

MC 602

Circuitos Lógicos e Organização de Computadores

IC/Unicamp

Prof Mario Côrtes

Capítulo 4
Síntese e minimização
de circuitos combinacionais

Tópicos

- Mapas de Karnaugh
- Minimização
 - terminologia e procedimento
 - SOP e POS
- Funções incompletamente especificadas
- Circuitos multi-saída
- Circuitos multi-nível
- Método tabular
- Técnica de minimização por cubos lógicos

Síntese manual de um circuito (sec 2.6)

Row number	x_1	x_2	x_3	f
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = \sum m(0, 2, 4, 5, 6)$$

Minimização algébrica

$$f = \sum m(0,2,4,5,6) = m_0 + m_2 + m_4 + m_5 + m_6$$

$$f = \overline{x}_1 \overline{x}_2 \overline{x}_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3$$

$$A = m_0 + m_2 = \overline{x}_1 \overline{x}_3$$

$$B = m_4 + m_5 = x_1 \overline{x}_2$$

$$C = m_4 + m_6 = x_1 \overline{x}_3$$

$$D = A + C = \overline{x}_3$$

$$f = B + D = \overline{x}_3 + x_1 \overline{x}_2$$

OBS: notem que m₄ foi "duplicado" (m₄+m₄=m₄) e que m₄ foi combinado duas vezes: com m₅ e com m₆

Simplificações típicas

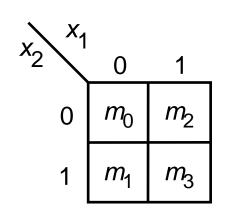
- Na manipulação algébrica, usamos sucessivas vezes
 - dois termos que diferiam de apenas um literal eram combinados para gerar um termo com um literal a menos
- Mapa de Karnaugh:
 - rearranjo da tabela verdade para facilitar a identificação de termos "vizinhos"
- Função com n variáveis
 - Tabela verdade → 2ⁿ linhas
 - Mapa de Karnaugh → 2ⁿ células

Mapa de Karnaugh de 2 variáveis

$$(m_0, m_2) = (\bar{x}_1 \bar{x}_2, x_1 \bar{x}_2)$$

 $(m_1, m_3) = (\bar{x}_1 x_2, x_1 x_2)$
 $(m_0, m_1) = (\bar{x}_1 \bar{x}_2, \bar{x}_1 x_2)$
 $(m_2, m_3) = (x_1 \bar{x}_2, x_1 x_2)$

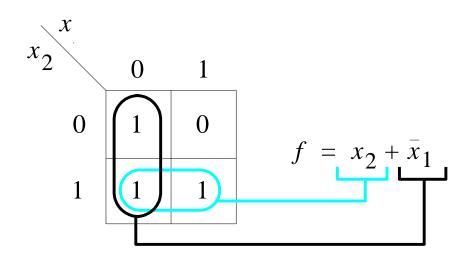
<i>x</i> ₁	<i>x</i> ₂	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3



- (a) Tabela verdade
- (b) Mapa de Karnaugh

 Mintermos vizinhos no Mapa de Karnaugh (horizontal e vertical) diferem de apenas um literal

Uma função simples (fig 2.15)



 Possibilidades para cobrir todos os mintermos

$$x_2 + \overline{x}_1 \cdot \overline{x}_2 \quad \overline{x}_1 + x_1 \cdot x_2 \quad \overline{x}_1 + x_2$$

Qual tem o menor custo?
 custo = nº total de gates + nº total de entradas

Mapa de Karnaugh de 3 variáveis

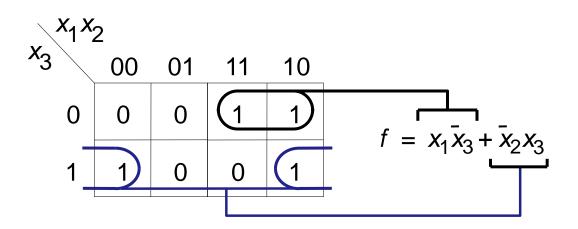
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7

$x_1 x_2$	2			
<i>x</i> ₃	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

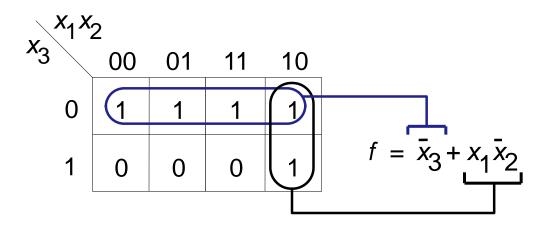
- Mintermos vizinhos no Mapa de Karnaugh (horizontal e vertical) diferem de apenas um literal
- Observar que também são vizinhos (m₀,m₄) e (m₁,m₅)

Exemplos de funções de 3 variáveis

Função da Fig. 2.18

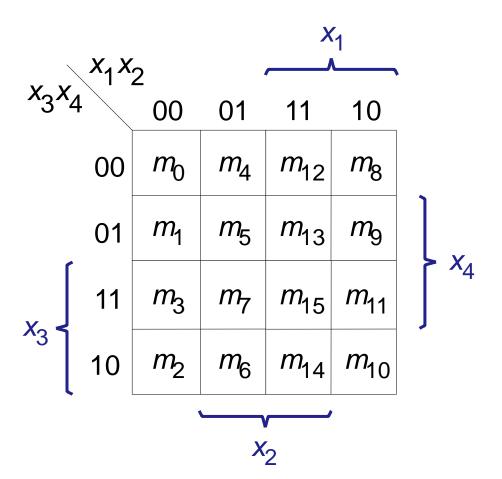


Função da Fig. 4.1

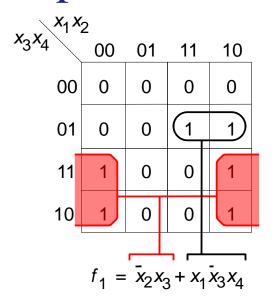


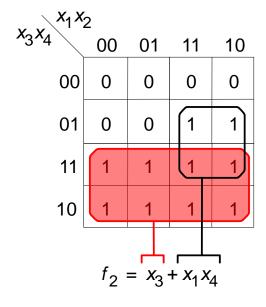
Mapa de Karnaugh de 4 variáveis

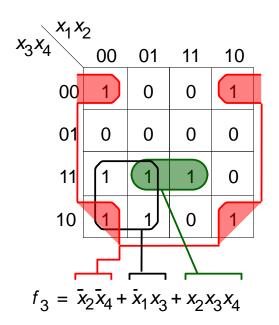
- Mintermos vizinhos no Mapa de Karnaugh (horizontal e vertical) diferem de apenas um literal
- Observar que também são vizinhos os mintermos das colunas (00,10) e das linhas (00,10)

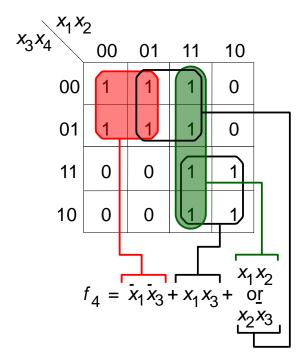


Exemplos de M.K. de 4 variáveis

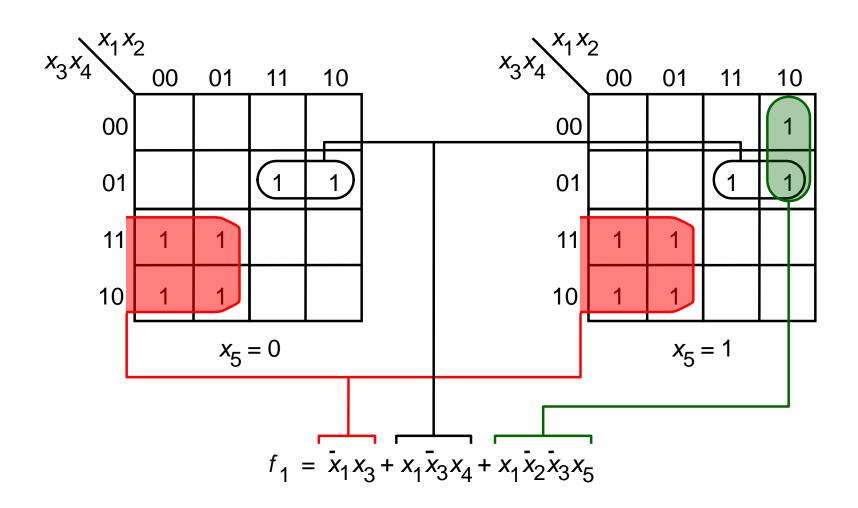








Mapa de Karnaugh de 5 variáveis



Mapas de Karnaugh: observações

- E para 6 variáveis? (tentar)
- E para 7? Ou mais?
- Exercício: calcular o número possível de funções lógicas de n variáveis e uma saída
 - dica: raciocinar com a tabela verdade ou o Mapa de Karnaugh

Estratégia para minimização

- Exemplos vistos de Mapas de Karnaugh:
 - minimização feita intuitivamente, por tentativa e erro
 - buscar maiores grupos de mintermos vizinhos que pudessem cobrir todos os 1s
- Veremos agora uma estratégia estruturada
 - → terminologia

Terminologia para $f(x_1...x_n)$

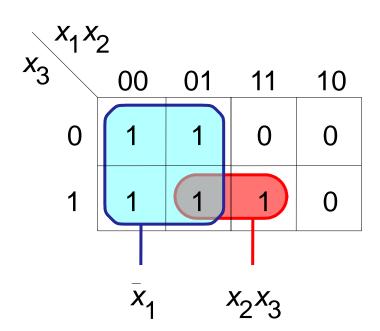
- Mintermo: produto que contém todas as variáveis (complementadas ou não) > já visto
- Literal: cada ocorrência de uma variável de entrada em um produto, complementada ou não
 - um mintermo de uma função de n variáveis tem n literais
 - $-x_1\overline{x}_3\overline{x}_5$ tem 3 literais e $x_1\overline{x}_3\overline{x}_5x_6\overline{x}_8\overline{x}_9$ tem 6 literais

Terminologia para f $(x_1...x_n)$ cont.

- Implicante: produto de qualquer número de variáveis para o qual f=1
 - o implicante mais básico é o mintermo, que tem n literais e é representado por 1 célula no M.K.
 - um implicante de (n-1) literais → 2 células vizinhas no M.K.
 - implicante de (n-2) literais → 4 células vizinhas
 - (n-k) literais → 2^k células vizinhas
 - implicante de 1 literal \rightarrow 2⁽ⁿ⁻¹⁾ = metade do M.K.
 - implicante de 0 literais (f=1 ou f=0) → M.K. inteiro

Implicantes em $f = \Sigma m(0, 1, 2, 3, 7)$

- Há 11 implicantes
 - De 1 célula → mintermos = 5
 - De 2 células → pares
 vizinhos de mintermos = 5
 - De 4 células → "quadrados"
 de mintermos = 1

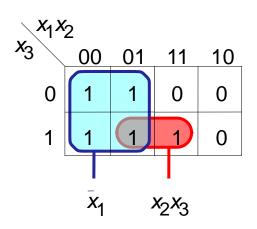


Implicantes principais

- Implicante que
 - não pode ser combinado com outro implicante, ou
 - não está contido em outro implicante com menos literais, ou
 - não pode ter qualquer de seus literais removido e manter-se como implicante principal

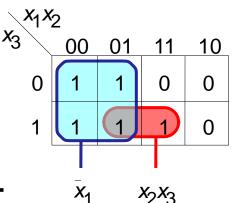
 Na figura, temos dois implicantes principais: x

₁ e x₂x₃



Cobertura (cover)

- Cobertura = coleção de implicantes que contém todas as células iguais a um no mapa de Karnaugh
 - a coleção de todos os implicantes principais é uma cobertura



- Algumas coberturas para o exemplo:
 - todos os mintermos:

$$f = \Sigma m(0, 1, 2, 3, 7)$$

– alguns implicantes:

$$f = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + x_2 x_3$$

- implicantes principais:

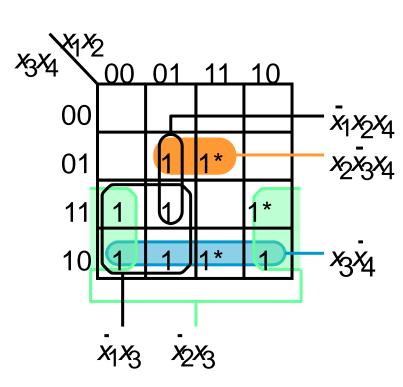
$$f = \overline{X}_1 + X_2 X_3$$

Custo da implementação

- No livro texto, custo = nº de gates + nº de entradas
- Mas, será assumido que os complementos das entradas primárias também estão disponíveis >> não considerar inversores nas entradas
- custo para $f = x_1 \overline{x}_2 + x_3 \overline{x}_4$
 - 2 (AND)+1(OR)+4(entr. AND)+2(entr. OR)=9
- custo para $f = (x_1 \overline{x}_2 + x_3)(\overline{x}_4 + x_5)$
 - 2 (AND)+2(OR)+1(NOT)+9(entradas)=14

Implicante principal essencial

- Implicante principal é essencial se for o único a cobrir algum mintermo
- Exemplo: $f = \Sigma m(2, 3, 5, 6, 7, 10, 11, 13, 14)$
 - 5 implicantes principais
 - somente 3 são essenciais*
 - x̄₂x₃ devido a m11
 - $x_3 \overline{x}_4$ devido a m14
 - $x_2\overline{x}_3$ x_4 devido a m13
 - faltou somente cobrir m7, e há 2 impl princ → escolher menor custo
 - $f = \overline{x}_2 x_3 + x_3 \overline{x}_4 + x_2 \overline{x}_3 x_4 + \overline{x}_1 x_3$



Procedimento de minimização

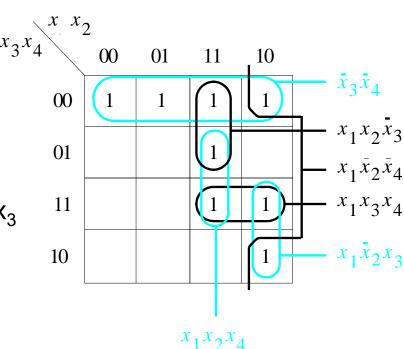
Procedimento

- 1. identificar todos os implicantes principais
- 2. identificar quais são essenciais
- 3. selecionar outros implicantes principais de modo a completar a cobertura, com custo mínimo

Exemplo de aplicação

- $f = \sum m(0, 4, 8, 10, 11, 12, 13, 15)$
- Há 6 impl. principais
- Só um essencial: x̄₃ x̄₄
- Considerar x₁ x₂ x

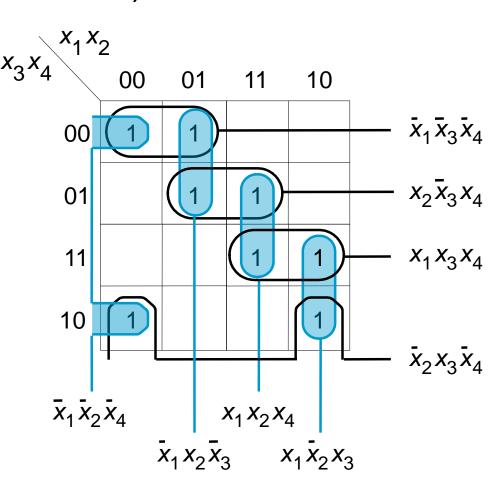
 ₃
 - alt 1: incluí-lo
 - para cobrir m10, m11, m15
 - usar $x_1 x_3 x_4 e x_1 \overline{x}_2 x_3$
 - $f = \overline{X}_3 \overline{X}_4 + X_1 X_2 \overline{X}_3 + X_1 X_3 X_4 + X_1 \overline{X}_2 X_3$
 - alt 2: não incluí-lo
 - x₁ x₂ x₄ se torna essencial para cobrir m13
 - $f = \overline{\chi}_3 \overline{\chi}_4 + \chi_1 \chi_2 \chi_4 + \chi_1 \overline{\chi}_2 \chi_3$
 - MENOR CUSTO



Exemplo sem implicantes essenciais

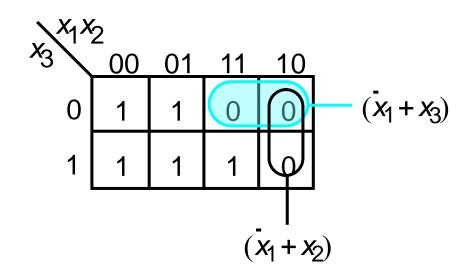
• $f = \sum m(0, 2, 4, 5, 10, 11, 13, 15)$

- Neste caso, escolher um implicante para considerar dentro ou fora
- No exemplo, duas soluções de mesmo custo
 - implicantes "horizontais"
 - implicantes "verticais"



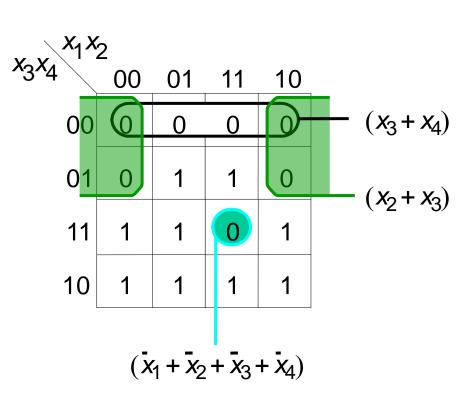
Minimização de POS

- Procedimento dual
- $f = \Pi M(4, 5, 6)$ (ver slide 17)
- $f = (\overline{x}_1 + x_2) \cdot (\overline{x}_1 + x_3)$
- custo ficou maior que o SOP



Outro exemplo POS

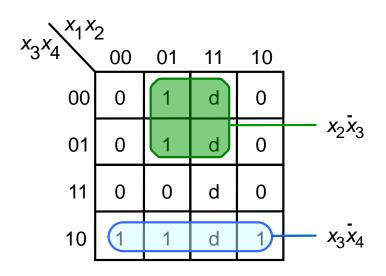
- $f = \Pi M(0, 1, 4, 8, 9, 12, 15)$
- $f=(x_2+x_3)(x_3+x_4)(\overline{x}_1+\overline{x}_2+\overline{x}_3+\overline{x}_4)$
- custo =15
- comparar com SOP slide 21
- custo SOP = 18



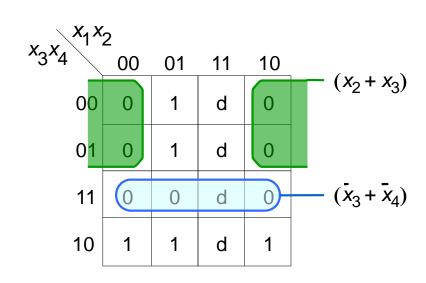
Funções especificadas incompletamente

- Às vezes certas combinações de entrada nunca acontecem
 - ex, se x₁ controla uma escolha do modo de operação em um sistema e x₂ outra escolha, então x₁ e x₂ =1 nunca podem acontecer
 - entradas possíveis: $x_1x_2 = (00,01,10)$
 - entrada impossível: $x_1x_2=(11)$
- As células do Mapa de Karnaugh impossíveis de acontecer são "don't care", representadas por "d"
- Exemplo de representação $f = \sum m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$

Incluir "d" nos implicantes principais, quando oportuno para minimização



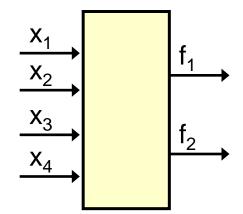
(a) SOP implementation



(b) POS implementation

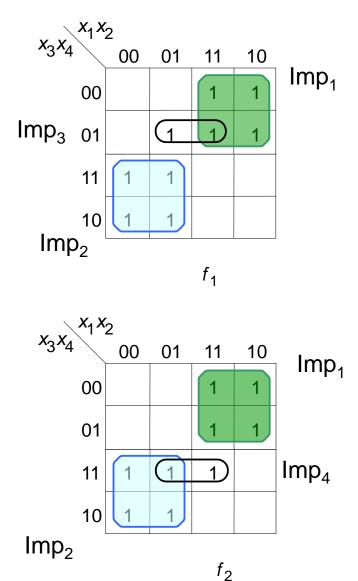
Circuitos com múltiplas saídas

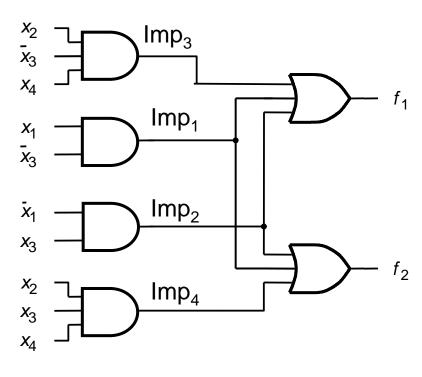
- Implementação convencional:
 - mínimo para f1 e mínimo para f2
 - implementados separadamente



- Implementação resultante pode não ser mínima
- Procedimento para obter mínimo
 - tentar compartilhar implicantes principais entre f₁
 e f₂
- Compartilhamento pode ser natural ou forçado (exemplos a seguir)

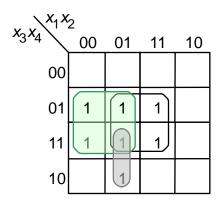
Ex1: circuito de 2 saídas



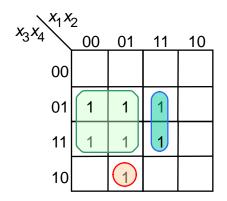


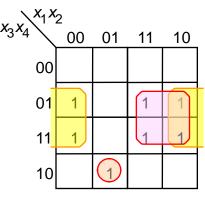
Circuito resultante para f_1 e f_2

Ex1: circuito de 2 saídas

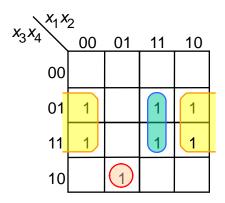


Minimização de f₃

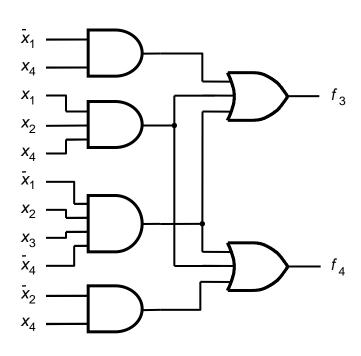




Minimização de f₄



Minimização conjunta de f_3 e f_4



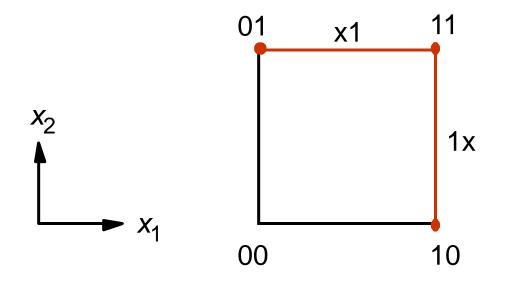
Minimização conjunta para f₃ e f₄

Síntese multi-nível

- Visto até agora: síntese visando custo mínimo → SOP ou POS de 2 níveis
- OK para circuitos de porte pequeno/médio
- Circuitos muito grandes podem ter problema de fan-in excessivo (portas com muitas entradas)
- Para sintetizar circuitos com outras restrições (ex fan-in), ferramentas de SW implementam circuitos multi-níveis
- Detalhes na seção 4.6 e 4.7 do livro texto

Representação cúbica

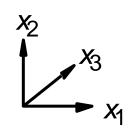
- Mapa de Karnaugh é ótimo para ilustrar conceitos.
 - automatização da síntese em SW precisa de outra ferramenta -> exemplo repres. cúbica
- Exemplo: $f = \sum m(1, 2, 3) = x_1 + x_2$



<i>x</i> ₁	<i>x</i> ₂	f
0	0	0
0	1	1
1	0	1
1	1	1

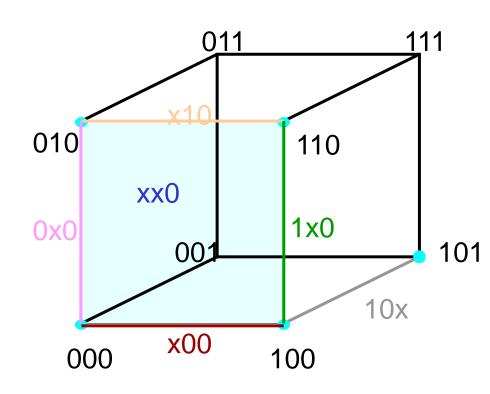
Exemplo de cubo 3D

- $f = \sum m(0, 2, 4, 5, 6)$
- algumas possibilidades de representação (000,010,100,101,110)



(xx0,10x)

• $(xx0,10x) \rightarrow \overline{x}_3 + x_1 \overline{x}_2$ é a ótima

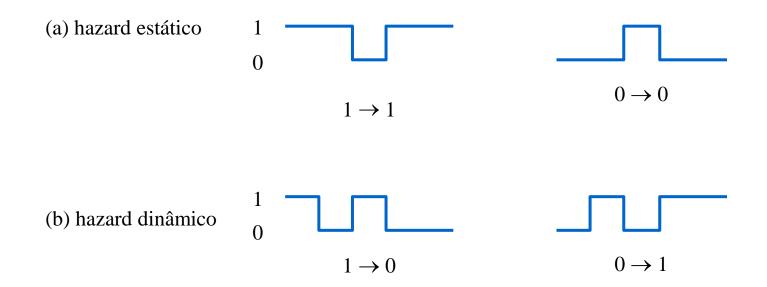


Método tabular

- Algoritmo de Quine e McCluskey (1959)
- Início: tabela de mintermos
- A partir do mintermos (0-cubo) gera-se 1cubos
- Mintermos cobertos são marcados
- A partir dos 1-cubos gera-se 2-cubos
- Termos cobertos são marcados
- Assim por diante
- Detalhes na seção 4.9

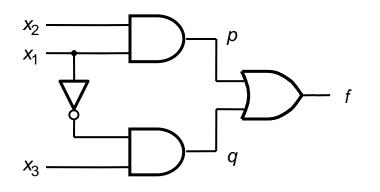
Hazards e glitches

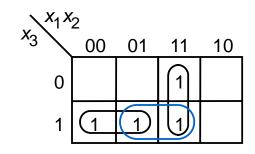
- Hazards e glitches: sinais temporários espúrios que ocorrem antes do sinal de estabilizar
- Podem causar problemas

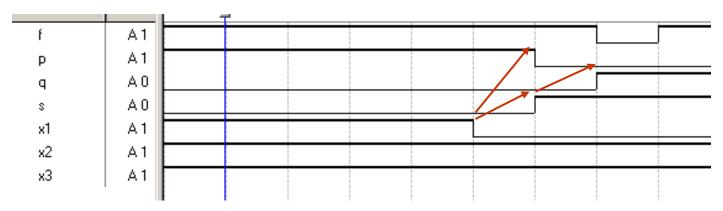


Exemplo de hazard estático

- Efeito de x1(1 \rightarrow 0) faz p(1 \rightarrow 0) antes que q (0 \rightarrow 1)
- Existe momento temporário em que p+q=0

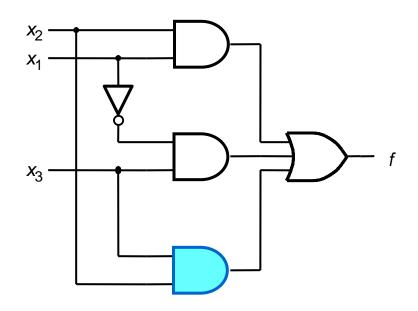


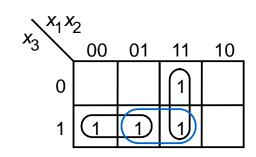




Solução do hazard estático

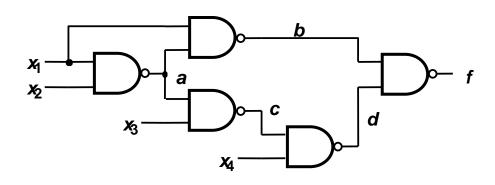
- Existe risco de hazard sempre que dois 1s adjacentes no mapa de Karnaugh não são cobertos por um único implicante
- Solução: criar novo implicante (redundante) para cobrir a transição

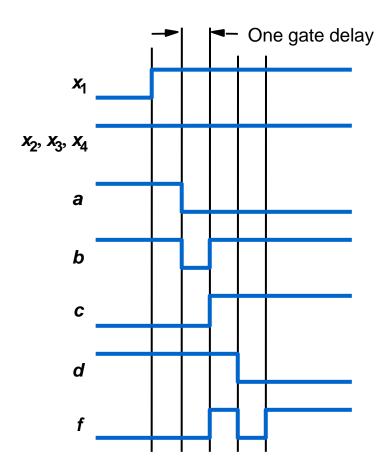




Exemplo de hazard dinâmico

- Quando $0 \rightarrow 1 \rightarrow 0$ ou $1 \rightarrow 0 \rightarrow 1$
- Aparece em circuitos > 2 níveis
- Observar hazard estático interno





Efeitos dos hazards

- Em circuitos combinacionais
 - apenas causa oscilações temporárias sem afetar o valor final da saída
 - poucos efeitos nocivos
- Em circuitos sequenciais (cap. 7)
 - pode levar a estado incorreto (→erro) se
 - hazard na entrada de dados dentro do tempo de setup e hold
 - ou no sinal de clock
 - ou em entradas de controle assíncronas: load, preset, clear