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Abstract. Recent work has shown that intelligent neighbor selection during con-
struction can significantly enhance the performance of peer-to-peer overlay net-
works. While its impact on performance has been recognized, few have examined
the impact of neighbor selection on network resilience. In this paper, we study
the impact with a generalized cost model for overlay construction that takes into
consideration different types of heterogeneity, such as node capacity and network
proximity. Our simulation results show that the resulting performance improve-
ment comes at the cost of static resilience against targeted attacks and adding
random redundancy can improve the resilience significantly.

1 Introduction

Recent research has shown structured peer-to-peer overlay networks to provide scalable
and resilient abstractions to large-scale applications [20, 12, 15, 9, 11]. They support
routing to endpoints or nodes inside a network requiring only logarithmic routing state
at each node. Nodes in structured peer-to-peer networks choose their neighbors based
on optimization metrics. A recent study by Gummadi et al. [7] shows that neighbor
selection based on network proximity significantly improves overall performance.

However, such neighbor selection can lead to an unbalanced overlay structure.
Figure 1 shows a snapshot of the number of incoming edges (in-degree) and outgo-
ing edges (out-degree) of nodes in a Bamboo [11] overlay running on PlanetLab [5].
Because the overlay uses proximity neighbor selection, some nodes in the system are
more popular (have higher in-degree) than others. The impact of such a skewed degree
distribution on the static resilience of networks has yet to be quantified. The focus of
our study is to look at the impact of different neighbor selections on static resilience
and performance of networks.

To better model neighbor selection across these networks, we first present a gener-
alized cost model. While the heterogeneity of Internet hosts in bandwidth, inter-node
latency and availability are well measured [13], most current protocols only consider
network proximity in neighbor selection. Thus we use different neighbor selection mod-
els based on network proximity and node capacity. We study the impact they have on
lookup latency and static resilience by incorporating the neighbor selection algorithms
into ring and tree geometries, and show that the performance improvement from ex-
ploiting network proximity or node capacity comes at a price of increased vulnerability
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Fig. 1. Cumulative distribution of node degrees of a 205-node Bamboo overlay running on Plan-
etLab. In-degree and out-degree represent the number of incoming edges and the number of
outgoing edges of each overlay node. The graph does not include default links (i.e., leafset) used
for failure tolerance. This is a snapshot taken on August 26, 2004.

against targeted attacks. Finally, we show that adding random redundancy can signifi-
cantly improve static resilience against targeted attacks.

The paper is organized as follows. We discuss related work in Section 2 and describe
details of the neighbor selection model in Section 3. We then measure the impact of
different cost functions on both resilience and performance in Section 4 and conclude
in Section 5.

2 Related Work

The closest work to ours was done by Gummadi et al. [7]. The authors quantified the
impact of routing geometry on performance and static resilience. In contrast, we fo-
cus on the impact of neighbor selection on these factors. Albert et al. [1] show a clear
correlation between the scale-free nature of networks and resilience to attacks and fail-
ures. Chun et al. [6] show the tradeoff between performance and network resilience of
selfishly constructed unstructured overlays.

Castro et al. studied a defense mechanism against Eclipse attacks where attackers
fake proximity to increase the fraction of bad routing entries in structured peer-to-peer
networks using proximity neighbor selection [2]. They proposed to use two routing
tables — proximity-based one and constrained one. Singh et al. proposed to bound the
degree of overlay nodes in one proximity-based routing table to defend against Eclipse
attacks [14]. In our work, attackers affect network connectivity by taking down nodes
with high degree.

Several research efforts propose optimizing overlay construction of structured over-
lays using the network proximity metric [3, 10, 16, 18, 20], but generally ignore other
factors such as CPU load, storage and bandwidth capacity. Brocade [19] proposes the
use of supernodes for more efficient routing, but requires static selection of supernodes.

Other work [8] proposes the use of multiple “virtual servers” for load balancing
among nodes of varying resource capacity, but does not consider network proximity for
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routing performance. Gia [4] performs continuous topology adaptation on an unstruc-
tured overlay such that nodes participate with network degree matching their resource
capacity, without considering network proximity.

3 Structured Overlay Construction

In the construction of structured peer-to-peer networks, each node chooses neighbors
that meet logical identifier constraints (e.g., prefix matching or identifier range), and
builds directional links to them. These constraints are flexible such that a number of
nodes are possible neighbors for each routing table entry. Intelligent selection of neigh-
bors from the set of possible neighbor nodes significantly impacts the overlay’s perfor-
mance, resilience, and load balancing properties.

The neighbor selection problem can be reduced to a generalized cost minimiza-
tion problem. We present here a generalized cost model that captures general node and
link characteristics during neighbor selection. Ideally, optimizing neighbor selection for
node i means minimizing the sum of the cost from i to all other nodes. The cost from i
to j consists of two factors: cost incurred by intermediate overlay nodes (node cost: cn)
and cost incurred by overlay network links (edge cost: ce). Let N be the network size.
The cost of node i (Ci) is:

Ci =
∑N

j=1 t(i, j)cp(i, j) where
cp(i, j) =

∑
n∈V (i,j) cn(n) +

∑
e∈P (i,j) ce(e)

(1)

where t(i, j) is the traffic from i to j, cp(i, j) is the cost of the path from i to j, P (i, j) is
the path (a set of edges) from i to j, V (i, j) is the set of intermediate overlay nodes in the
path P (i, j) (it does not include i and j), e is an edge in the path P (i, j), n is a node in
V (i, j), cn(n) is the cost of node n, and ce(e) is the cost of edge e. If t(i, j)=0, there is
no incentive for the node to optimize the path from i to j. In this model, cn captures the
heterogeneity in node capacity, which is a function of bandwidth, computation power,
disk access time, and so on. ce captures network proximity.

For structured networks such as Chord, Pastry, and Tapestry, the cost function can
be rearranged as follows:

Ci =
∑Nb

b=1

∑
j∈Rb

t(i, j)cp(i, j, nb) where
cp(i, j, nb) = [cn(nb) + ce(i, nb)] + [

∑
n∈V (nb,j) cn(n) +

∑
e∈P (nb,j) ce(e)]

= [cn(nb) + ce(i, nb)] + cp(nb, j)
(2)

where b is the neighbor index, nb is the neighbor indexed by b, Nb is the number of
neighbors, Rb is the set of destinations routed through the neighbor nb, cn(i) is the
node cost value of i, ce(k, l) is the edge cost between two nodes k and l, and ce(e) is
the edge cost of e. cp(i, j, nb) is the cost of the path from i to j with nb as a first hop;
we see that this includes terms from the first hop [cn(nb) + ce(i, nb)] and terms from
the remainder of the path cp(nb, j).

Depending on the optimization goal, we can choose different metrics for cn and
ce, including latency, throughput, reliability, availability, monetary cost, or any combi-
nation thereof. For example, choosing high capacity nodes as neighbors can decrease
lookup latency and increase the overall lookup processing capacity of the system. On
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Table 1. Cost functions studied. cn(i) represents the processing delay in node i. This is a de-
creasing function of capacity of node i. ce(i, nb) represents the direct overlay link delay between
node i and node nb.

Model Cost (Ci)

Random None
Dist

∑Nb
b=1 ce(i, nb)

Cap
∑Nb

b=1 cn(nb)
CapDist

∑Nb
b=1{ cn(nb) + ce(i, nb)}

the other hand, using availability as a metric creates a more stable network or using
monetary cost can create a network that is more economically incentivized.

Note that our idealized cost function assumes full knowledge of the network compo-
nents, and is therefore not feasible in practice. Since most peer-to-peer protocols focus
on optimizing neighbor tables locally, we will focus on the application of our cost func-
tion to the cost of the first overlay hop. In this work we focus on neighbor selections
that consider the first hop and optimize latency under uniform traffic (t(i, j) = 1, ∀i, j).

Table 1 shows the four neighbor selection cost functions. Random chooses neigh-
bors randomly. Dist chooses neighbors physically closest in the network to adapt to the
underlying network topology. Currently, Bamboo, Pastry, and Tapestry use this mecha-
nism. Cap chooses neighbors that have the smallest processing delay. CapDist chooses
neighbors that gives the smallest combined latency, which is the sum of the node pro-
cessing delay and the overlay link delay.

4 Simulation Results

In this section, we first present simulation results that quantify the performance benefits
of using intelligent neighbor selection algorithms. We then examine the impact such
algorithms have on the static resilience of the resulting overlay to randomized failures
and targeted attacks.

4.1 Simulation Setup

We simulate the Tapestry [20] and Chord [15] protocols as representatives of their re-
spective geometries (tree and ring). When each node optimizes its cost function, it per-
forms random sampling to select neighbors and choose the best one among the samples.
In our experiments, we use 32 samples for each routing level in Tapestry or each finger
in Chord.

We use practical greedy routing algorithms for both Tapestry and Chord. For
Tapestry, each node forwards messages to the first live neighbor matching one more
prefix digit. The lookup fails if all primary and backup links in the routing entry fail.
For our Chord experiments, each node forwards messages to the live neighbor that is
closest to the destination in the identifier space. The lookup fails if all neighbors be-
fore the destination in the namespace fail. Note that the measured network resilience
depends on the routing algorithms we use.
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Our simulations use 5100 node transit-stub network topologies generated using the
GT-ITM library [17]. We construct Chord and Tapestry overlays of 4096 nodes by plac-
ing overlay nodes to random physical locations. We gather results with 9 different con-
figurations for GT-ITM, generate 3 transit-stub topologies each, and choose 3 overlay
node placements on each topology.

4.2 Performance

We begin by quantifying the effects of neighbor selection algorithms on performance.
We look at two different distributions of node processing delay: uniform and bimodal.
Because Tapestry and Chord results are similar in both cases, we will only show
Tapestry results.

We start by assigning node processing delay from a coarse-grained uniform distri-
bution. We choose one of 10 values uniformly from the range (0, α], where α is the
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Fig. 2. Average lookup latency for uniform processing delay distribution. When processing delay
variation is low, neighbor selections that exploit network proximity (Dist and CapDist) have low
latency. However, when processing delay variation is high, neighbor selections that exploit node
capacity (Cap and CapDist) have low latency.
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Fig. 3. Average lookup latency for bimodal processing delay distribution. As the fraction of fast
nodes increases, neighbor selections using node capacity can have better lookup latency than
those that do not use node capacity.
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Fig. 4. CDF of the number of incoming edges for uniform processing delay distribution. Random
shows an even in-degree distribution, but the others have very skewed distributions.

maximum processing delay. Figure 2 shows average lookup latency over all node pairs
in Tapestry. By exploiting network proximity and heterogeneous capacity, CapDist
achieves the best lookup performance. When processing delay variation is high (α=1s),
CapDist performs 30% better than Dist and 48% better than Random. When no vari-
ation exists (i.e., α=0s), Dist and CapDist exploit network proximity to outperform
Random and Cap.

We now look at a bimodal model for processing capacity, where nodes are either
fast or slow. Fast nodes process 100 lookup messages per second while slow nodes
process 1 message per second. Figure 3 shows that as we vary the fraction of fast nodes
from 0% to 20%, neighbor selection using capacity (Cap and CapDist) favors routes
through fast nodes and achieves better performance. For instances where the variation
in processing capacity is extremely high, we expect that capacity utilization at fast nodes
will be limited by the routing constraints of the protocol, and the deployment of virtual
nodes is necessary to fully exploit the excess processing capacity.

Using latency optimization creates uneven distributions of nodes’ incoming node
degrees. Nodes near the center of the network (i.e., transit domains) and nodes with
high capacity are preferred, and minimize path latency by utilizing low latency links
or low processing delay. Figure 4 shows the cumulative distribution function (CDF) of
nodes’ in-degrees in Tapestry networks with different neighbor selection algorithms.
Unlike Random, results from cost-optimized overlays show slow transitions and long
tails. We also observe that the CDF of nodes in transit domains is more skewed and has
longer tails than that of nodes in stub domains.

4.3 Static Resilience

Previous work by Albert et al. showed an inherent tradeoff for unstructured networks
between resilience against random node failures and resilience against targeted at-
tacks [1]. In this section, we explore the impact that neighbor selection algorithms have
on static resilience.

We measure resilience as the proportion of all pairs of live endpoints that can still
route to each other via the overlay after an external event, either randomized node fail-



270 B.-G. Chun, B.Y. Zhao, and J.D. Kubiatowicz

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
ai

le
d 

pa
th

s 
(%

)

Randomly failed nodes (%)

Cap
CapDist

Dist
Random

(c)

Fig. 5. Tapestry under random node failures. (a) Tapestry varying neighbor selection on one pri-
mary link (e.g., Dist: primary link chosen to optimize the Dist cost function), (b) Tapestry
varying neighbor selection on one primary link and two backup links (e.g., Dist: all three links
chosen to optimize the Dist cost function), (c) Tapestry varying neighbor selection on one pri-
mary link and choosing two backup links randomly (e.g., Dist: primary link chosen to optimize
the Dist cost function and two backup links chosen randomly).
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Fig. 6. Chord under random node failures. Chord varying finger selection on finger table having
(a) one sequential neighbor, (b) four sequential neighbors, and (c) 12 sequential neighbors.

ures or targeted attacks. We assume attacks focus on removing nodes with the highest
in-degree in order to maximize damage to overall network reachability. For these exper-
iments, we assume nodes have a uniform processing delay distribution with α = 0.5s.

For Tapestry, we examine resilience of the base protocol, the base protocol plus
additional backup links (all chosen using a number of neighbor selection algorithms),
and the base protocol plus backup links chosen at random. We maintain backup links
for each routing level, so adding two backup links triples the number of neighbors. For
Chord, we examine the base protocol (i.e., protocol with one sequential neighbor) and
the base protocol plus multiple sequential neighbors. Sequential neighbors are succes-
sors in the identifier space. They can make progress to route to all destinations.

Random Node Failures. We first examine the impact of randomized node failures. In
general, we would expect that using selection algorithms that prefer high capacity nodes
results in more hierarchy in the network, where many weaker nodes are connected by
highly interconnected high capacity nodes. In such cases, we expect that randomized
failures will disconnect weaker nodes from the network, but have a relatively low impact
on overall connectivity.
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Fig. 7. Tapestry under attack. (a) Tapestry varying neighbor selection on one primary link (e.g.,
Dist: primary link chosen to optimize the Dist cost function), (b) Tapestry varying neighbor
selection on one primary link and two backup links (e.g., Dist: all three links chosen to optimize
the Dist cost function), (c) Tapestry varying neighbor selection on one primary link and choosing
two backup links randomly (e.g., Dist: primary link chosen to optimize the Dist cost function
and two backup links chosen randomly).

Figures 5 and 6 show the failure tolerance of Tapestry and Chord, respectively.
Surprisingly, we see the failure tolerance is a little affected by neighbor selections. The
tighter outgoing link constraints of structured peer to peer networks allow less variation
in the resulting topology than unstructured networks. Every node has at least O(logN)
outgoing links, and randomized naming also smoothens out distribution of outgoing
links. Since each lookup takes O(logN) hops regardless of neighbor selection cost
functions, the probability of meeting randomly failed nodes in a lookup will be similar.

Adding backup links in Tapestry and sequential neighbors in Chord dramatically
improves failure tolerance (Figures 5(b), 5(c), 6(b), and 6(c)). Note that in Tapestry,
failure behavior changes from extremely brittle (concave downward with increasing
node failure) to smoothly varying (an S-shaped curve with increasing node failure) with
the addition of path diversity.

Targeted Node Attacks. While structured peer to peer overlays define a minimum
number of outgoing links per node, a node’s number of incoming links is unrestricted.
This means that neighbor selection algorithms considering capacity or network proxim-
ity will skew the network such that powerful or central nodes have significantly higher
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Fig. 8. Chord under attack. Chord varying finger selection on finger table having (a) one sequen-
tial neighbor, (b) four sequential neighbors, and (c) 12 sequential neighbors. For (c), we do not
present Cap. We cannot find an order to launch targeted attacks, since Cap creates networks
where many nodes have the same node degree.
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in-degrees than weaker or boundary nodes. This means that structured peer to peer over-
lays that consider capacity or network proximity in neighbor selection can be vulnerable
to attacks.

As shown in Figures 7(a) and 8(a), attacking nodes with high in-degree affects net-
work connectivity severely. Random shows the best attack tolerance among neighbor
selections. CapDist has worse attack tolerance than Dist, although it has the best per-
formance among neighbor selections we examine. In Tapestry, when 30% of nodes are
attacked, 0.4% of pairs of live nodes can communicate in the networks created with
CapDist, but 20.4% of pairs of live nodes can still communicate in the networks cre-
ated with Random. In Chord, when 50% of nodes are attacked, 0.2% of pairs of live
nodes can communicate in the networks created with CapDist, but 51.8% of pairs of
live nodes can still communicate in the networks created with Random.

This result demonstrates a fundamental tradeoff between performance and attack
resilience in structured overlay construction. The performance gain from neighbor se-
lection algorithms increases the variability of in-degrees among nodes. Nodes with high
capacity or nodes near the center of the network end up with high in-degrees and have
a disproportionately large impact on network connectivity when they are attacked.

Adding Redundancy. From Figures 5(a) and 7(a) we observe that the resilience of
Random under random failures is the same as that under targeted attacks. This re-
sult shows that randomness can shield against attacks targeting biases. If we can bring
the randomness back into the system, we may improve the resilience against targeted
attacks.

Paying the additional cost of maintaining extra links improves static resilience
against targeted attacks. Figures 7(c) and 8(c) show that adding backup links or se-
quential neighbors can increase attack tolerance significantly. When 30% of nodes are
attacked in Tapestry with one primary link optimizing CapDist and two random backup
links, 76% of pairs of live nodes can communicate. When 50% of nodes are attacked in
Chord with 12 sequential neighbors, all nodes can still communicate. Randomly choos-
ing backup links in Tapestry and sequential neighbors in Chord avoids routing hotspots
that are vulnerable to targeted attacks. In Tapestry for example, cost-optimized backup
links are less effective at improving attack tolerance than random backup links (Fig-
ure 7(b)). Using sequential neighbors gains good attack resilience with the overhead of
high lookup latency under attacks.

5 Conclusion

Previous research argued for the consideration of network or physical characteristics of
nodes in overlay construction. In this paper, we take a quantitative approach to examin-
ing the benefits and costs of considering such criteria in overlay construction.

We present a generalized model for neighbor selection that incorporates metrics for
network proximity and available resources (capacity), and show that while considering
these factors can lead to significant gains in routing performance, these benefits come
with their associated costs. We find that the choice of neighbor selection algorithm
drives a tradeoff between performance and resilience to attacks.
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Optimized structured overlays have unbalanced structures. These overlays do not
bound the number of incoming links per node. Thus central nodes in a network or
nodes with more resources will have much higher in-degree than others. Should high
degree nodes be attacked, the impact on network connectivity is severe. On the other
hand, the minimum out-degree means even for overlays that optimize towards prox-
imity or available resources, most nodes achieve enough resilience against randomized
failures. Finally, we show that adding random redundancy can improve the resilience
significantly.

As future work, we intent to investigate the resilience of different geometries un-
der different neighbor selection algorithms. We also plan to investigate the impact of
these neighbor selection algorithms on dynamic resilience, such as when maintenance
algorithms repair failures over time.
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