

MC 602

Circuitos Lógicos e Organização de Computadores

IC/Unicamp

Prof Mario Côrtes

Capítulo 8
Máquinas de estado
FSM (Finite State Machines)

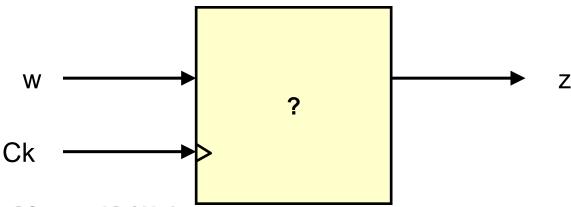
Tópicos

- Sistematização do projeto de circuitos sequenciais síncronos
- Máquinas de Moore
- Máquinas de Mealy
- Atribuição de estados
- Visão geral de máquinas síncronas

Problema

- Saída z igual a
 - "1" se w=1 nos dois últimos ciclos de clock
 - "0" caso contrário
- Todas mudanças sincronizadas com o clock

Ciclo:
$$t_0$$
 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} w : 0 1 0 1 1 0 1 1 0 1 z : 0 0 0 0 0 0 1 0 0 1 1 0



Problema (cont)

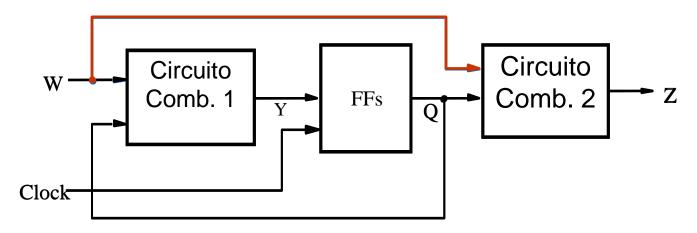
- Possível implementar como circuito combinacional?
- Possível implementar apenas com circuitos sequenciais básicos (FFs, latches, registradores, contadores)?
- Solução estruturada para circuitos sequenciais síncronos:
 - Máquinas de Estados
 - FSM: Finite State Machines

Forma geral de um circuito síncrono

- Circuitos combinacionais: saídas dependem das entradas atuais
- Circuitos sequenciais : saídas dependem do conteúdo atual (estado) dos FFs e das entradas
 - circuitos simples (FF, latch, registrador, contador): há pouca quantidade de portas lógicas além dos elementos de memória
 - Circuito síncrono genérico com grande quantidade de portas lógicas interligando elementos de memória. Estado atual dos FFs e valor das entradas definem:
 - próximo conteúdo (estado) dos FFs
 - saídas atuais

Máquinas de Estado

- W: Entradas Z:Saídas
- Q: Estados internos (saídas de FFs)
- Y: Próximos estados dos FFs
- Circ comb 1:
 - calcula Y (entradas dos FFs) a partir de Q (estado atual = saídas dos FFs) e das entradas W
- Circ comb 2:
 - calcula z a partir de Q e (opcionalmente) W



Análise de uma máquina simples

- Dois FFs → quatro estados possíveis
- Uma entrada w e uma saída z

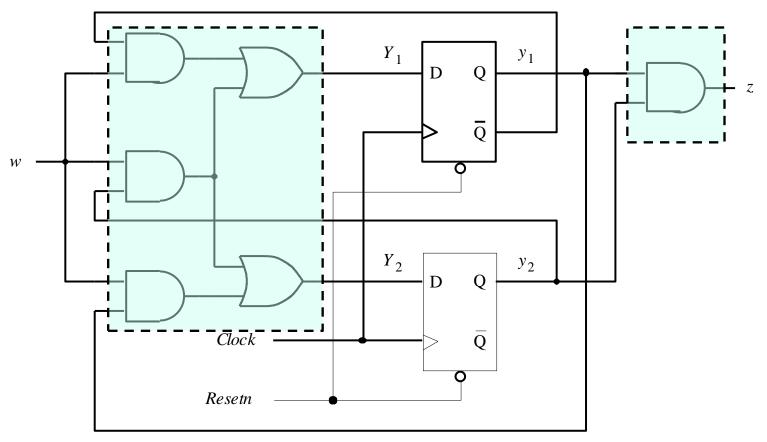
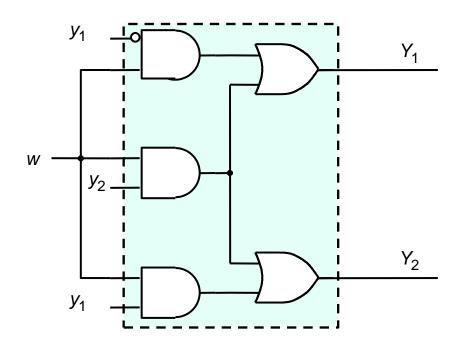
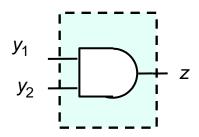


Tabela verdade dos combinacionais





	Entradas	Saídas	
w	y2y1	Y2Y1	Z
0	00	00	0
0	01	00	0
0	10	00	0
0	11	00	1
1	00	01	0
1	01	10	0
1	10	11	0
1	11	11	1

Tabela verdade em forma alternativa

	Entradas	Saídas	
w	y ₂ y ₁	Y_2Y_1	z
0	00	00	0
0	01	00	0
0	10	00	0
0	11	00	1
1	00	01	0
1	01	10	0
1	10	11	0
1	11	11	1

Present State	Next	Output	
	w=0		
y ₂ y ₁	Y_2Y_1	Y_2Y_1	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

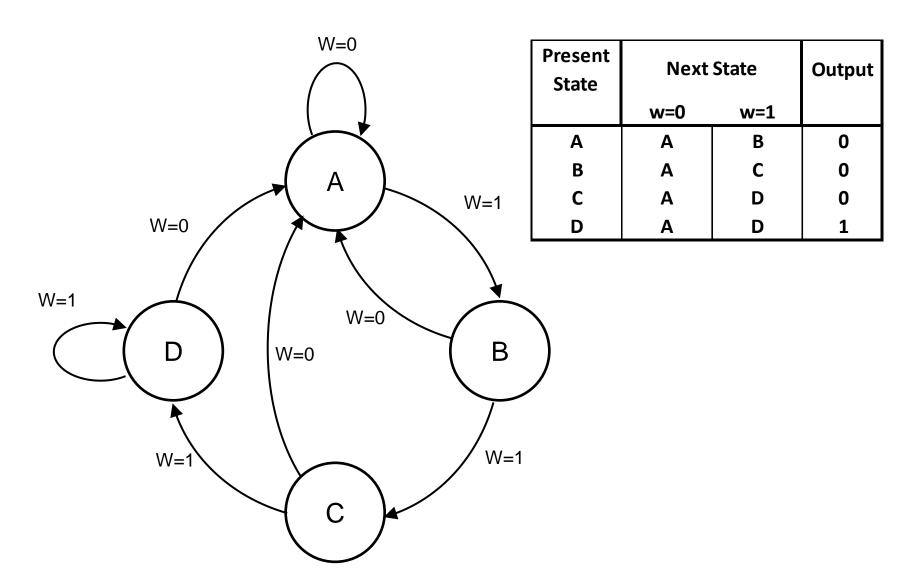
- novo formato:
 - explicita transições de estado

Atribuição simbólica de estados

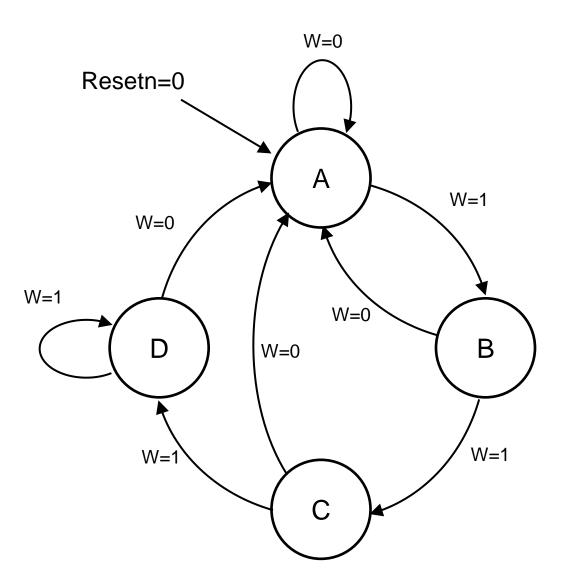
Present State	Next	Output	
	w=0 w=1		
y ₂ y ₁	Y_2Y_1	Y_2Y_1	z
00	00	01	0
01	00	10	0
10	00	11	0
11	00	11	1

Present State	Next	Output	
	w=0	w=1	
Α	Α	В	0
В	Α	С	0
С	Α	D	0
D	Α	D	1

Diagrama de transição de estados



Último passo: reset

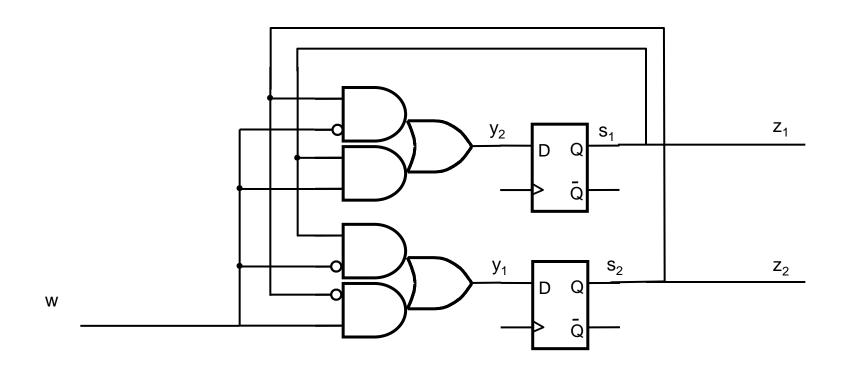


Análise de uma FSM: resumo

- Identificar os dois circuitos combinacionais (re-arranjar desenho?)
 - próximo estado
 - saída
- 2. Tabela verdade convencional
- 3. Tabela verdade: forma alternativa
- 4. Atribuição de estados: binário → simbólico
- 5. Tabela de transição de estados
- 6. Diagrama de transição de estados
 - Representa de forma compacta a funcionalidade da FSM

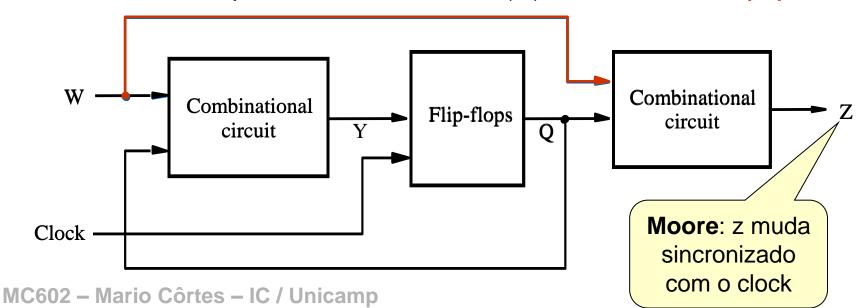
Exercício de análise de uma FSM simples

- Dois FFs → quatro estados possíveis
- Uma entrada e duas saídas



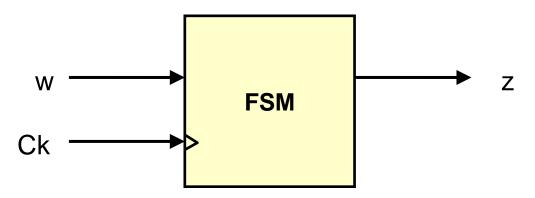
Máquinas de Moore e de Mealy

- Máquinas de Moore
 - próximo conteúdo dos flip-flops (Y) depende das entradas
 (W) e do estado atual (Q)
 - saída depende do estado atual (Q)
- Máquina de Mealy
 - próximo conteúdo dos flip-flops (Y) depende das entradas
 (W) e do estado atual (Q)
 - saída depende do estado atual (Q) e das entradas (W)



Síntese de uma FSM simples (Moore)

- O circuito tem uma entrada w e uma saída z
- Todas as mudanças ocorrem na borda de subida do clock
- z=1 se w=1 nos dois últimos ciclos de clock
- z=0 caso contrário

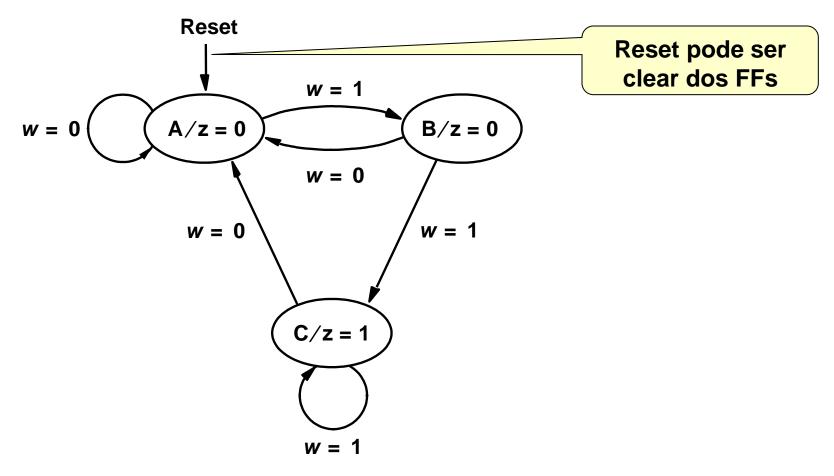


Ciclo:	t_0	t_1	t_2	t ₃	t_4	t ₅	t_6	t ₇	t_8	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	0	1	0	0	1	1	0

Definição dos estados

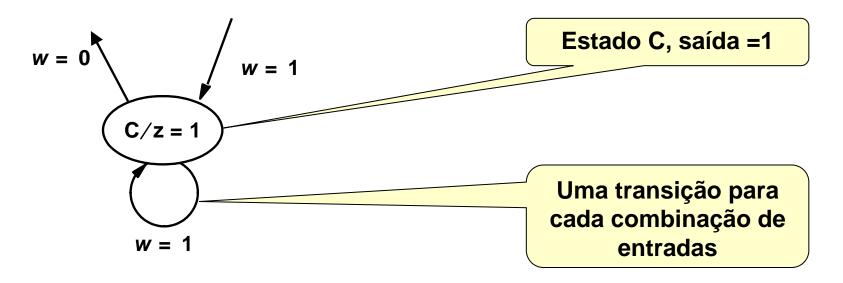
- Primeiro passo: quantos estados são necessários para representar o histórico?
- Não há método sistemático
- Imaginemos estado inicial (power-up ou reset) A com z = 0
 - desde que w=0, FSM mantém-se em A
- Se w=1 por um clock → estado B
 - significa histórico = um clock apenas com w=1
- Em B
 - se w=1 \rightarrow estado C e z =1
 - se w=0 → volta para A
- Três estados são suficientes

Diagrama de transição de estados



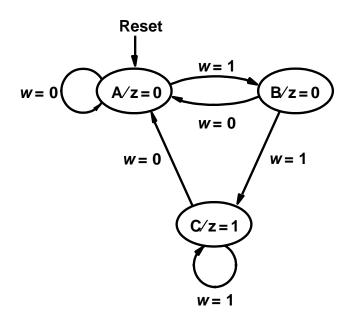
Ciclo:	t_0	t_1	t_2	t ₃	t ₄	t_5	t_6	t ₇	t_8	t ₉	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	0	1	0	0	1	1	0

Notação do diagrama



- Nesta modalidade: há uma saída determinada para cada estado (C/z=1)
- Transições de estado
 - saindo de C: uma para cada combinação de entradas
 - entrando em C: arbitrário (mas deve haver alguma, senão o estado nunca é alcançado)

Tabela de transição de estados

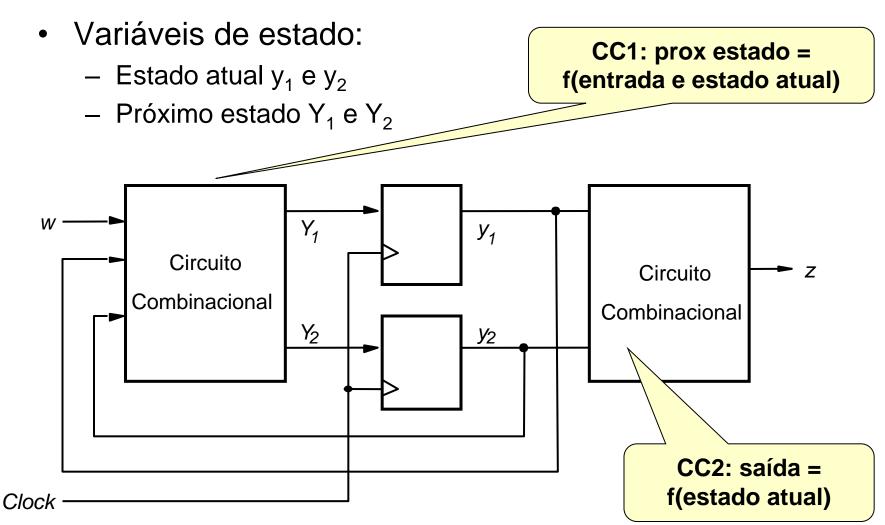


Estado	Próx	saída	
atual	w = 0	w = 1	Z.
А	Α	В	0
В	Α	С	0
C	Α	С	1

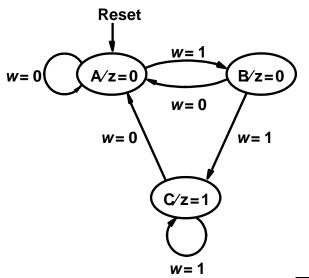
- Notar a ausência de Reset na tabela
 - clear do FF

Estrutura da FSM

Há três estados → 2 bits são suficientes



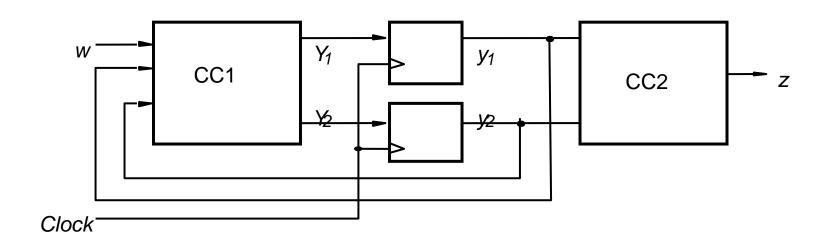
Atribuição de Estado



Estado	Próx	saída	
atual	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
С	Α	С	1

Entrada	Estado atual	Próximo estado	Saída
W	y2y1	Y2Y1	Z
0	A=00	A=00	0
0	B=01	A=00	0
0	C=10	A=00	1
0	11	dd	d
1	A=00	B=01	0
1	B=01	C=10	0
1	C=10	C=10	1
1	11	dd	d

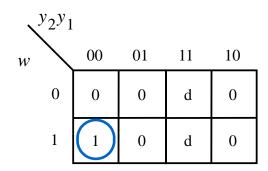
Tabelas verdade de CC1 e CC2 (assumindo FF-D)



W	y2	y1	Y2	Y1
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

W	y2	y1	Z
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	d
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	d

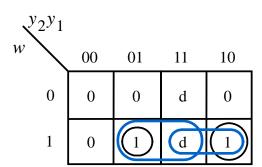
Síntese de CC1 e CC2



Sem don't cares

$$Y_1 = w\overline{y}_1\overline{y}_2$$

$$Y_1 = w\bar{y}_1\bar{y}_2$$



$$Y_2 = wy_1 \bar{y}_2 + w\bar{y}_1 y_2$$

$$Y_2 = wy_1 + wy_2$$

= $w(y_1 + y_2)$

$$y_2$$
 y_1
 0
 0
 0
 0
 0

$$z = \overline{y}_1 y_2$$

$$z = y_2$$

Circuito final com FF tipo D

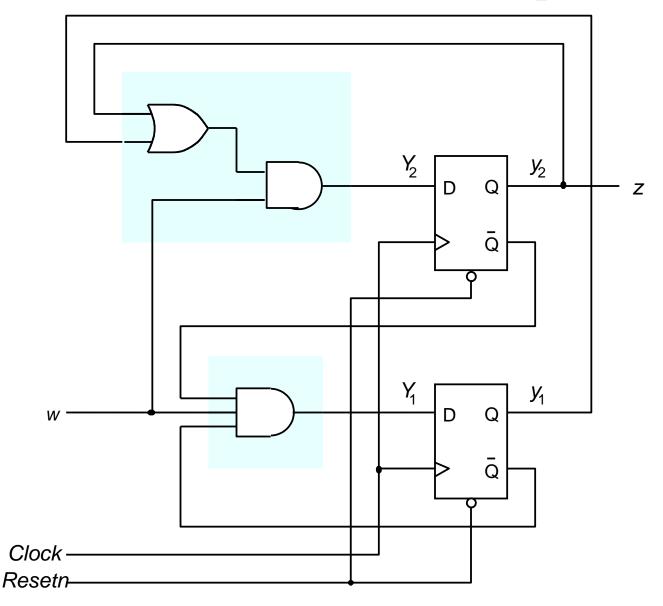
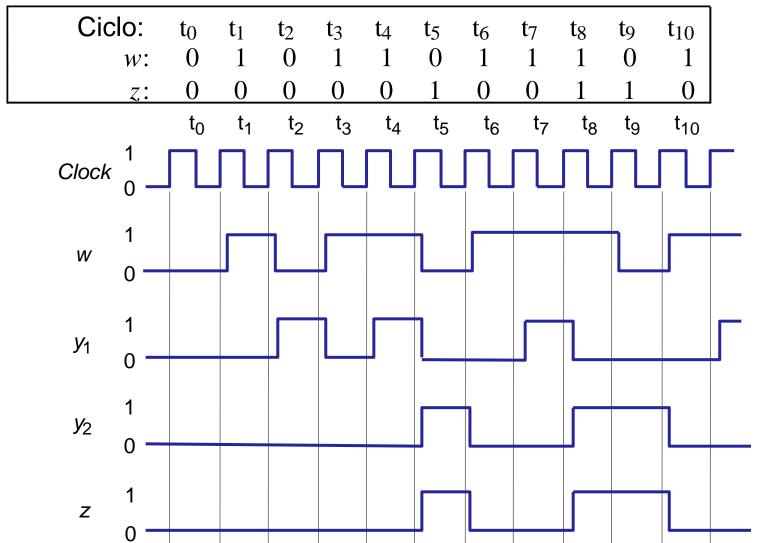


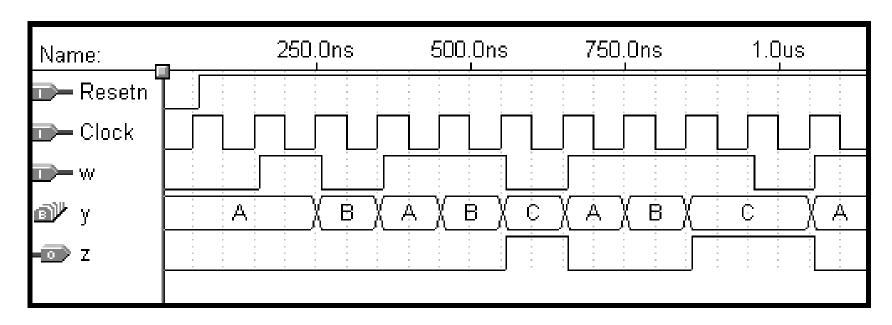
Diagrama de tempo da FSM



Simulação no Quartus

Observar

- agrupamento de sinais das variáveis de estado (tipo enumerado)
- identificação pelo Quartus da máquina de estado e geração automática do diagrama de transição



Resumo do procedimento

- Especificar o circuito
- Identificar o número de estados necessário e suas transições
- Desenhar o diagrama de transição de estados
- Fazer a tabela de transição de estados
- Fazer a atribuição de estados e completar a tabela
- (decidir o tipo de FF a ser usado e completar a tabela)
- Implementar os circuitos combinacionais CC1 e CC2

Exemplo de projeto: Expl 8.1

- Implementação da unidade de controle da fig 7.55
- Tarefa: após pulso de start em w, trocar o conteúdo de R1 e R2, usando R3 como temporário. Ao final, ativar sinal "done" (?? possível trocar diretamente??)

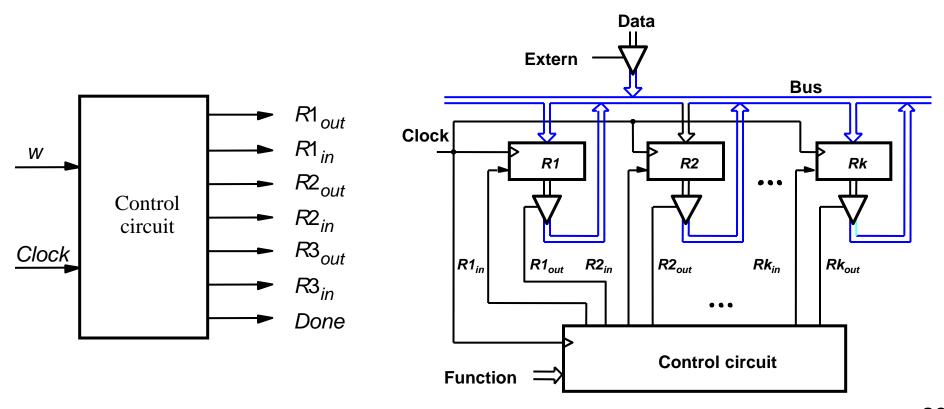
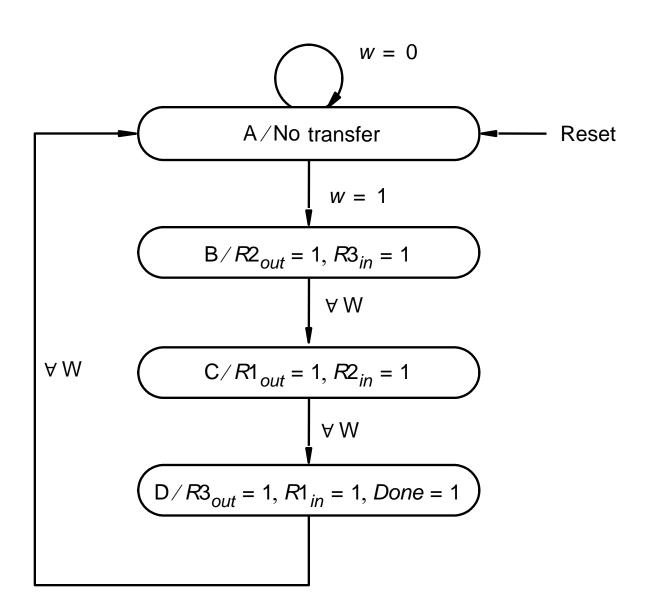


Diagrama de transição de estados

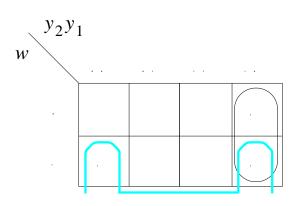


Tabelas de transição de estado

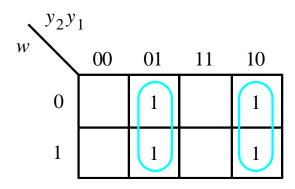
Present	Next state		Outputs						
state		<i>w</i> = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
Α	Α	В	0	0	0	0	0	0	0
В	С	С	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	Α	Α	0	1	0	0	1	0	1

	Present	Nexts	tate							
	state	w = 0	w = 1	Outputs						
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	00	00	0 1	0	0	0	0	0	0	0
В	01	10	10	0	0	1	0	0	1	0
C	10	11	1 1	1	0	0	1	0	0	0
D	11	00	0 0	0	1	0	0	1	0	1

Mapas de Karnaugh

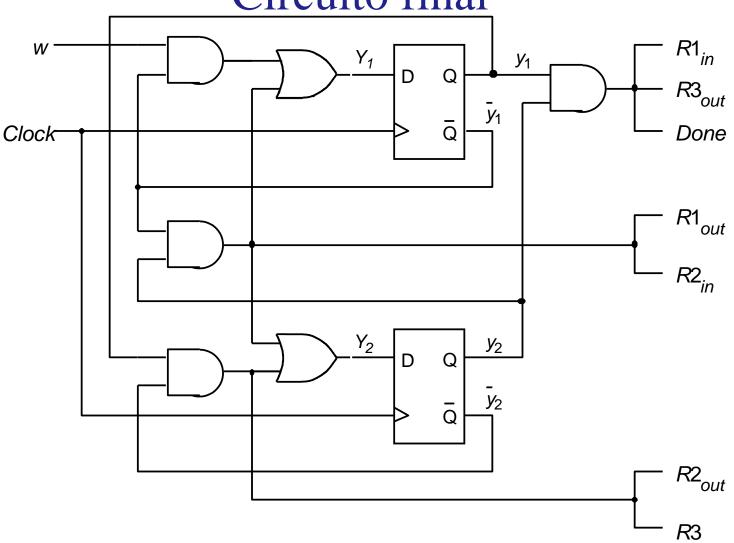


$$Y_1 = w\bar{y}_1 + \bar{y}_1y_2$$



$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

Circuito final



 (ver outra solução na fig. 7.57, com o uso de registrador de deslocamento

Circuito final: solução c/ Shift

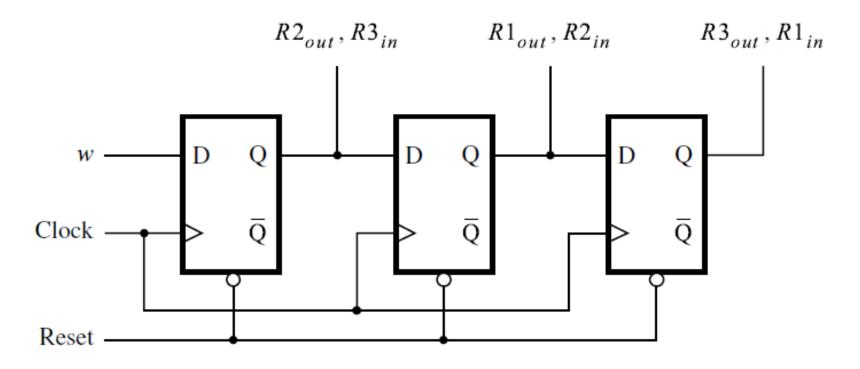
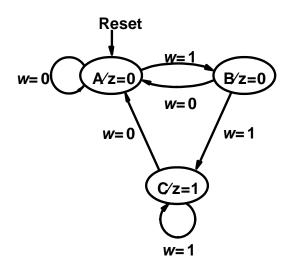


Figure 7.57 A shift-register control circuit.

O problema da atribuição de estados

- Nos exemplos anteriores → codificação dos estados foi arbitrária
- É possível escolher atribuição visando minimizar o circuito final
 - solução ótima é difícil
- Vejamos os dois últimos exemplos em outra codificação

Exemplo: detector de seq de dois 1s



Estado	Próx e	saída	
atual	w = 0	w = 1	Z
Α	Α	В	0
В	Α	С	0
C	Α	С	1

atribuição original

Present	Next		
state	w = 0	w = 1	Output
<i>y</i> ₂ <i>y</i> ₁	$Y_{2}Y_{1}$	$Y_{2}Y_{1}$	Z.
00	00	01	0
01	00	10	0
10	00	10	1 1
11	dd	dd	d

atribuição melhorada

	Present	Next		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Síntese do novo circuito

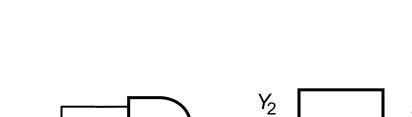
- Possível escrever equações diretamente
- $Y_1 = W$
- $Y_2 = w. y_1$
- $z = y_2$

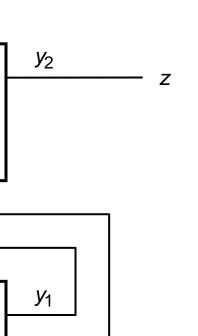
atribuição melhorada

	Present	Next		
	state	w = 0	w = 1	Output
	<i>y</i> 2 <i>y</i> 1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	11	0
C	11	00	11	1
	10	dd	dd	d

Circuito final com atribuição melhorada

- $Y_1 = W$
- $Y_2 = w. y_1$
- $z = y_2$





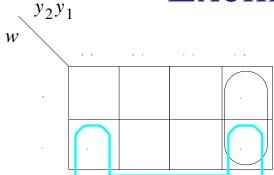
circuito antigo

Y₁

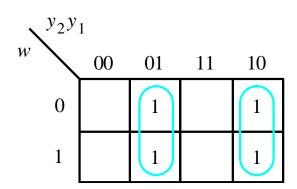
D

W

Exemplo 8.1 antigo



$$Y_1 = w\bar{y}_1 + \bar{y}_1y_2$$



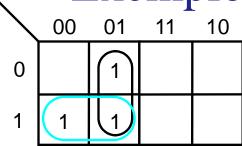
$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

Present	Nexts	tate										
state	w = 0	w = 1		Outputs								
y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done			
00	00	0 1	0	0	0	0	0	0	0			
01	10	10	0	0	1	0	0	1	0			
10	11	1 1	1	0	0	1	0	0	0			
11	00	0 0	0	1	0	0	1	0	1			

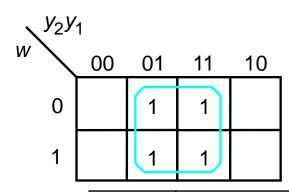
A B C

MC602 – Mario Côrtes – IC / Unicam

y₂y₁ Exemplo 8.1 com nova atribuição



$$Y_1 = w\bar{y}_2 + y_1\bar{y}_2$$



$$Y_2 = y_1$$

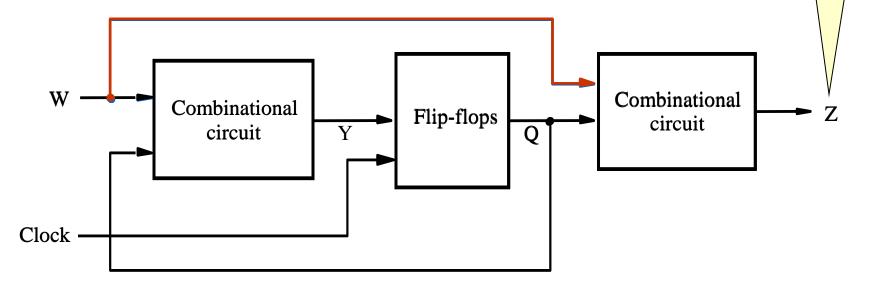
	Present	Nexts	tate		_							
	state	w = 0	w = 1	Outputs								
	y_2y_1	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done		
A	00	0 0	01	0	0	0	0	0	0	0		
В	01	1 1	11	0	0	1	0	0	1	0		
C	11	1 0	10	1	0	0	1	0	0	0		
D	10	0 0	00	0	1	0	0	1	0	1		

One-hot encoding

- É possível codificar os estados com n bits para n estados
 - apenas um bit fica ligado (one-hot)
- Grande número de don´t care (combinações de estados não utilizados)
- Vantagem: circuito combinacional pode ficar mais simples
- Desvantagem: usa maior número de FFs
- Ver detalhes na seção 8.2.1 do livro texto

Máquinas de Mealy

- Máquinas de Moore
 - próximo conteúdo dos flip-flops (Y) depende das entradas (W) e do estado atual (Q)
 Mealy: z pode mudar
 - saída depende do estado atual (Q)
- Máquina de Mealy
 - próximo conteúdo dos flip-flops (Y) depende das entradas
 (W) e do estado atual (Q)
 - saída depende do estado atual (Q) e das entradas (W)



a qquer instante,

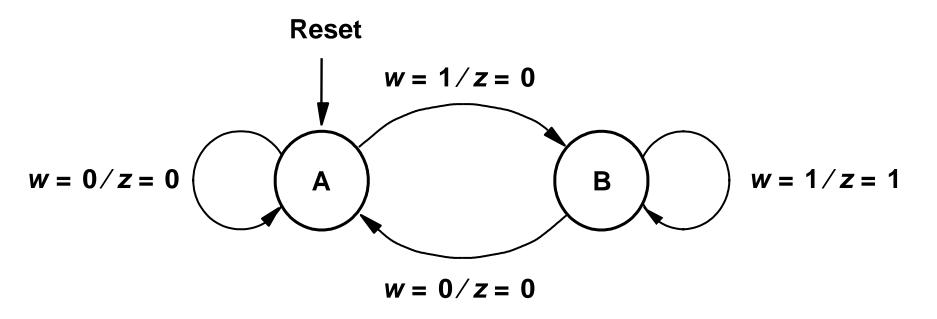
indep. do clock

Implementação Mealy do mesmo exemplo

- Especificações alteradas:
 - O circuito tem uma entrada w e uma saída z
 - Todas as mudanças ocorrem na borda de subida do clock
 - z=1 se w=1 nos dois últimos ciclos de clock no último clock e no clock atual
 - z=0 caso contrário

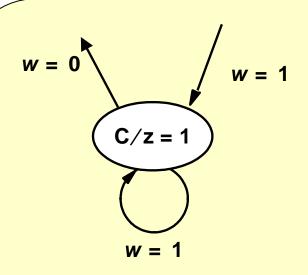
Clock cycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t ₈	t9	t ₁₀
w:	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	1	0	0	1	1	0	0

Diagrama de transição de estados da Máquina de Mealy



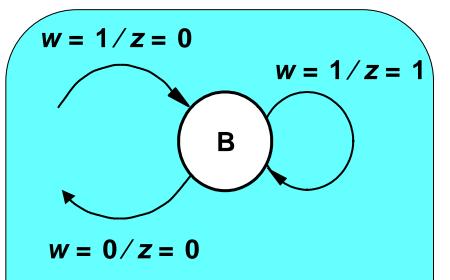
Clock cycle: w:	t_0	t_1	t_2	t ₃	t ₄	t ₅	t_6	t ₇	t ₈	t ₉	t ₁₀
<i>w</i> :	0	1	0	1	1	0	1	1	1	0	1
z:	0	0	0	0	1	0	0	1	1	0	0

Notação Moore e Mealy



Moore

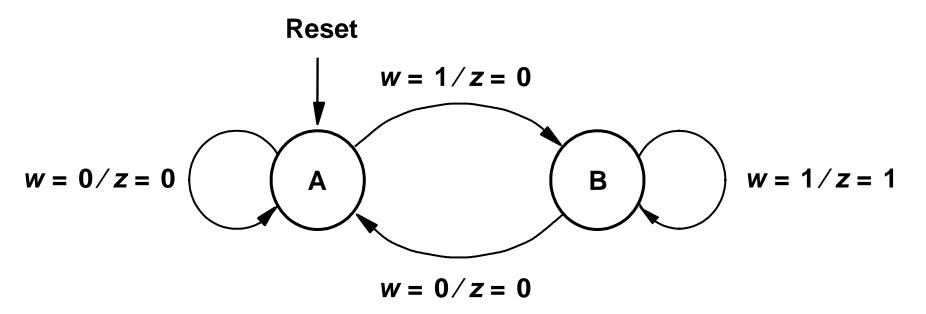
- Saída definida pelo estado atual
- Arcos de transição de estados não mostram saídas



Mealy

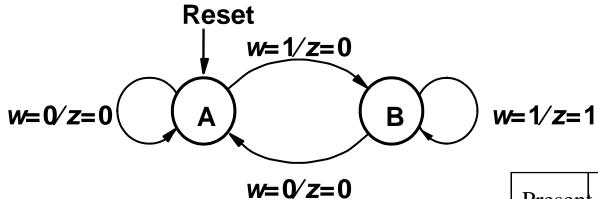
- O estado atual pode ter várias saídas, em função de w
- Arcos de transição mostram w e z

Tabela de transição de estados



Present	Next	state	Output z			
state	w = 0	w = 1	w = 0	w = 1		
A	A	В	0	0		
В	A	В	0	1		

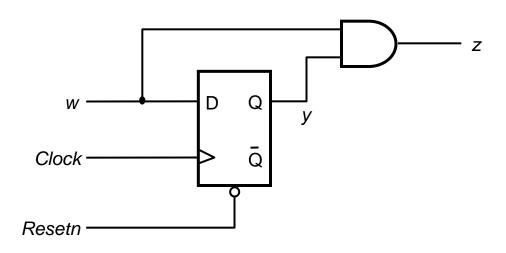
Tabela de transição de estados

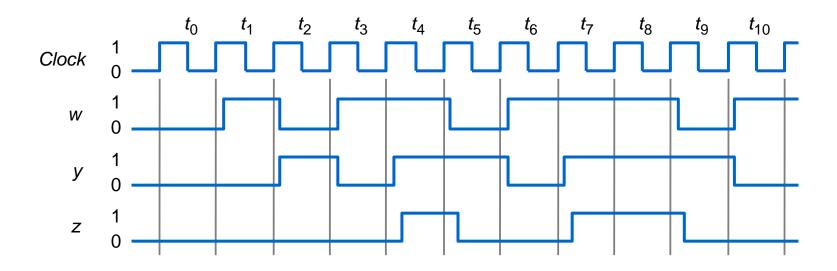


Presen	. Nex	t state	Out	tput
state	w = 0	w=1	w = 0	w=1
A	A	B B	0	0

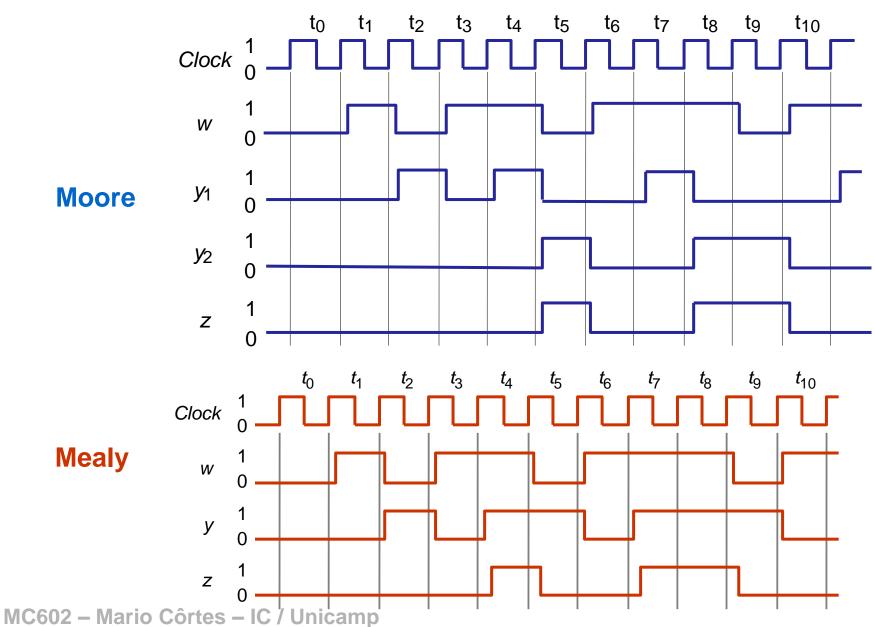
Present	Next	state	Output		
state	w = 0	w = 1	w = 0	w = 1	
У	Y	Y	z	Z	
0	0	1	0	0	
1	0	1	0	1	

Circuito e seu comportamento

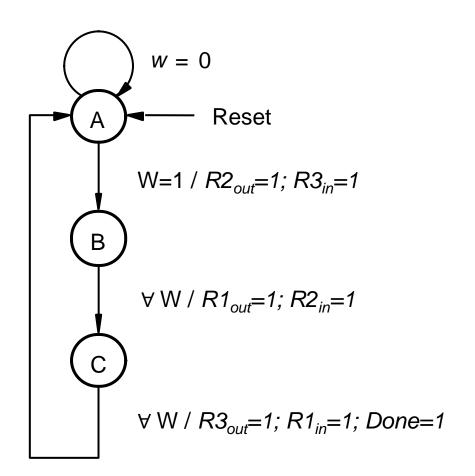




Comportamento comparado



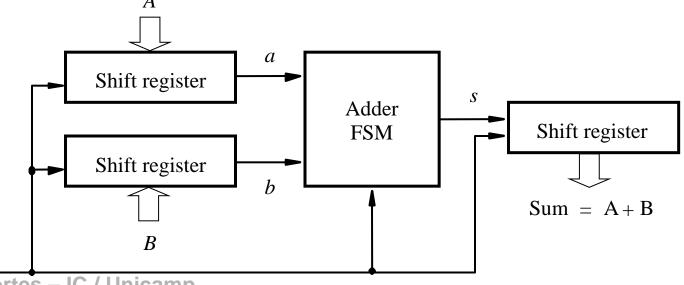
Exemplo 8.4 (Mealy em expl 8.1)



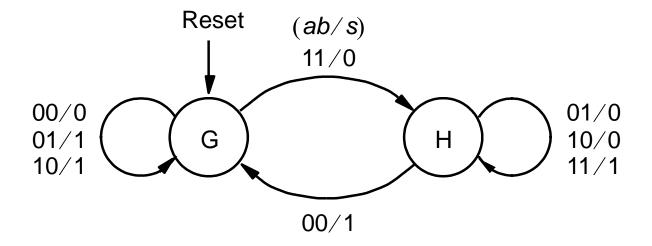
- troca de conteúdo dos registradores R1 e R2, usando R3 como temporário
- diagrama de transição de estados

8.5 Exemplo: somador serial

- Projetar um somador serial
 - operandos de n bits armazenados nos shifts A e B
 - resultado ficará armazenado no shift A+B
 - "Adder FSM" cuida da soma e do carry do bit anterior
 - bits são apresentados ao "Adder FSM" do LSB para o MSB

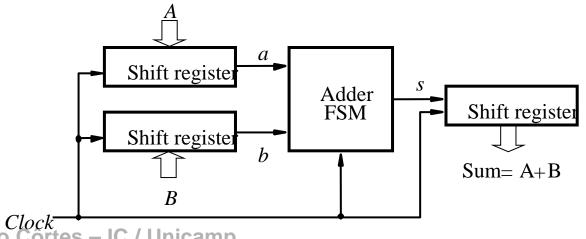


Projeto somador serial Mealy



G: carry-in = 0

H: carry-in = 1



MC602 – Mario Cortes – IC / Unicamp

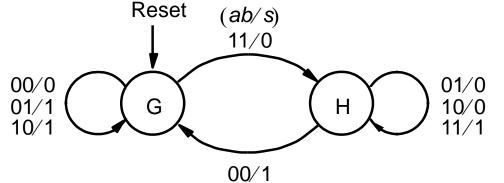
IC-UNICAMP

Tabelas de transição

de estados

G: carry-in = 0

H: carry-in = 1



Estados genéricos

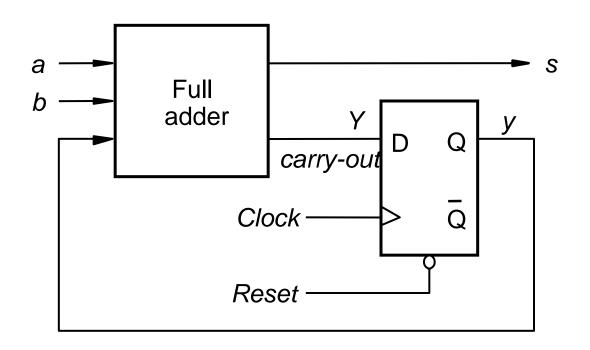
Present	N	ext st	ate	Output s				
state	ab =00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	H	H	H	1	0	0	1

Estados atribuídos

Present	N	ext st	ate			Ou	tput				
state	ab =00	01	10	11	00	01	10	11			
у		Y					S				
0	0	0	0	1	0	1	1	0			
1	0	1	1	1	1	0	0	1			

MC602 – Mario Côrtes – IC / Unicamp

Circuito do Somador Serial Mealy



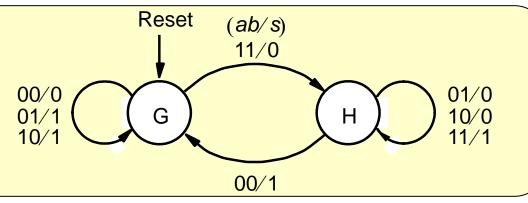
 Poderia ser projetado por inspeção (e tentativa e erro)

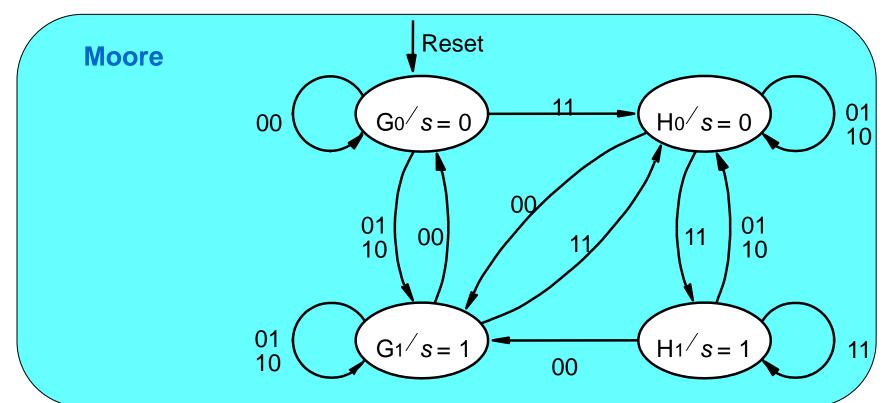
Projeto somador serial Moore

Mealy

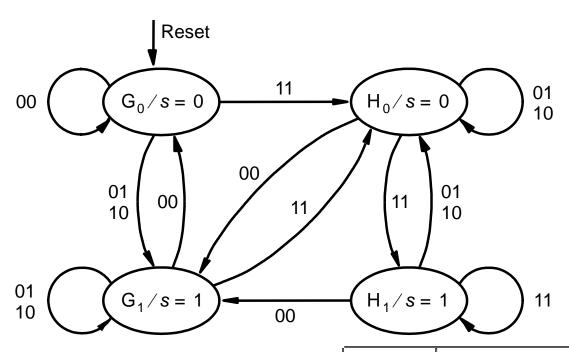
G: carry-in = 0

H: carry-in = 1





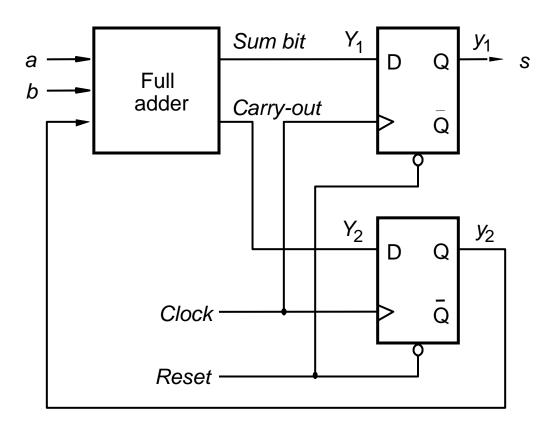
Tabelas de transição de estados



Present	N	Output			
state	<i>ab</i> =00	01	10	11	S
G_0	G_0	G_1	G_1	H_0	0
G_1	G_0	G_1	G_1	H_0	1
H_0	G_1	H_0	H_0	H_1	0
H_1	G_1	H_0	H_0	H_1	1

Present	N	Vexts	tate		
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		Y_2Y_1			S
00	00	01	01	10	0
01	00	01	01	10	1 1
10	01	10	10	11	
11	01	10	10	11	1 1

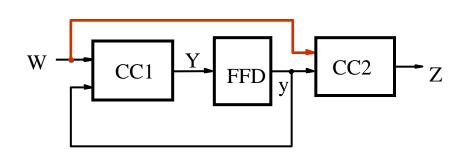
Circuito do Somador Serial Moore

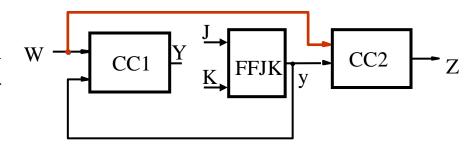


- Nos dois casos, apesar de mais complicada, a máquina Moore é mais robusta:
 - mudanças na entrada não afetam imediatamente a saída e só no próximo clock

Projeto de FSM com FF-D e FF-JK

- Visto até agora:
 FSM com FF-D
 - $-y_{i+1} = Y_i$
- E se FF-JK?
- Derivar de Y
 (próximo estado) → J e K

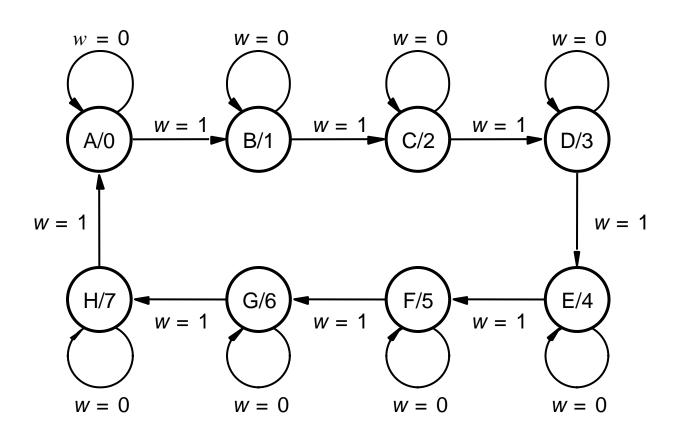




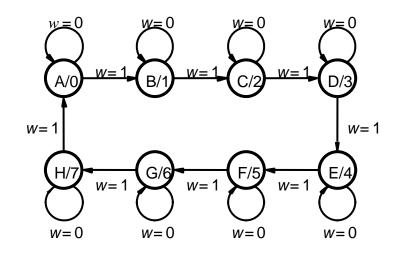
Estado atual → Próximo estado	J	K
0 → 0	0	d
0 → 1	1	d
1 → 1	d	0
1 → 0	d	1

Exemplo: contador como FSM (JK)

Contador síncrono mod 8: 0 1 2 3 4 5 6 7 0 ...



Tabelas de transição de estados



Present	Nex	Output	
state	w = 0	w = 1	
A	A	В	0
В	В	C	1
C	C	D	2
D	D	E	3
E	Е	F	4
F	F	G	5
G	G	H	6
Н	Н	A	7

	Present	Nex		
	state	w = 0	w = 1	Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	$Y_2Y_1Y_0$	$Y_2Y_1Y_0$	<i>Z</i> 2 <i>Z</i> 1 <i>Z</i> 0
A	000	000	001	000
В	001	001	010	001
C	010	010	011	010
D	011	011	100	011
$E \mid$	100	100	101	100
F	101	101	110	101
G	110	110	111	110
H	111	111	000	111

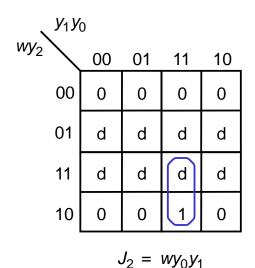
Derivação de J K do FF

Transição	J	K
$0 \rightarrow 0$	0	d
0 → 1	1	d
1 > 1	d	0
1 → 0	d	1

	Present	Nex		
	state	w = 0	w=1	Count
	<i>y</i> 2 <i>y</i> 1 <i>y</i> 0	Y 2 Y 1 Y 0	Y 2 Y 1 Y 0	z2z1z0
A	000	000	001	000
В	001	001	010	001
C	010	010	011	010
D	011	011	100	011
E	100	100	101	100
F	101	101	110	101
G	110	110	111	110
H	111	111	000	111

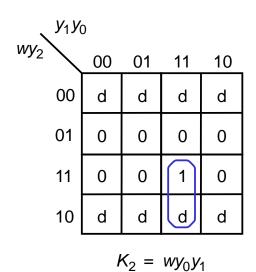
	Present	Flip-flop inputs								
	state		w =	0			w =	1		Count
	$y^2y^1y^0$	Y2 Y1 Y0	J^2K^2	J^1K^1	$J^{0}K^{0}$	Y2 Y1 Y0	J^2K^2	J^1K^1	J^0K^0	$z^2z^1z^0$
A	000	000	0d	0d	0d	001	0d	0d	1d	000
В	001	001	0d	0d	d0	010	0d	1d	d1	001
C	010	010	0d	d0	0d	011	0d	d0	1d	010
D	011	011	0d	d0	d0	100	1d	d1	d1	011
E	100	100	d0	0d	0d	101	d0	0d	1d	100
F	101	101	d0	0d	d0	110	d0	1d	d1	101
G	110	110	d0	d0	0d	111	d0	d0	1d	110
H	111	111	d0	<u>d0</u>	<u>d0</u>	000	d1	<u>d1</u>	<u>d1</u>	111

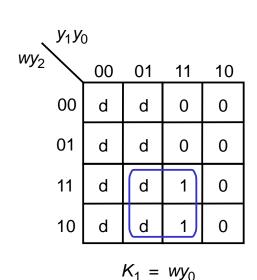
Mapas de Karnaugh para Js e Ks

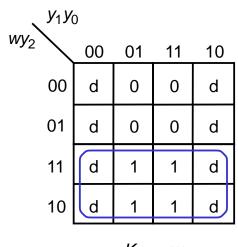


_	<i>y</i> ₁ <i>y</i> ₆	Ö				
wy ₂ `	\setminus	00	01	11	10	
	00	0	0	d	d	
	01	0	0	d	d	
	11	0	1	d	d	
	10	0	1	d	d	
	$J_1 = wy_0$					

\	<i>y</i> ₁ <i>y</i>	0				
wy ₂ `		00	01	11	10	
	00	0	d	d	0	
	01	0	d	d	0	
	11	1	d	d	1	
	10	1	d	d	_1	
	$J_0 = w$					





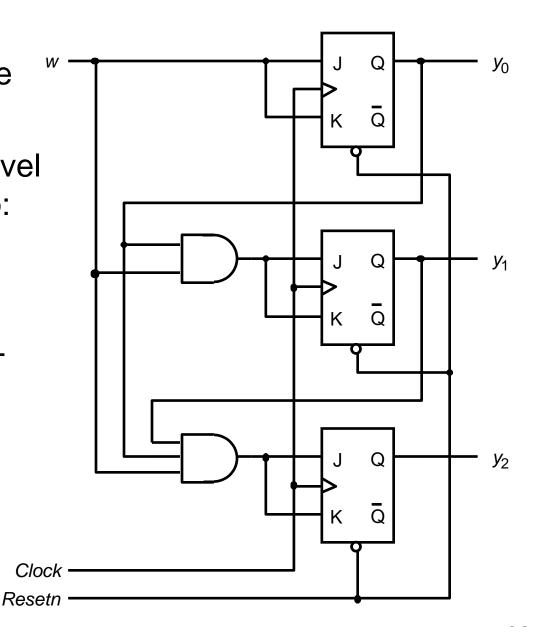


Circuito final com JKs

- Observar regularidade
- $J=K= w y_0 y_1 ... y_{n-1}$
- Observar que é possível fatorar termo repetido:

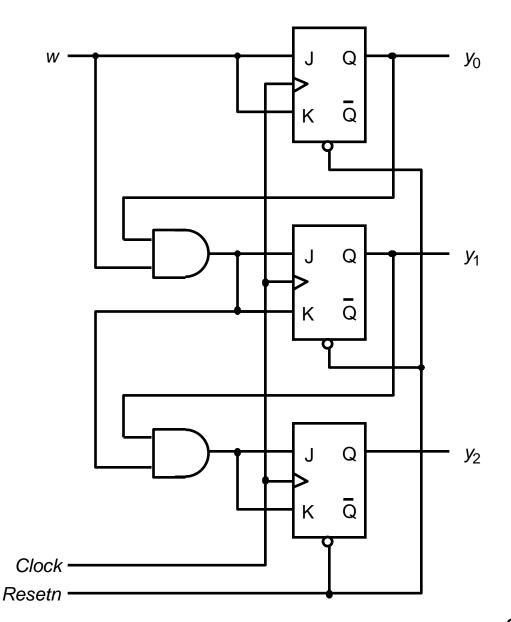
$$J_i = K_i = J_{n-1} \cdot y_{n-1}$$

 Essa é a forma conhecida com FF - T



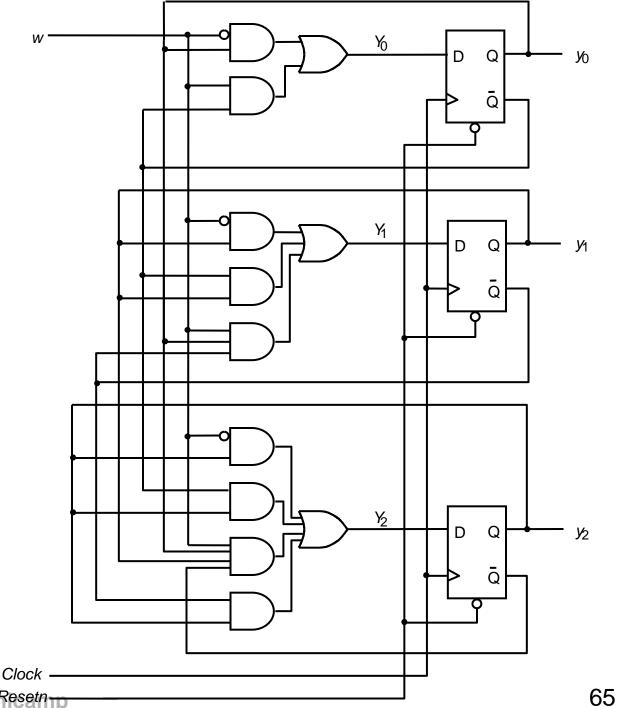
Contador com JK e termos fatorados

- Exatamente o contador com FFT
- Comparar com contador FFD



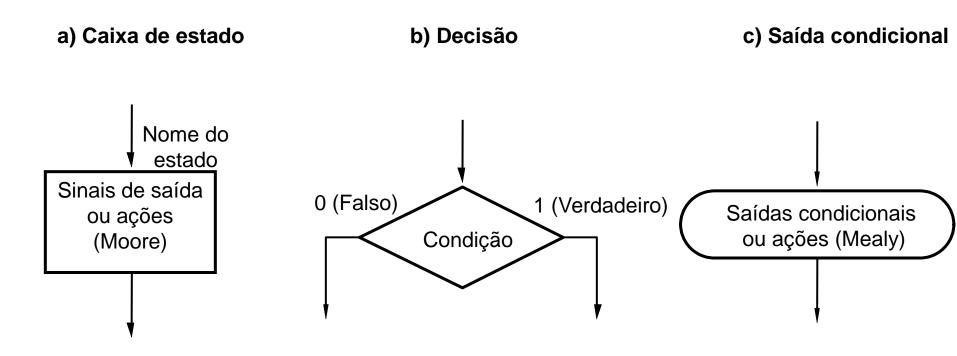
Contador com FFD

 Em geral, implementação com FFD tem maior custo

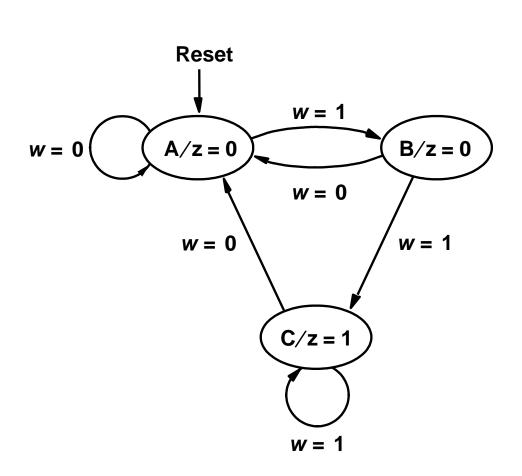


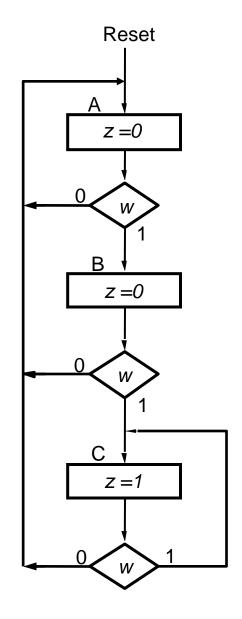
ASM – Algorithmic State Machine

- Representação alternativa (e equivalente) ao diagrama de estados
 - Semelhante ao fluxograma
 - Elementos principais:

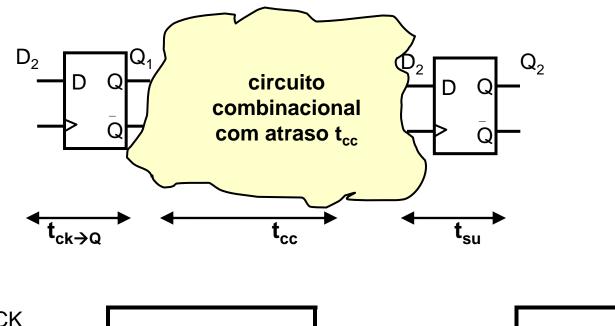


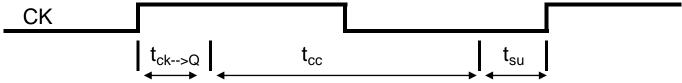
Exemplo 8.3: FSM e ASM





Visão geral de máquinas síncronas





- Em circuitos síncronos, frequência máxima do clock limitada pelo maior atraso combinacional
- $T_{ck} \ge t_{ck \rightarrow Q} + t_{cc} + t_{su}$
- $f_{ck} \le 1 / (t_{ck \rightarrow Q} + t_{cc} + t_{su})$