

	RA:	Nome:	Entrega
Lista de Exercícios Nº 4 (ver site		(ver site)	

Assunto coberto: capítulo 5 (sistemas de numeração e circuitos aritméticos), uso do Quartus II. Questões com uso do Quartus: Q1, Q2 e Q3.

Q1.

Projete e simule no Quartus:

Um circuito minimizado com duas saídas para implementar as seguintes funções

$$f(x_1, x_2, x_3, x_4) = \sum m(0, 2, 4, 6, 7, 9) + D(10, 11)$$

$$g(x_1, x_2, x_3, x_4) = \sum m(2, 4, 9, 10, 15) + D(0, 13, 14)$$

Q2.

Projete e simule no Quartus:

Um sistema tem 4 sensores que podem produzir de saída 0 ou 1. O sistema opera corretamente quando no máximo um dos seus sensores tem saída igual à 1. Um alarme deve ser acionado quando dois ou mais sensores tiverem saídas iguais à 1. O circuito deve ser o mais simples que pode ser usado para acionar o alarme.

Q3.

Execute as etapas abaixo no Quartus:

- (a) Circuito1: FullAdder
 - Projete um somador completo (Full Adder) de 1 bit.
 - Simule
 - Crie um símbolo para o componente somador completo.
- (b) Circuito2: RippleCarry Adder
 - Projete um somador ripple carry de 4 bits utilizando o símbolo do somador completo. Considere os números de entrada e saída inteiros positivos.
 - Simule agrupando os sinais de entrada e saída e exibindo-os em formato decimal.
 - Crie um símbolo para o componente ripple carry..
- (c) Circuito3: SomadorSubtrator
 - Projete um somador/subtrator de 4 bits utilizando o símbolo do somador ripple carry. Considere os números de entrada e saída em complemento de dois.
 - Simule agrupando os sinais de entrada e saída e exibindo-os em formato decimal.

Q4.

4.1 (BV 5.1 *Modificada*)

Determine os valores decimais dos seguintes números sem sinal:

- (a) (0111010101),
- (b) (1011100101)₂
- (c) $(3351)_8$

le4_v5.doc

- (d) $(A32F)_{16}$
- (e) (FEEF)₁₆

4.2 (BV 5.2 *Modificada*)

Determine os valores decimais dos seguintes números representados em complemento de 1.

- (a) 0111110100
- (b) 1011110011
- (c) 1111111110

4.3 (BV 5.3 Modificada)

Determine os valores decimais dos seguintes números representados em complemento de 2.

- (a) 0111110100
- (b) 1011110011
- (c) 1111111110

4.4 (BV 5.4 *Modificada*)

Converta os números decimais 77, 1096, -85, e -1530 em números de 12 bits nas seguintes representações:

- (a) Sinal e magnitude.
- (b) Complemento de 1.
- (c) Complemento de 2.

4.5 (BV 5.5)

Faça as seguintes operações envolvendo número de 8 bits representados em complemento de dois e indique se ocorre overflow. Verifique suas respostas convertendo para decimal.

00110110	01110101	11011111
+01000101	+11011110	+10111000
00110110	01110101	11010011
-00101011	-11010110	-11101100

Q5.

Quais são os valores dos dígitos a e b nos números em seguida para que a igualdade envolvendo as suas representações em hexadecimal e octal seja verdadeira:

$$(aa)_{16} = (bb)_8 - 1$$

le4_v5.doc 2