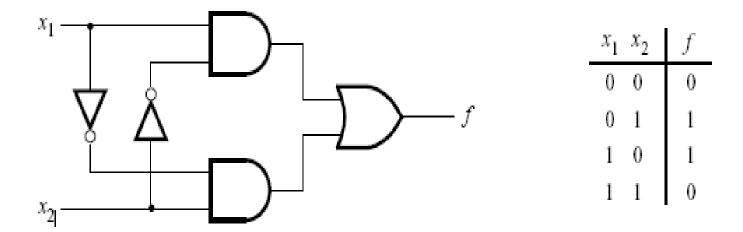


Figure 11. The light controller circuit.

Criação do diagrama lógico

- File > New > Block Diagram/Schematic File > OK
- File > Save as > light_schem > OK
- Double click na área de desenho
 - selecionar biblioteca primitives
 - double click em AND2
 - clicar na área de desenho para colar
 - repetir para outra AND2 (ou usar copy & paste), um OR2, dois NOTs
 - repetir para os conectores de entrada (INPUT) e saída (Output)
 - Nomear os sinais de entrada X1, X2 e saída f
 - selecionar o primeiro, editar, enter, seguinte, etc
 - Girar os NOTs e conectar os fios
 - Salvar

Compilação e atribuição de pinos

Compilação

- Processing > Start Compilation, ou clicar no ícone ►
- Verificar o relatório de compilação: Processing > Compilation Report, ou clicar no ícone apropriado

Atribuição de pinos

- (associar um pino da FPGA a um dispositivo de entrada/saída da placa)
- (ver tabela de atribuição de pinos no manual de usuário ou no arquivo DE1pin assignments.odt)
- Entradas: SW0 e SW1, associadas aos pinos PIN_L22 e PIN_L21
- Saídas: LED verde DG0, associado ao pino PIN_U22
- Assignments > Pins: selecionar os pinos acima e OK

6

Criação de waveform

- Recompilar
- Criação de waveform para simulação (ver tutorial):
 - File > New > Vector Waveform File
 - Clicar botão direito na coluna de nomes de sinais
 Insert > Insert Node > Node Finder
 - List > selecionar os sinais e movê-los para o painel direito
 - Edit > End Time > 200 ns
 - Inserir forma periódica para as entradas
 - Selecionar linha x1; pressionar botão "Count Value" > iniciar 1, a cada 100ns
 - Repetir para x2, com iniciar 0, a cada 40ns
 - Salvar

Simulação

- Simulação com timing: há atrasos
 - Assignment > Settings > Simulator Settings > Simulation mode = Timing (normalmente já selecionado)
 - Processing > Start Simulation (ou pressionar ícone)
 - Observar atrasos e glitches (hazards)
- Simulação funcional: atrasos não são levados em consideração
 - Assignment > Settings > Simulator Settings > Simulation mode = Functional
 - Processing > Start Simulation (ou pressionar ícone)
 - verificar erro (falta de functional simulation netlist)
 - Geração de netlist: Processing > Generate Functional
 Simulation Netlist
 - Re-simular
 - Observar que não há atrasos para a saída

8

Programação

- Verificar se a char RUN / PROG está em RUN
- Tools > Programmer
- Verificar: HW Setup = USB Blaster, Mode = JTAG,
 CheckBox Program Configure = ON
- Selecionar arquivo (linha) e Start
- Programação concluída
- Testar funcionamento na placa