
DIPSEA: A MODULAR DISTRIBUTED HASH TABLE

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Gurmeet Singh Manku

September 2004

c© Copyright by Gurmeet Singh Manku 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my

opinion, it is fully adequate in scope and quality as a disser-

tation for the degree of Doctor of Philosophy.

Rajeev Motwani
(Department of Computer Science, Stanford University)

(Principal Adviser)

I certify that I have read this dissertation and that, in my

opinion, it is fully adequate in scope and quality as a disser-

tation for the degree of Doctor of Philosophy.

Hector Garcia-Molina
(Department of Computer Science, Stanford University)

I certify that I have read this dissertation and that, in my

opinion, it is fully adequate in scope and quality as a disser-

tation for the degree of Doctor of Philosophy.

Hari Balakrishnan
(Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

A Distributed Hash Table (DHT) is a giant hash table that is cooperatively maintained by a

large number of machines worldwide. The machines join and leave the system autonomously.

The unprecedented scale and dynamism of the system calls for novel design techniques

which emphasize decentralization and automatic re-configuration. Briefly, each machine in

a DHT is assigned an ID in I = [0, 1). The set of IDs divides I into disjoint partitions,

managed by one machine each. As a function of their IDs, the machines set up connections

among themselves. These connections are used for routing messages between the machines.

The challenge lies in devising efficient decentralized algorithms for ID management and

connection maintenance.

We propose Dipsea, a modular architecture for building DHTs, consisting of three layers:

ID Management, Overlay Routing and Data Management – this thesis focuses on the first

two layers. The modularity of Dipsea imbues the overall system with several good properties.

A large complex problem is broken down into smaller sub-problems, each of which can be

attacked more or less independently. This contributes to reduction in complexity — it is

possible to explore the design space of a sub-problem without being encumbered by its

interactions with other sub-problems. Furthermore, the best solutions for individual sub-

problems can be identified and put together to arrive at an overall design that is far more

powerful than a design arrived at by a holistic approach.

Dipsea places existing DHT designs and improvements suggested for various DHTs into

a common algorithmic framework. A significant accomplishment is the identification of

layers and modules which are cleanly separated on the basis of functionality. Then for each

module, we devise and analyze efficient algorithms – almost all of the algorithms we propose

are the currently best-known algorithms for the corresponding modules.

Highlights of our contributions in ID Management and Overlay Routing layers:

v

1. A simple, decentralized ID Management algorithm which is independent of the Over-

lay Routing layer. The algorithm requires O(R + log n) messages and only one re-

assignment of existing IDs in response to arrival or departure of machines. R denotes

the average number of messages required by the Overlay Routing layer, and n denotes

the current number of machines in the system.

2. A generalization of the above scheme whose analysis requires the solution to a novel

Structured Coupon Collection Problem over cliques with multiple-choices per trial.

3. The design of an Emulation Engine which can emulate arbitrary families of determin-

istic and randomized routing networks. The Emulation Engine makes the design of

Dipsea a significant improvement over existing DHT implementations, all of which are

tied to specific families of routing networks.

4. Characterization of shortest paths in Chord, a family of deterministic routing networks

that has been designed for DHTs.

5. The design of Papillon, a butterfly-based family of graphs defined over nodes placed

in a circle. Papillon supports efficient greedy routing, in which each node forwards a

message along that out-going edge which reduces the clockwise distance to the desti-

nation by the largest amount. In an n-node graph, Papillon routes in O(log n/ log d)

hops with d links per node, which is asymptotically optimal.

6. The design of Symphony, one of the first randomized routing networks proposed for

DHT routing. With k links per node, clockwise greedy routing takes O(1
k log2 n) hops

on average.

7. Tight analysis of clockwise greedy routing with/without lookahead in several ran-

domized routing networks including Symphony, randomized Chord, and randomized

hypercube. The idea underlying “greedy with lookahead” is to allow a node to use

knowledge of its neighbor’s neighbors for better routing decisions. We show that

greedy routing without lookahead requires Θ(log n) hops on average whereas greedy

with lookahead entails only Θ(log n/ log log n) hops on average.

8. The design of Mariposa, an interesting combination of butterfly networks and Klein-

berg’s small-world construction. Mariposa also offers routes of O(log n/ log d) hops in

the worst case, with d out-going links per node.

vi

Acknowledgements

Several persons contributed to bring this thesis to fruition. I thank my adviser, Rajeev

Motwani, for the guidance and the freedom he gave to me. Without his help, this thesis

would not have materialized. Thanks to Prabhakar Raghavan for being my mentor for

several projects. Thanks to my Reading Committee members: Hari Balakrishnan, Hector

Garcia-Molina and Rajeev Motwani. I also thank Ashish Goel, Balaji Prabhakar and Scott

Shenker for being on my Orals Committee despite their busy schedules.

Special thanks to my wife, Uma, without whose patience and perseverance, I would not

have managed to vanish for days chasing paper deadlines. Many thanks to my parents for

their blessings, and inculcating the love for knowledge in me.

Finally, I thank my colleagues at Stanford with whom I had innumerable discussions, and

who gave a lot of feedback on drafts of my papers, my practice talks and my resume: Arvind,

Shivnath, Mayank, Ramesh, Prasanna, Krishnaram, Shankar, Dilys, . . . Special thanks to

Mayank Bawa with whom I started brain-storming in mid-2000 for P2P-related ideas. It

was the Symphony paper with Mayank that triggered a series of papers on Distributed Hash

Tables which constitute this thesis. Finally, many thanks to members of the Systems-Quals

study-group members from whom I learned a lot: Shivnath, George, Ramesh, Neil, Daniel,

T. J., Emre, Sergio, Costas and Ed.

vii

viii

Contents

Abstract v

Acknowledgements vii

1 Dipsea: An Overview 1

1.1 The Design of Dipsea . 2

1.2 ID Management . 5

1.3 Ring Management . 8

1.4 The Emulation Engine . 8

1.5 Choice of Long-Distance Links: Deterministic 12

1.6 Choice of Long-Distance Links: Randomized 15

1.7 Peer-to-Peer Computing: A Historical Perspective 19

1.8 Dissertation Road-map . 23

2 Balanced Binary Trees 27

2.1 Introduction . 27

2.2 ID Management in Distributed Hash Tables 30

2.3 Three-Level Binary Trees . 32

2.4 An Insert-Only ID Management Algorithm 35

2.5 High-Degree Trees for Fine-grained Partition Balance 36

2.6 Practical ID Management . 37

2.7 Handling Host Departures . 38

2.7.1 Overview . 39

2.7.2 Perfect Insertion and Perfect Deletion 39

2.7.3 Definitions . 40

ix

2.7.4 Addition Algorithm . 41

2.7.5 Deletion Algorithm . 42

2.7.6 Analysis . 42

2.7.7 Extensions . 44

2.8 Comparison with Previous Work . 44

2.9 Summary and Future Directions . 46

3 Coupon Collection over Cliques 49

3.1 Introduction . 50

3.2 Structured Coupon Collection over Cliques 51

3.2.1 Analysis . 52

3.2.2 Related Work . 55

3.3 Balanced Binary Trees . 56

3.3.1 A Stochastic Process for Growing Binary Trees 57

3.3.2 Proof of Theorem 3.3 . 58

3.4 Load Balance in Distributed Hash Tables 61

3.4.1 Distributed Hash Tables: A Brief Summary 61

3.4.2 Balanced Binary Trees for Decentralized Load Balancing in DHTs . 62

3.4.3 Lower Bound on σ with Balanced Binary Trees 63

3.4.4 Experimental Results . 63

3.5 Related Work . 65

3.6 Summary and Future Directions . 68

4 Scalable and Dynamic Emulation of Network Families 69

4.1 Emulation with Three Sets of Links . 71

4.2 Physical-Network Proximity . 72

4.2.1 The Power of 16 Choices . 73

4.2.2 Network-Proximity with BALANCED Distribution of IDs 75

4.2.3 Cluster-based Network-Proximity . 77

4.2.4 Clusters in a Dynamic Network . 79

4.2.5 Discussion . 81

4.3 Emulation with only Two Sets of Links per Node 81

4.3.1 Flapping of Link-Sets . 82

4.3.2 Network Size Estimation with RANDOM Distribution of IDs 82

x

4.3.3 Network Size Estimation with BALANCED Distribution of IDs . . . 85

4.4 Related Work . 86

4.5 Summary and Future Work . 87

5 Shortest Paths in Chord 89

5.1 Introduction . 89

5.2 Choice of Two . 91

5.3 Optimal Routing and Binary Subtraction 93

5.4 Solving the Binary Subtraction Problem . 95

5.5 Optimal Routing Algorithms for Chord . 99

5.5.1 Right-to-Left Chaining . 99

5.5.2 Left-to-Right Bi-directional Greedy 100

5.5.3 Proof of Optimality . 101

5.5.4 Average Path Length . 103

5.6 Chord in Base-k . 105

5.7 The HyperSkewbe . 106

5.8 Related Problems . 107

5.9 Summary and Future Directions . 108

6 Papillon: Greedy Routing on a Circle 109

6.1 Variants of Chord . 111

6.2 Papillon . 113

6.3 Improved Routing Algorithms for Papillon 115

6.4 Related Problems . 118

6.5 Summary and Future Directions . 121

7 Symphony: Routing in a Small-World 123

7.1 Introduction . 123

7.2 ID Distributions . 124

7.3 Symphony over Regular Distribution of IDs 125

7.4 Symphony over Balanced Distribution of IDs 127

7.5 Symphony over Random Distribution of IDs 128

7.5.1 Estimation Protocol . 128

7.5.2 Link Establishment . 129

xi

7.5.3 Greedy Routing Protocols . 129

7.5.4 Join and Leave Protocols . 130

7.5.5 Re-linking Protocol . 131

7.5.6 Greedy Routing with 1-Lookahead 131

7.6 Experiments . 132

7.6.1 Estimation Protocol . 133

7.6.2 Routing Protocol . 135

7.6.3 Re-linking Protocol . 135

7.6.4 Dynamic Network . 135

7.6.5 Lookahead . 137

7.6.6 Cost of Joining and Leaving . 137

7.6.7 Load Balance . 137

7.6.8 Resilience to Link Failures . 138

7.6.9 Comparison with k Random Links 138

7.7 Comparison and Analysis . 140

7.7.1 Low State Maintenance . 140

7.7.2 Fault Tolerance . 141

7.7.3 Smooth Tradeoff between Degree and Latency 141

7.7.4 Comparison with Other Protocols 142

7.7.5 The Role of Lookahead . 143

7.8 Summary and Future Directions . 143

8 Greedy Routing with Lookahead 145

8.1 Introduction . 145

8.2 Definitions . 149

8.3 Analysis of greedy Routing . 153

8.4 Analysis of greedy with 1-lookahead Routing 155

8.5 The Bit-Collection Protocol . 159

8.6 Related Work . 160

8.6.1 Random Graphs . 160

8.6.2 Long-range Percolation . 161

8.6.3 Small-World Models . 162

8.6.4 Kleinberg’s Small-World Networks 162

xii

8.6.5 Greedy without Lookahead in Deterministic Networks 163

8.6.6 Viceroy- and Mariposa-style Randomized Networks 164

8.7 Discussion . 164

8.8 Summary and Future Work . 165

9 Mariposa: A Randomized Butterfly 167

9.1 Mariposa: the Construction . 168

9.2 Analysis . 171

9.3 Intuition . 174

9.4 Summary and Future Work . 178

10 Summary 179

10.1 Our Contributions . 179

10.2 Directions for Further Research . 182

A Proof of Lemma 2.3.1 183

A.1 Proof of Lemma 2.3.1(a) . 183

A.2 Proof of Lemma 2.3.1(b) . 186

Bibliography 187

xiii

xiv

List of Tables

2.1 Comparison of various ID management algorithms. 45

7.1 Comparison of various routing networks over 215 nodes. 140

xv

xvi

List of Figures

1.1 Dipsea: A three-layered architecture. 2

2.1 Invariants maintained by the ID management algorithm. 41

3.1 Evaluation of our ID management algorithm. 64

3.2 Sub-tree sizes and deletions in our ID management algorithm. 65

3.3 Comparison with virtual hosts. 66

4.1 CDF of latencies as measured from four hosts in different parts of the world. 74

4.2 Average latency as a function of number of hosts sampled. 75

4.3 Average latency as a function of cluster size. 76

4.4 Average latency: Increases in cluster-size have diminishing returns. 77

4.5 Replication and intra-cluster links . 78

4.6 Replication and last-hop cost . 78

4.7 Path latency for inter-cluster routing. 80

5.1 Procedure Opt Subtract(d) for solving the Binary Subtraction Problem. 96

5.2 A state machine for solving the Chord Routing Problem 99

5.3 Procedure Opt Route(d) for solving the Chord Routing Problem. 103

5.4 State machine for algorithm Right-to-Left Chaining for Base-k. . . . 105

5.5 3-dimensional HyperSkewbe on 8 nodes. 107

7.1 A plot of harmonic distributions. 125

7.2 Evaluating the Estimation Protocol . 132

7.3 Latency distributions for a network with 214 nodes. 133

7.4 Average latency for various n and number of long-distance links. 133

7.5 Latency for various networks with log2 ñ links per node. 134

xvii

7.6 Re-linking over the lifetime of a network. 134

7.7 Performance of a Dynamic network of 100K nodes with log ñ-links using the

Estimation Protocol but no re-linking. 136

7.8 Impact of using 1-Lookahead in routing in a typical network with 215 nodes. 136

7.9 Cost of joining and leaving Symphony with n = 215 nodes. 137

7.10 Bandwidth profile in a network with n = 215 nodes with k = 4 links per node.138

7.11 Fault tolerance in 16K nodes with log ñ long-distance links per node. 139

7.12 Comparison of Symphony with a network where each node links to k other

nodes chosen uniformly at random . 139

10.1 Dipsea: A three-layered architecture. 180

xviii

Chapter 1

Dipsea: An Overview

Defining interfaces is the most important part of

system design.

Butler Lampson [L83]

A Distributed Hash Table (DHT) is a giant hash table that is maintained by a large

number of machines spread across the world. The hash table is split into disjoint partitions.

Each machine is assigned ownership of one partition, thereby making it the manager of that

partition. The set of machines participating in the hash table is both dynamic and large-

sized. This makes decentralization and automatic re-configuration two important design

goals. The emphasis on decentralization stems from concerns of scalability. Automatic

re-configuration is motivated by ease of management.

A DHT can serve as a repository of distributed objects, where the location of an object

is determined by the hash-value of its name. For example, cryptographic hash-functions

like MD5 [R92] or SHA1 [E01a] map arbitrary strings to 128-bit or 160-bit hash-values

respectively. These can be used to map arbitrary object names into h-bit hash-values,

where h depends upon the hash function being used. Without loss of generality, we assume

that hashing maps object names onto the unit interval I = [0, 1). If a hash function maps

an object to an h-bit hash-value H, then H/2h ∈ I.
In a DHT, each participating machine – a host on the Internet – is also assigned an

ID in I. At any instant, the current set of IDs defines the current set of partitions that

the hash-table has been divided into. Each host is the manager of a distinct partition,

being responsible for all objects whose names hash into that partition. Now, in order to

1

2 CHAPTER 1. DIPSEA: AN OVERVIEW

DIPSEA

Choice of Long−Distance Links

ID MANAGEMENT

DATA MANAGEMENT

OVERLAY ROUTING

ID Management

EmulationRing
Management Engine

Figure 1.1: Dipsea: A three-layered architecture for building Distributed Hash Tables. Ef-
ficient algorithms for ID Management are described in Chapters 2 and 3. See Section 1.3
for a brief description of Ring Management. See Chapter 4 for the Emulation Engine, and
Chapters 5 through 9 for Choice of Long-Distance Links. Data Management is not discussed
in this dissertation.

insert, retrieve or update an object, we first compute the hash-value of its name, and then

contact the manager whose partition includes that hash-value. In order to contact the

manager, knowledge of its physical address – its IP address on the Internet – is required.

This necessitates a mechanism for mapping the current set of partitions to the IP addresses

of their corresponding managers. Decentralization dictates that such a mapping neither be

maintained as global information nor be available at some central location. One possible

solution is to make the managers establish links among themselves, as a function of their

IDs. Taken together, these links constitute what is known as an overlay routing network.

A request to insert, retrieve or update an object is handed over to the overlay which routes

the request to the appropriate manager. Each manager along the route chooses one of its

out-going links for forwarding the request.

1.1 The Design of Dipsea

Dipsea is a modular architecture for building Distributed Hash Tables (see Figure 1.1 for a

block-diagram). The overall system is divided into three layers:

I. The ID Management Layer is responsible for assigning IDs to new managers (hosts on

the Internet) that join the system. It also re-assigns the IDs of one or more existing

hosts in response to arrivals and departures of hosts. Assignments and re-assignments

1.1. THE DESIGN OF DIPSEA 3

of IDs should be automatic and decentralized. A good ID Management scheme is

simple, low-cost in terms of network traffic, handles arrivals and departures of hosts,

and ensures that the variation in partition sizes is minimal. The last requirement is

motivated by load-balance, assuming a homogeneous set of hosts. We summarize our

design of the ID Management layer in §1.2.

II. The Overlay Routing Layer is responsible for maintaining the links between hosts. The

overlay network must satisfy several properties: small number of links per host, short

routes between arbitrary hosts, low-latency routes, routing load-balance and resilience

to host/link failures. The out-going links of a manager have to be re-configured in the

face of arrivals and departures of other hosts, in a decentralized fashion.

Each host in Dipsea has two kinds of links – short-distance and long-distance – main-

tained by three modules (all three are part of the Overlay Routing Layer):

(a) The Ring Management module is responsible for maintaining the short-distance

links, which are defined as follows. Imagine the managers along the circumfer-

ence of a circle with unit perimeter, sorted by their IDs. Each manager then

makes links with f successors (in the clockwise direction along the circle) and f

predecessors (in the anti-clockwise direction along the circle), where f is a design

parameter. Taken together, these short-distance links constitute a fault-tolerant

ring. We discuss the Ring Management module further in §1.3.

(b) The Emulation Engine absorbs the design complexity associated with mainte-

nance of long-distance links caused due to (i) dynamism (arrival/departure of

hosts), (ii) scale (variation in the average number of hosts over time) and (iii)

concerns for physical network proximity. The Engine is responsible for handling

the join/leave protocols independent of the specific family of routing networks

being “mimicked” or “emulated” (e.g., hypercubes or de Bruijn graphs). This

point will become clearer in §1.4 where we explain the Emulation Engine in more

detail.

(c) Choice of Long-Distance Links is concerned with choosing the right family of

networks for emulation. An important criterion for this choice is the trade-off

between the number of links per manager and the average number of routing

hops. We discuss our results pertaining to Choice of Long-Distance Links in §1.5
and §1.6.

4 CHAPTER 1. DIPSEA: AN OVERVIEW

The design philosophy separating the short- and the long-distance links is as follows:

The short-distance links ensure correctness of the Overlay Routing layer. They guar-

antee that all managers are connected at all times and are able to communicate with

each other. The long-distance links are for efficiency of the Overlay Routing layer.

They ensure that routes between arbitrary pairs of managers require few hops, with

each hop having low latency.

III. The Data Management Layer is responsible for durability and availability of objects

which is achieved by a combination of replication and caching. Two schemes for

replication have been proposed: (a) Replication of the contents of a manager at each

of r successors along the circle, where r is a small integer, and (b) Erasure codes

for breaking a large object into r′ smaller-sized objects so that any r < r ′ of the

small-sized objects are sufficient to regenerate the original object, where r, r ′ are

small integers. See Weatherspoon and Kubiatowicz [WK02] for a comparison between

the two approaches. For caching protocols, see the design of Tapestry [ZHS+04],

CUP [RB03] and Beehive [RS04a]. We do not discuss the Data Management Layer

further in this dissertation.

The modularity of Dipsea imbues the overall system with several good properties:

1. A large problem has been broken into smaller sub-problems, each of which can be at-

tacked more or less independently. This contributes to reduction in complexity — it is

possible to explore the design space of a sub-problem in its entirety without being en-

cumbered by its interactions with other sub-problems. For example, ID Management

can be done independent of the family of routing networks we wish to emulate. More-

over, the complexity arising out of scale and dynamism is handled by the Emulation

Engine, independent of the specific family that we emulate.

2. A modular design places existing DHT designs and improvements suggested for them

into a common algorithmic framework. This helps us identify more clearly the com-

monalities and differences in various ID Management algorithms and routing networks.

3. The best solutions for individual sub-problems can be identified and put together to

arrive at an overall design that is far more powerful than a design arrived at by a

holistic approach. For example, by using the ID Management algorithms developed

in Chapters 2 and 3 along with the Emulation Engine in Chapter 4, we are able to

1.2. ID MANAGEMENT 5

plug-and-play arbitrary families of routing networks. Finally, by choosing any of the

randomized routing networks studied in Chapters 7 or 8, we arrive at an overall design

more efficient than any of the existing designs.

In the next five Sections, we describe the salient features of the following modules: ID

Management in §1.2, Ring Management in §1.3, the Emulation Engine in §1.4, and Choice

of Long-Distance Links in §1.5 and §1.6. For ID Management, the Emulation Engine and

Choice of Long-Distance Links, we believe that our algorithms are the best -known.

1.2 ID Management

Consider a dynamic set of managers lying on the circumference of a circle. The managers

divide the circumference into disjoint arcs. We will call each arc, a partition. Each manager

manages those points that lie on the partition between itself and its clockwise successor along

the circle. Three operations on the set of managers are allowed: (a) a new manager can be

inserted into the set, (b) an existing manager can be deleted, and (c) an existing manager

can be re-assigned to a new position on the circumference of the circle. In Chapters 2 and 3,

we describe efficient decentralized algorithms for dividing the circle evenly among managers

as they arrive and depart. We briefly sketch the key ideas here:

1. Decentralization: We model decentralization by making the assumption that a

manager does not have global information – it does not know the IDs of all other

managers at any time. However, it is possible to learn about the positions of other

managers in two ways:

(a) Local Probe: Using the short-distance links of the overlay routing network, it is

possible for a manager to retrieve the IDs of k managers adjacent to a manager

at the cost of 2k messages (assuming that the number of short-distance links per

manager is f = 1). We call such a probe, a “Local Probe of size k”.

(b) Random Probe: Using the long-distance links of the overlay routing network, it

is possible to route a message to the manager of a randomly-chosen point on

the circle by paying a cost of R messages, with high probability†. The long-

distance links in the earliest DHT overlay routing networks were based upon

†By “with high probability” (w.h.p.), we mean “with probability at least 1 − O(n−λ) for some constant
λ > 1, for a system with n participants”.

6 CHAPTER 1. DIPSEA: AN OVERVIEW

the hypercube and its variants. With n managers, these networks can route

in R = Θ(log n) messages, with only Θ(log n) links per node. Later papers

have shown that it is possible to achieve R = Θ(log n/ log log n) with the same

number of long-distance links per manager. We discuss these results in detail in

Chapter 8.

2. Desiderata: From a systems standpoint, a good ID management algorithm should

possess each of the following properties: (a) the algorithm should be decentralized

and simple, (b) the algorithm should entail low-cost, measured in terms of messages

required for various probes, (c) the variation in partition sizes should be small to

ensure load balance among managers, and (d) in response to arrivals and departures

of managers, the number of ID re-assignments of existing managers should be minimal.

We will quantify the variation in partition sizes by σ, defined as the ratio between the

lengths of the largest and the smallest partitions.

3. A Simple Scheme: The following scheme was used by early DHT implementations.

The scheme is decentralized and low-cost but results in highly uneven partition sizes.

No Probes: Upon arrival, a manager places itself at randomly chosen point on

the circle. No existing manager is re-assigned.

The message complexity is zero, since no local or random probes are sent. However,

the distribution of IDs results in σ = Θ(n log n) (see King and Saia [KS04]).

4. Our Contributions: We have devised the following two schemes:

(a) One Random Probe plus One Local Probe of size (c log n): An ID for a newly-

arrived manager is derived as follows. We carry out one random probe to identify

a manager, followed by a local probe of size c log n in the vicinity of that manager,

and split the largest partition into two equal halves. In response to deletion of a

randomly chosen manager, a local probe of size c log n is carried out in the vicinity

of the departed manager and at most one existing manager is re-assigned. See

Chapter 2 or reference [M04] for more details.

The algorithm is the first one to enjoy all of the following properties: (a) both

arrivals and departures of managers are handled, (b) departure of a manager

causes at most one existing manager to change its ID, (c) the ratio of the largest

1.2. ID MANAGEMENT 7

to the smallest partition is at most 4, with high probability, and (d) the expected

cost per arrival/departure is Θ(R+log n) messages, where n denotes the current

number of participants, and R denotes the cost of routing one message by using

the long-distance links. Variations of the basic algorithm diminish the ratio

between the largest and the smallest partition to (1 + ε), for any ε > 0, albeit at

the cost of O(R+ 1
ε2

log n) messages and re-assignment of O(1
ε) existing managers

per arrival/departure. This is the first algorithm to allow such fine-tuning.

(b) r Random Probes plus r Local Probes of size v, with (rv ≥ c log n): We carry

out r random probes, followed by local probes of size v in the vicinity of the r

managers. We then split the largest partition into two equal halves. The scheme

is a generalization of the scheme above, but handles only arrivals of managers.

An extension to the scheme that handles departures also is empirically shown to

work well – we have not been able to formally analyze it yet.

The scheme guarantees σ = Θ(1) at the cost of Θ(rR+ v) messages if each node

maintains knowledge of v of its neighbors. When R = o(log n), the scheme is

superior to previous schemes. In particular, when R = Θ(log n/ log log n), the

optimal cost is Θ(log n/
√

log log n) messages per arrival or departure of hosts, by

fixing r = Θ(
√

log log n). See Chapter 3 or reference [KM04] for more details.

Notice that there are two criteria for measuring the efficacy of an ID Management

algorithm: the total number of messages and the number of re-assignments of existing

managers. For message complexity, we have ignored the messages required for estab-

lishing short-distance and long-distance links with other managers, once a manager

has been assigned or re-assigned its ID. The philosophy underlying our accounting pol-

icy is as follows: The ID Management module is independent of the long-distance links

– it treats long-distance links as a black-box that supports random probes. There-

fore, messages associated with link-establishment are ascribed to the Overlay Routing

Layer. The ID Management algorithm is not completely oblivious of these costs –

it is quantified by the number of re-assignments required by the algorithm, which it

strives to minimize.

5. Choice of Long-Distance Links: Both of the ID management algorithms described

so far enjoy an important property: they assume the existence of short-distance links

that support local probes, but are independent of the long-distance links, the union

8 CHAPTER 1. DIPSEA: AN OVERVIEW

of which is treated as a black-box supporting random probes. In contrast, a scheme

by Adler et al [AHKV03] also guarantees σ = Θ(1) at the cost of Θ(log n) messages.

However, the scheme has been designed for a specific set of long-distance links: the

hypercube. The idea is to identify a manager with one random probe, and to split the

largest of this manager’s long-distance neighbors, as defined by a hypercubic routing

network. The advantage of having an ID management scheme that is independent

of the long-distance links is that the two modules: ID Management and Choice of

Long-distance Links (see Figure 1.1 on page 2) are cleanly separated.

1.3 Ring Management

Ring Management pertains to the maintenance of the short-distance links of the overlay

routing network. Each host makes TCP connections with f successors and f predecessors

along the circle, where f is a tunable parameter. The purpose of these links is to create a

fault-tolerant ring. If f = Ω(log n), even after the disappearance of half the nodes, chosen

uniformly at random, the remainder of the nodes remain connected with high probability

(see Liben-Nowell et al [LNBK02]). Practical schemes for Ring Management have been

devised in the context of two system implementations (see Chord [SMK+01] and Bam-

boo [RGRK04]). The primary challenge is to maintain the correct neighbor-sets or views of

ring members in the face of frequent arrivals and departures of hosts. See Li et al [LMP04]

for recent theoretical work on provably correct ring management protocols that handle con-

current joins and leaves. In this dissertation, we do not discuss Ring Management further.

1.4 The Emulation Engine

A common design goal is to make the long-distance links of the overlay routing network

mimic or look like a well-known graph structure, e.g., a hypercube, a butterfly network

or a de Bruijn graph. These three basic graphs, along with several of their variants, have

been well-studied by computer scientists since 1980’s in the context of inter-connection

networks for parallel machine architectures (see the classic book by Leighton [L92] for

theoretical foundations of this area, and the book by Duato et al [DYN03] for practical

design issues). Four challenges arise when we attempt to make the long-distance links mimic

such graphs:

1.4. THE EMULATION ENGINE 9

a) Arbitrary Number of Nodes: Hypercubes are defined for 2k nodes, butterflies have k2k

nodes, and de Bruijn graphs are defined for mk nodes, where k,m ≥ 1 are both integers.

However, in a DHT, the current number of managers is not necessarily 2k or k2k or mk.

b) Dynamism: The set of nodes in a DHT changes over time as new managers arrive and

existing managers depart. In contrast, the number of nodes in a parallel machine is

fixed.

c) Scale: The number of nodes in a DHT exhibits large variation, spanning several orders

of magnitude.

d) Physical Network Proximity : Since DHT nodes belong to different geographical regions

of the world, the latency (or the ping-time) between a pair of randomly-chosen nodes is

quite high. It is desirable that most long-distance links have low latency.

Recently, certain families of random graphs have also been investigated for routing purposes

(see Chapters 8 and 9 for more details). Some of these are defined for arbitrary integers

whereas others are defined over successive powers of two. The same four challenges, as

listed above, arise if we desire that the long-distance links of the overlay routing network

mimic one of these random graphs.

On the whole, the problem of mimicking a given family of graphs, deterministic or

randomized, can succinctly be stated from the perspective of a manager:

Definition (The Problem of Scalable and Dynamic Emulation of Network Families).

Assume that we would like to mimic a specific family of graphs, say the hypercube.

Given a manager with a specific ID, which other managers should it make long-

distance links with?

The Emulation Engine solves the above problem. It is described in detail in Chapter 4.

Here, we briefly sketch the key ideas:

1. ID Distributions: The Emulation Engine handles two different distributions of IDs:

(a) random distribution of IDs: Each manager chooses an ID independently and

uniformly at random from I = [0, 1).

(b) balanced distribution of IDs: Manager IDs correspond to leaf nodes of a bi-

nary tree whose leaf nodes belong to at most three different levels: [log2 n] and

[log2 n]± 1, where [x] denotes the integer closest to x.

10 CHAPTER 1. DIPSEA: AN OVERVIEW

random distribution of IDs results from the No Probes scheme (see Section 1.2) – the

resulting distribution of partition sizes is highly skewed. balanced distribution of IDs

results from the following two algorithms: “One Random Probe plus One Local Probe of

size (c log n)” and “r Random Probes plus r Local Probes of size v, with (rv ≥ c log n)”.

In both of these algorithms, IDs correspond to leaf nodes of a binary tree in which

each internal node has exactly two children. If we label the left and right branches of

internal nodes with 0 and 1 respectively, then the sequence of bits from the root to a

leaf node, treated as a fraction in I, constitutes the ID associated with that leaf. The

resulting distribution of IDs is balanced.

2. Link Establishment: Let 〈G0, G1, G2, . . .〉 denote an infinite family of directed

graphs where graph Gi is defined over 2i nodes. Let C(x) denote a cluster con-

sisting of all managers whose IDs have prefix x. Consider a manager with an `-bit

ID x. It establishes three sets of links: one set corresponding to x1, the (` − 2)-bit

prefix of its ID, another set corresponding to x2, the (`− 3)-bit prefix of its ID, and

finally, a set corresponding to x3, the (` − 4)-bit prefix of its ID. Let x1
1,x

2
1, . . . ,x

i1
1

denote the i1 neighbors of label x1 in graph G`−2. Let x1
2,x

2
2, . . . ,x

i2
2 denote the

i2 neighbors of label x2 in graph G`−3. Let x1
3,x

2
3, . . . ,x

i3
3 denote the i3 neighbors

of label x3 in graph G`−4. Then node x makes i1 + i2 + i3 links with one member

each of the following clusters: C(x1
1), C(x2

1), . . . , C(xi1
1), C(x1

2), C(x2
2), . . . , C(xi2

2), and

C(x1
3), C(x2

3), . . . , C(xi3
3). For the other end of a link, any member of the destination

cluster suffices. For example, a manager with ID 0.010111 would make links corre-

sponding to B1 = 0.0101, B2 = 0.010 and B3 = 0.01. When emulating hypercubes,

links would be established with one member each of clusters whose prefixes are listed

below:

0.1101 0.0001 0.0111 0.0100

0.110 0.000 0.011

0.11 0.00

3. Routing Protocol: Let us label each node with a triplet of integers, corresponding

to the three sets of links it makes. Thus a node with an `-bit ID is labeled with 〈`−
2, `−3, `−4〉. Routing starts off along that set of links that correspond to the smallest

integer in the triplet of the source node. Routing switches to links corresponding to

next higher integer if it encounters a node which is labeled with a different triplet. In

1.4. THE EMULATION ENGINE 11

balanced distribution of IDs, IDs correspond to leaf nodes in a binary tree at levels

[log2 n] or [log2 n]± 1, where n is the total number of leaf nodes, and [x] denotes the

integer closest to real number x. Therefore, each cluster on [log2 n]− 1 or fewer bits

is non-empty. Also, there are at most three different triplets used in labeling all the

nodes, and it is guaranteed that the integer [log2 n]−1 is a member of all the triplets.

Therefore, a message will eventually be delivered to a cluster on [log2 n]− 1 bits. At

this point, the remaining distance is Θ(1) hops along the circle, which can be covered

by using the short-distance links.

4. Network Proximity Awareness: It is important that each of the long-distance

links have low latency in terms of inter-host IP ping times. Instead of making a link

with an arbitrary host belonging to the destination cluster, if we were to make a link

with the closest host, as per the ping-times, we would expect small ping times on

average. In Chapter 4, we show that indeed, for balanced distribution of IDs, by

making links corresponding to ` − 3, ` − 4 and ` − 5 bits, we can ensure that most

clusters have sixteen or more hosts, which is sufficient to guarantee small inter-host IP

ping times. We validate our design through a series of experiments using real-world

latencies measured by the Skitter project [Ski] and by using the GT-ITM topology

generator [ZCB96].

Notes:

1. Our approach for incorporating network proximity awareness into long-distance links is

unique because of its generality. Previous work has focused on specific topologies like

Chord [GGG+03, ZGG03, DLS+04] or hypercubes [GGG+03, CDHR03, RGRK04]. In

fact, we show that network proximity can be factored into the design independent of the

choice of long-distance links, in a generic fashion.

2. Non-Power of Two Families: We transform the given family of graphs into another

family defined over powers of two. Then the emulation technique developed so far is

readily applicable.

3. It is possible to carry out emulation with only two set of links per node instead of three,

for both random and balanced distributions of IDs. See Chapter 4 for more details.

4. The Emulation Engine absorbs complexity arising out of dynamism (arrivals/departure

of hosts), scale (variation in the average number of hosts), and concerns of physical

network proximity. This leaves us free to explore static networks defined over successive

12 CHAPTER 1. DIPSEA: AN OVERVIEW

powers of two. These families of networks constitute the top-most module of Dipsea:

Choice of Long-Distance Links (see Figure 1.1 on page 2). We devote Chapters 5 through 9

in understanding that module.

1.5 Choice of Long-Distance Links: Deterministic

What is a good family of networks for making the long-distance links? An important trade-

off is between the number of links per node and length of routes. The Degree-Diameter Prob-

lem, studied in extremal graph theory, seeks to identify the graph with the maximum nodes

whose diameter is ∆, with each node having out-degree at most d (see Delorme [D04] for a

survey). A well-known upper bound for the number of nodes is 1+d+d2+· · ·+d∆ = d∆+1−1
d−1 ,

also known as the Moore bound. A general lower bound is d∆ + d∆−1, achieved by Kautz

digraphs [K68, K69], which are slightly superior to de Bruijn graphs [dB46] whose size is

only d∆. Two consequences of these results are: (a) with out-degree d per node, the diame-

ter of any graph on n nodes is Ω(log n/ log d), and (b) there exist constructions (high-degree

butterfly networks and de Bruijn graphs, for example) whose diameter is O(log n/ log d).

Such graphs have been studied extensively in the context of routing in parallel machine

architectures (see the book by Leighton [L92]).

We make two contributions in the space of deterministic routing networks:

1. Optimal Routing in Chord

In Chapter 5, we characterize shortest paths in the following graph:

Definition (Chord). Consider an undirected graph on 2b nodes arranged in a

circle. Nodes are labeled with b-bit identifiers from 0 through 2b − 1 going clockwise.

An edge (x, y) exists iff x and y are 2k positions apart on the circle for some k ≥ 0,

i.e., |x− y| equals either 2k or 2b − 2k for some 0 ≤ k < b.

From the perspective of shortest paths, the definition of Chord is deceptively simple;

it hides a rich combinatorial structure, some of which we unearth in Chapter 5.

In the standard Chord routing algorithm [SMK+01], messages are forwarded along

only those edges that diminish the clockwise distance by some power of two. Routing

is clockwise and greedy, never overshooting the destination. If a message is destined

1.5. CHOICE OF LONG-DISTANCE LINKS: DETERMINISTIC 13

for a node that is clockwise distance d away, routing is equivalent to performing left-

to-right bit-fixing to convert the 1s in the binary representation of d to zero. For

example, if d is 14 (1110 in binary), the standard Chord routing algorithm uses steps

of 8, 4 and 2 in that order, thus converting the leftmost 1 in the remaining distance

to a 0 at each step. The longest path has length b and the average path length is b/2.

We show that shortest paths in Chord have a strong connection with the Binary

Subtraction Problem: Given a positive integer d, find a pair of non-negative integers

〈d′, d′′〉 such that the number of 1-bits in d′ and d′′ is minimal, subject to the constraint

d = d′ − d′′. For example, the shortest route to cover clockwise distance 14 (1110 in

binary) is to use a clockwise step of 16 in combination with an anti-clockwise step of

length 2, which can be seen as an optimal way of expressing 14 as the difference of two

numbers. We solve the Binary Subtraction Problem, presenting a non-deterministic

procedure that generates all the optimal solutions. This enables us to identify optimal

routes between any pair of nodes in Chord. We show that Chord’s diameter is bb/2c.
However, the average all-pairs shortest-path length is only b/3 + Θ(1). Interestingly,

two simple algorithms for computing optimal routes can be encoded compactly by

finite-state automata. The average shortest-path lengths are then computed by treat-

ing the automata as Markov Chains. Finally, we extend our results to higher-base

versions of Chord.

2. Greedy Routing on a Circle

Consider n nodes placed in a circle, labeled 0 through n − 1. greedy routing, as

formally defined below, is a natural routing strategy: a node forwards a message

along that out-going link that minimizes the distance remaining to the destination:

Definition (Greedy Routing). In graph (V,E) with distance function δ : V ×
V → R+, greedy routing entails the following decision: Given a target node t, a

node u with neighbors N(u) forwards a message to its neighbor v ∈ N(u) such that

δ(v, t) = minx∈N(u) δ(x, t).

For graphs consisting of n nodes placed in a circle, two natural distance metrics are

14 CHAPTER 1. DIPSEA: AN OVERVIEW

the clockwise-distance and the absolute-distance between pairs of nodes.

δclockwise(u, v) =







v − u v ≥ u

n+ v − u otherwise

δabsolute(u, v) =







min{v − u, n+ u− v} v ≥ u

min{u− v, n+ v − u} otherwise

In Chapter 6, we study the following combinatorial problem:

I Given integers d and ∆, what is the largest graph that satisfies two constraints:

the out-degree of any node is at most d, and the length of the longest greedy

route is at most ∆ hops?

II Given integers d and n, design a network in which each node has out-degree at

most d such that the length of the longest greedy route is minimized.

We construct Papillon, a family of graphs that offers optimal trade-off between out-

degree per node and worst-case route lengths using greedy routing. We have two

constructions for Papillon, one for distance function δclockwise and another for distance

function δabsolute. Both families are variants of butterfly networks:

(a) A network with n = κmm nodes, each with κ links per node, and greedy routes

of length at most 3m − 2 (at most 2m − 1 on average), with δclockwise as the

distance-function.

(b) A network with n = (2k + 1)mm nodes, 2k + 2 links per node, and greedy

routes of length at most 3m− 2 (at most 2m− 1 on average) with δabsolute as the

distance-function.

In terms of d and ∆, Papillon has n = dO(∆) ·∆ nodes. As long as m = O(poly(k)),

route lengths are Θ(log n/ log k), which is asymptotically optimal, given n and k.

In particular, if k = O(log n), route lengths are Θ(log n/ log log n). Papillon is the

first construction that achieves such optimality for distance functions δclockwise and

δabsolute. Curiously, in both networks, greedy routing does not route along shortest

paths. We show this constructively by identifying routes which are shorter than those

afforded by greedy routing. These routes also guarantee uniform edge congestion.

1.6. CHOICE OF LONG-DISTANCE LINKS: RANDOMIZED 15

1.6 Choice of Long-Distance Links: Randomized

Several new families of randomized routing networks have been proposed in the context of

DHTs. All of these networks are defined for n nodes placed in a circle, with nodes labeled

0 through n− 1 in the clockwise direction. Each node is connected with its successor and

predecessor along the circle. Each node also makes one or more long-distance links with

other nodes.

An important distinction between deterministic and randomized routing networks per-

tains to knowledge of the overall graph structure. In a deterministic routing network, we

assume that the structure of the network is global information. Therefore, messages can

be sent along shortest paths. In a randomized routing network, each node makes links as a

function of some random bits generated locally. We assume that these random bits are not

global information. Therefore, it is not possible to send messages along shortest paths, in

general. This motivates the need for decentralized routing strategies which allow a node to

forward messages on the basis of as little knowledge of other nodes’ random bits as possible.

greedy routing, as defined earlier, is a natural decentralized routing strategy.

We make three contributions in the space of randomized routing networks:

1. Symphony: Routing in a Small-World

In Chapter 7, we develop Symphony, a randomized routing network. Symphony is an

adaptation of Kleinberg’s small-world construction [K00] in one dimension. Consider

n nodes lying on the circumference of a circle, labeled 0 through n − 1. Each node

establishes a short-distance link with its immediate neighbor along the circle. Node

x establishes k ≥ 1 long-distance links as follows: For each link, node x first draws a

random number r from the probability distribution p(x) = 1/(x ln n) where x ∈ [1, n]

and then establishes a link with node dx + re mod n.

With k ≤ log n links per node, greedy routing with distance function δclockwise in

Symphony requires O(1
k log2 n) hops on average. We also study a variant of greedy

routing:

16 CHAPTER 1. DIPSEA: AN OVERVIEW

Definition (Greedy with 1-Lookahead Routing). In graph (V,E) with distance

function δ : V ×V →R+, greedy with 1-lookahead routing entails the following

decision: A node takes its neighbor’s neighbors also into account when making routing

decisions. Let N(x) denote the neighbors of node x. Given target node t, node u

first identifies node z such that δ(z, t) = minx∈N(u){δ(x, t),miny∈N(x) δ(y, t)}. If

link (u, z) exists, then node u forwards the message to node z. Otherwise, node v

exists such that both (u, v) and (v, z) exist; u forwards the message to v, which then

forwards the message to z.

Experiments indicate that greedy with 1-lookahead reduces average route length

by about 40% when n = 215 nodes. This observation motivated further theoreti-

cal analysis of greedy with/without 1-lookahead in Symphony, leading to results

developed in Chapter 8.

2. Greedy with/without Lookahead in Randomized Routing Networks

In Chapter 8, we study a variety of randomized routing networks. All networks defined

below are directed graphs with n = 2` nodes labeled 0 through n− 1, arranged in a

circle. Each node is connected to its successor by a short-distance link. The rest of

the links are said to be long-distance and involve random choices.

✫ Randomized-Hypercube [CDHR03,GGG+03]

The out-degree of each node is `. For each 1 ≤ i ≤ `, node x makes a link with

node y defined as follows: The top i−1 bits of y are identical to those of x. The

ith bit is flipped. Each of the remaining `− i bits is chosen uniformly at random.

The distance-function for routing is δxor, which is defined as δxor(u, v) = |u⊕v|
for nodes u and v, the Hamming distance between the labels of the two nodes.

✫ Randomized-Chord [ZGG03,GGG+03]

Node x makes ` links as follows: Let r(i) denote an integer chosen uniformly

at random from the interval [0, 2i). Then for each 0 ≤ i < `, node x creates

an edge with node (x + 2i + r(i)) mod n. Each node has out-degree `. The

distance-function for routing is δclockwise.

✫ Symphony [MBR03]

Node x establishes k ≥ 1 long-distance links as follows: For each link, node x first

draws a random number r from the probability distribution p(x) = 1/(x lnn)

1.6. CHOICE OF LONG-DISTANCE LINKS: RANDOMIZED 17

where x ∈ [1, n] and then establishes a link with node dx + re mod n. The

distance-function for routing is δclockwise.

Definition (Average Route Length R(n)). Let r(x,y) denotes the length of

the route from node x to node y. For deterministic graphs like Chord and

hypercube, R(n) ≡ n−2
∑

x,y∈[0,n−1] r(x,y). For randomized graphs, R(n) ≡
n−2E

∑

x,y∈[0,n−1] r(x,y).

The following picture emerges in Chapter 8:

A) Deterministic topologies – the hypercube and Chord – have diameter Θ(log n).

In fact, greedy routing with distance function δxor is optimal for the hyper-

cube, and greedy routing with distance function δabsolute is optimal for Chord.

Both route along shortest paths, with R(n) = Θ(log n). 1-lookahead offers no

improvement.

B) Randomization reduces the diameter to Θ(log n/ log log n) in expectation.

Each of the following networks has diameter Θ(log n/ log log n): Randomized-

Chord, Randomized-Hypercube, and Symphony with k = Θ(log n) links per

node. In contrast, the deterministic topologies (Hypercube and Chord) have

diameter Θ(log n).

A small diameter does not necessarily mean that there exist efficient decentralized

routing algorithms. This motivates a formal analysis of greedy with/without

1-lookahead:

C) greedy routing is unable to discover optimal routes in randomized networks.

greedy routing requires R(n) = Θ(log n) hops on average for each of the fol-

lowing randomized networks: Randomized-Chord, Randomized-Hypercube, and

Symphony with Θ(log n) links per node.

D) greedy with 1-lookahead is asymptotically optimal for randomized networks.

Each of the following randomized networks requires R(n) = Θ(log n/ log log n)

hops on average with greedy with 1-lookahead routing: Randomized-Chord,

Randomized-Hypercube, and Symphony with Θ(log n) links per node.

E) Simulations show that the average route length of greedy with 1-lookahead in

Randomized-Chord, Randomized-Hypercube and Symphony with log2 n links per

18 CHAPTER 1. DIPSEA: AN OVERVIEW

node is within 10% of average route lengths in de Bruijn graphs with as many

links per node.

Results B), C) and D) hold for three more randomized networks: SkipNet [HJS+03],

skip-graphs [AS03] and small-world Percolation Networks (see reference [MNW04]).

Additional results proved in Chapter 8 include the following:

a) With k links per node, R(n) = Ω(1
k log2 n) hops for greedy routing in Sym-

phony.

b) With k links per node, R(n) = O(log2 n/(k log k)) hops for greedy with 1-

lookahead routing in Symphony.

We also study the following randomized networks:

✫ Sparse-Chord [M03]

In Chord, a node makes `−1 long-distance links with other nodes at the following

clockwise-distances: 〈n2 , n
4 ,

n
8 , . . . , 4, 2〉. In Sparse-Chord, each node chooses k ≥

1 out of these out-going links at random.

✫ Sparse-Hypercube [M03]

In a hypercube, a node makes ` long-distance links with other nodes correspond-

ing to bit-flips in each of ` positions of its label written in binary. In Sparse-

Hypercube, each node chooses k ≥ 1 out of these out-going links at random.

Using the Bit-Collection protocol (see reference [M03] or Chapter 8 for more de-

tails), R(n) = O(log n) hops for both Sparse-Chord and Sparse-Hypercube, when

k = Θ(log log n).

3. Mariposa: A Randomized Butterfly

Mariposa is a randomized routing network which differs from those studied so far in

terms of its design philosophy. The difference lies in whether a node learns about the

random choices made by other nodes before or after link-establishment. We explain

the point in more detail below.

In Randomized-Chord, Randomized-Hypercube, Symphony, skip-graphs and SkipNet,

each node generates some random bits locally, and establishes links with other nodes

on the basis of the bits it generates. After link-establishment, a node can inspect

1.7. PEER-TO-PEER COMPUTING: A HISTORICAL PERSPECTIVE 19

the random bits of other nodes (typically, its neighbors with whom it has established

links) for making good routing decisions. For example, greedy with 1-lookahead

follows this paradigm.

In Mariposa, a node generates some random bits. It then inspects the random bits of

a few other nodes before it establishes its long-distance links. The knowledge gained

by inspecting other nodes’ random bits is used for making good decision for link-

establishment itself.

In a nutshell, the routing networks we have studied so far use following sequence of

operations:

➢ Generation of local random bits.

➢ Establishment of long-distance links.

➢ Inspection of non-local random bits for routing.

Mariposa uses the following sequence of operations:

➢ Generation of local random bits.

➢ Inspection of non-local random bits for establishment of long-distance

links.

➢ Routing.

Mariposa is an interesting combination of butterfly networks and Kleinberg’s small-

world construction [K00]. With 3` + 3 out-going links per node, Mariposa routes in

O(log n/ log `) hops in the worst-case, which is asymptotically optimal. The construc-

tion improves upon Viceroy [MNR02], which also follows the sequence of operations

outlined above. Viceroy routes in O(log n) hops in expectation with Θ(1) out-going

links per node. Mariposa improves upon Viceroy in terms of the trade-off between

out-degree and the worst-case length of routes when the out-degree is ω(1).

1.7 Peer-to-Peer Computing: A Historical Perspective

Distributed Computing has witnessed many a shift in direction, driven by increases in

number, performance and connectivity of computers. Research into the subject was spawned

by the 4-node ARPANET in 1969. Subsequent developments in inter-networking hardware,

most notably the Ethernet in 1973, gave distributed systems research a big impetus. LAN-

based systems were investigated in the 1980s leading to the development of client-server

20 CHAPTER 1. DIPSEA: AN OVERVIEW

systems typified by NFS and HTTP servers. These systems enjoyed great success, leading

to rapid deployment of the World Wide Web in the 1990s. As a consequence, research in

the 1990s was dominated by web-based front ends and cluster-based back ends. The 1990s

witnessed (a) the proliferation of computers that communicate over wide-area networks,

and (b) reduction in the gap between performance+capacity of client- and server-class

machines. As a result, the early 2000s witnessed large-scale distributed applications that

treated all participants as peers. Examples of such systems are SETI@home [ACLW02],

Freenet [CHM+02], Gnutella [RFI02, SGG02] and Kazaa [GDS+03]. The advent of such

large-scale decentralized systems, also known as peer-to-peer systems, marks a departure

away from the traditional client-server paradigm.

Since 2001, peer-to-peer systems have witnessed an explosive growth of academic in-

terest. Broadly speaking, two categories of systems are being investigated: structured and

unstructured – both systems have their pros and cons. Unstructured systems have already

enjoyed great success in the form of file-sharing applications like Napster, Gnutella and

Kazaa which are used by millions of users. These networks are unstructured in the sense

that the set of links between machines are not dictated by some pre-defined topology. The

system offers no performance guarantees; it works on a best-effort basis. However, the

system supports complex queries and remains functional despite frequent arrivals and de-

partures of heterogeneous participants. For a discussion of unstructured P2P systems, see

Yang and Garcia-Molina [YGM01] and Chawathe et al [CRB+03]. For music-sharing ap-

plications, where imprecise/partial results to queries are acceptable, unstructured systems

are sufficient. For applications that mandate stronger guarantees on data storage and re-

trieval, the systems community is investigating the design-space of structured P2P systems.

These systems are harder to engineer because of the stronger guarantees on performance

and correctness that the system is expected to deliver. So far, these systems have not

witnessed large-scale deployments although the academia has investigated several potential

applications. These include persistent data storage (OceanStore [KBC+00], Cooperative

File System [DKK+01], Farsite [BDET00], and PAST [RD01b]), DNS (CoDoNS [RS04b]),

resource discovery (SETS [BMR03]), cooperative web caching (Squirrel [IRD02]), and event

notification with application level multicast (Bayeux [ZZJ+01], Scribe [RKCD01] and CAN-

based Multicast [RHKS01]). Several of these applications have no centralized components

and use a scalable DHT as a substrate.

1.7. PEER-TO-PEER COMPUTING: A HISTORICAL PERSPECTIVE 21

Distributed Hash Tables: A Brief History

Distributed Hash Tables over clusters of machines have been extensively studied by the

SDDS (Scalable Distributed Data Structures) community in the 90’s. The term was coined

in a seminal paper by Litwin, Niemat and Shneider [LNS96]. Gribble et al [GBHC00]

implemented a highly scalable, fault tolerant and available SDDS on a cluster.

Distributed Hash Tables over thousands of machines that span wide-area networks

were first investigated in early 2000s, when the first proposals appeared: CAN [RFHK01],

Chord [SMK+01], Pastry [RD01a], P-Grid [A01] and Tapestry [ZHS+04]. The routing net-

work of CAN is an adaptation of multi-dimensional tori. The routing scheme in Pastry,

P-Grid and Tapestry shares similarities with an earlier prefix-based routing scheme due to

Plaxton et al [PRR99]. Chord is a variation on hypercubes. All of these allow a manager (a

machine/host on the Internet) to choose a random number in I as its ID. As a function of

its ID, a manager makes links with other managers such that the union of the links approx-

imates a hypercube. A hypercube is attractive because it is conceptually simple, and it has

been well-studied (see Leighton [L92]). In an n-node network, the length of routes in a hy-

percube is O(log n) hops at the cost of only O(log n) out-going links per machine. Recently,

some new implementations of DHTs have surfaced: Chord [DLS+04], Bamboo [RGRK04]

and P-Grid [ACMD+03].

Since 2001, several improvements to the DHT design have been proposed:

✧ Routing Networks

A variety of graphs have been proposed for building the overlay routing network.

These include high-degree de Bruijn graphs, as noted by several groups [AAA+03,

FG03, KK03, LKRG03, NW03], multi-dimensional grids [RFHK01], and high-degree

butterflies [KMXY03]. Most of these graphs have been well-studied in the context

of routing in parallel machines (see the classic book by Leighton [L92] for theoretical

foundations of this area). Interestingly, a variety of novel randomized routing networks

have also been designed for DHT routing. These include Viceroy [MNR02] (a ran-

domized butterfly network), Symphony [MBR03] (an adaptation of Kleinberg’s small-

world construction [K00]), Mariposa [M03] (another randomized butterfly network),

randomized-Chord [ZGG03,GGG+03], randomized-hypercubes [CDHR03,GGG+03],

skip-graphs [AS03] and SkipNet [HJS+03,HM03a]. The last two networks are adap-

tations of skip-lists (see Pugh [P90]).

22 CHAPTER 1. DIPSEA: AN OVERVIEW

✧ ID Management and Load Balance

Early DHT implementations allowed a participating machine to use a random number

in I as its ID. A problem with this scheme is that some partition sizes are too small

whereas others are too big. With n machines, the ratio between the sizes of the

largest and the smallest partitions is Θ(n log n) (see King and Saia [KS04]). In a

homogeneous system, it is desirable that the variation in partition sizes be minimal.

With this goal in mind, efficient decentralized ID management algorithms have been

developed so that the partition balance ratio is as small as Θ(1). For example, Adler et

al [AHKV03] have devised a scheme tailored for managers connected as a hypercube.

Karger and Ruhl [KR04] have devised a scheme for Chord. Naor and Wieder [NW03]

and Abraham et al [AAA+03] have developed schemes which are independent of the

routing network.

✧ Physical Network Proximity

Since participating machines belong to different geographical regions of the world, the

latency (or the ping-time) between a pair of randomly-chosen participants is quite

high. If most of the links in the overlay routing network are high-latency, and if

routes are O(log n) hops long (as in a hypercube, for example), then the total time

taken to transmit any message to its destination would be quite large. Such high

latencies would render the DHT practically unusable. The problem of physical net-

work proximity has been ameliorated for two specific routing networks: Chord and

the hypercube. In both cases, the basic topology is altered by introducing random-

ization: Chord gets transformed into randomized-Chord [GGG+03,ZGG03], and the

hypercube gets transformed into randomized-hypercube [GGG+03, CDHR03]. The

key idea is to make the topology less rigid by introducing choices for every link that is

established. This allows a manager to establish a link with the closest manager, from

among the choices available.

Several questions emerge:

1. ID Management: What are the commonalities and differences in the various ID

management schemes? Can the scheme developed by Karger and Ruhl [KR04] be

used for routing networks other than Chord? Does each routing network engender its

own ID management scheme (for example, the scheme by Adler et al [AHKV03] is

1.8. DISSERTATION ROAD-MAP 23

tailored for a hypercubic routing network)? Or is there a generic scheme that can be

employed for arbitrary routing networks?

2. Routing Networks: What are the relationships between various deterministic and

randomized routing networks? Are randomized routing networks better or worse than

deterministic routing networks? Do join/leave protocols for different routing networks

have anything in common? Finally, how do different routing networks compare with

each other, when it comes to DHT routing?

3. Physical Network Proximity: Can physical network proximity be incorporated

into arbitrary graph topologies, like butterflies and de Bruijn graphs? How do we

introduce choices for making links in randomized routing networks? Do we have to

handle each routing network on a case-by-case basis, or is there a generic scheme that

suffices for all networks?

In a nutshell, the problem is that of identifying the right abstractions for building

DHTs. The building-blocks for different abstractions should fit together snugly, leading to

a modular system-design. Dipsea is a design in response to this need – it is a modular

architecture for building DHTs. The overall design has been broken into modules which

are more or less independent of each other. For each module, Dipsea has arguably the best-

known design. By putting together the different modules, we arrive at an overall design of

Dipsea that is more efficient than any of the existing implementations.

Remark: A DHT can also be used for storing just pointers to objects instead of the

objects themselves. When used in this fashion, a DHT functions as a “Distributed Ob-

ject Location Service” – a directory service much like Grapevine [BLNS82], DNS [MD88],

or the Corba Name Server [V97]. A DHT-based system for DNS is being designed as

CoDoNS [RS04b].

1.8 Dissertation Road-map

Each chapter in this dissertation is self-contained. ID Management is discussed in Chap-

ters 2 and 3. The Emulation Engine is covered in Chapter 4. Two problems pertaining to

deterministic randomized networks are solved in Chapters 5 and 6. Randomized routing

networks are analyzed in Chapters 7 and 9. We present a summary along with directions

for further research in Chapter 10.

24 CHAPTER 1. DIPSEA: AN OVERVIEW

✫ Chapter 2 (Balanced Binary Trees)

We explore the “One Random Probe plus One Local Probe of size (c log n)” scheme and

its variations for ID Management. The analysis has also been published as

[M04] g s manku, Balanced Binary Trees for ID Management and Load Balance

in Distributed Hash Tables, Proc. 23rd ACM Symposium on Principles

of Distributed Computing (PODC 2004), July 2004.

✫ Chapter 3 (Coupon Collection over Cliques)

We discuss the “r Random Probes plus r Local Probes of size v, with (rv ≥ c log n)”

scheme for ID Management. This is a generalization of the above scheme and requires

a novel proof technique. We first analyze the following random process:

Consider n/b bins, each of capacity b. All bins are initially empty. At

successive trials, we choose a bins uniformly at random. If at least one of

the chosen bins is non-full, we pick one of the non-full bins (from among

the ones chosen) and place a ball into it.

We show that if ab ≥ c log n, then each of the first Ω(n) trials succeeds in placing a

ball into some bin, and that all bins are full in O(n) trials. These results, along with

ideas borrowed from reference [AHKV03], are used to analyze the ID management

scheme. These results have also been published as:

[KM04] k kenthapadi and g s manku, Structured Coupon Collection over

Cliques for P2P Load Balance, Manuscript, Available as DB Group TR

2004-38, Computer Science Department, Stanford University, June 2004.

✫ Chapter 4 (Scalable and Dynamic Emulation of Network Families)

The Emulation Engine is described in this Chapter. The engine enables “plug and

play” of various families of routing networks, not only deterministic parallel inter-

connection networks but also the recently-discovered families of randomized routing

networks. Some of these results have also appeared in the following publications:

[M03] g s manku, Routing Networks for Distributed Hash Tables, Proc. 22nd

ACM Symposium on Principles of Distributed Computing (PODC 2003),

p 133–142, July 2003.

[M04] g s manku, Balanced Binary Trees for ID Management and Load Balance

in Distributed Hash Tables, Proc. 23rd ACM Symposium on Principles

of Distributed Computing (PODC 2004), July 2004.

1.8. DISSERTATION ROAD-MAP 25

✫ Chapter 5 (Shortest Paths in Chord)

The results have also appeared in the following paper:

[GM04] p ganesan and g s manku, Optimal Routing in Chord, Proc. 15th ACM-

SIAM Symposium on Discrete Algorithms (SODA 2004), p 133–142, Jan

2004.

✫ Chapter 6 (Papillon: Greedy Routing on a Circle)

We describe two variants of butterfly networks such that greedy routing with distance

functions δclockwise and δabsolute requires O(log n/ log d) hops in the worst-case, with

d out-going links per node in an n-node network. The results have appeared in the

following paper:

[AMM04] i abraham and d malkhi and g s manku, The Degree-Diameter Greedy

Routing Problem, Manuscript, July 2004.

✫ Chapter 7 (Symphony: Routing in a Small World)

We develop Symphony, one of the first randomized routing networks proposed in lit-

erature. Symphony is an adaptation of Kleinberg’s small-world construction [K00]

in one dimension. We show that with k ≤ log n links per node, greedy routing

with distance function δclockwise takes O(1
k log2 n) hops on average. Experiments in-

dicate that greedy with 1-lookahead reduces average route length by about 40%

when n = 215 nodes. This observation motivated a theoretical analysis of greedy

with/without 1-lookahead in Symphony, leading to results developed in Chapter 8.

Symphony is described in the following paper:

[MBR03] g s manku, m bawa and p raghavan, Symphony: Distributed Hashing

in a Small World, Proc. 4th USENIX Symposium on Internet Technologies

and Systems (USITS 2003), p 127–140, 2003.

✫ Chapter 8 (Greedy Routing with Lookahead)

We study greedy routing with/without 1-lookahead in Symphony, Randomized-

Chord and Randomized-Hypercube. Although the definitions of these networks may

appear different, the networks share significant structural similarities. The analysis

has appeared previously as:

26 CHAPTER 1. DIPSEA: AN OVERVIEW

[MNW04] g s manku, m naor and u wieder, Know Thy Neighbor’s Neighbor:

The Role of Lookahead in Randomized P2P Networks, Proc. 36th ACM

Symposium on Theory of Computing (STOC 2004), p 54–63, June 2004.

We also analyze the Bit-Collection protocol for routing in Sparse-Chord and Sparse-

Hypercube. These results have previously appeared in:

[M03] g s manku, Routing Networks for Distributed Hash Tables, Proc. 22nd

ACM Symposium on Principles of Distributed Computing (PODC 2003),

p 133–142, July 2003.

✫ Chapter 9 (Mariposa: A Randomized Butterfly)

We construct Mariposa, a randomized adaptation of butterfly networks. With 3`+ 3

out-going links per node, Mariposa can route in O(log n/ log `) hops in the worst-case,

which is asymptotically optimal. This constitutes the first randomized network con-

struction to achieve this bound. The construction improves upon Viceroy [MNR02],

also an adaptation of butterfly networks, which routes in O(log n) hops with Θ(1)

out-going links per node. The construction also appears in:

[M03] g s manku, Routing Networks for Distributed Hash Tables, Proc. 22nd

ACM Symposium on Principles of Distributed Computing (PODC 2003),

p 133–142, July 2003.

✫ Chapter 10 (Summary)

We summarize the overall design of Dipsea and present directions for further research.

Chapter 2

Balanced Binary Trees

The trees that are slow to grow bear the best fruit.

Moliere (1622–1673)

In this Chapter, we present efficient algorithms for ID Management in Dipsea (see Fig-

ure 1.1 on page 2 for a block-diagram of its architecture). The ID Management module

is responsible for assigning IDs to new managers – hosts on the Internet – as they join

the system. It also re-assigns the IDs of a few existing managers in response to arrivals

and departures. At any instant, the current set of IDs divides the hash table into disjoint

partitions. Our goal is to devise decentralized algorithms that ensure that the variation

in partition sizes is minimal, at the cost of as few messages and as few re-assignments of

existing IDs as possible.

2.1 Introduction

Consider a dynamic sets of managers lying on the circumference of a circle. The managers

divide the circumference into disjoint arcs. Each manager manages those points that lie on

the arc between itself and its clockwise successor along the circle. Three operations on the

set of managers are allowed: (a) a new manager can be inserted into the set, (b) an existing

manager can be deleted, and (c) an existing manager can be re-assigned to a new position

on the circumference of the circle. The system is decentralized. We model decentralization

by assuming that no manager has knowledge of other managers at any time. However, their

positions can be inferred in two ways:

27

28 CHAPTER 2. BALANCED BINARY TREES

1. Random Probe: The manager of a randomly chosen point on the circumference can be

ascertained by paying a cost of R messages.

2. Local Probe: The positions of k managers adjacent to a manager can be ascertained by

that manager at the cost of 2k messages. We call this a “Local Probe of size k”.

Our goal is to design message-efficient algorithms for inserting, deleting and re-assigning

managers so that the variation in arc sizes is small and the number of re-assignments is

minimal. We will quantify the variation by σ, defined as the ratio between the lengths of

the longest and the shortest arcs. The following schemes are known:

✧ No Probes: Upon arrival, a manager is placed at a random point on the circle. No

existing manager is re-assigned. The message complexity is zero, since no local or

random probes are used. However, σ = Θ(n log n) (see King and Saia [KS04]).

✧ One Random Probe: Upon arrival, a manager identifies the location of one existing

manager by sending a random probe and splits the portion of the circle it manages. Af-

ter n arrivals, σ = Θ(log n) (see Naor and Wieder [NW03] or Adler et al [AHKV03]).

The scheme is known to handle only arrivals, at the cost of R messages per arrival.

✧ (c log n) Random Probes: We split the largest of the managers obtained from (c log n)

random probes, where c is a suitably large constant. Naor and Wieder [NW03] and

Abraham et al [AAA+03] have shown that σ = Θ(1) for this scheme. The cost is

O(R log n) messages per arrival. Karger and Ruhl [KR04] propose an elegant variation

on this idea that supports departures of managers as well. However, their variation

necessitates O(log log n) managers to be re-assigned in response to both arrivals and

departures.

✧ One Random Probe plus One Local Probe of size (c log n): We carry out one random

probe to identify a manager, followed by a local probe of size c log n in the vicinity

of that manager, and split the largest manager encountered. The scheme guarantees

σ ≤ 4 at the cost of O(R + log n) messages [M04]. In response to deletion of a

randomly chosen manager, a local probe of size c log n is carried out in the vicinity of

the departed manager and at most one existing manager is re-assigned.

✧ r Random Probes plus r Local Probes of size v, with (rv ≥ c log n): We carry out r

random probes, followed by local probes of size v in the vicinity of the r managers.

2.1. INTRODUCTION 29

We then split the largest manager encountered. The scheme guarantees σ = Θ(1) at

the cost of O(rR+v) messages if each node maintains knowledge of v of its neighbors.

When R = o(log n), the scheme is superior to previous schemes. The scheme does not

handle departures of managers although a simple heuristic is known to perform well

(see reference [KM04] or Chapter 3).

In this Chapter, we explore the “One Random Probe plus One Local Probe of size (c log n)”

scheme and some of its variations. The scheme forms the basis of a practical ID management

algorithm for Dipsea. The last scheme (“r Random Probes plus r Local Probes of size v, with

(rv ≥ c log n)”) is a generalization of earlier schemes and requires a novel proof technique.

This will be the subject of Chapter 3.

Summary of Results

In §2.2, we establish the relationship between managers on a circle and ID Management

in Dipsea.

In §2.3, we analyze a stochastic process for growing binary trees corresponding to the

“One Random Probe plus One Local Probe of size (c log n)” scheme. The leaf nodes of the

resulting tree belong to at most three different levels, with high probability.

In §2.4, we establish the relationship between balanced binary trees and ID Management

in Dipsea. The scheme guarantees σ ≤ 4 at the cost of O(R+ log n) messages per arrival.

In §2.5, we modify binary trees slightly by allowing parents of leaves to have high degree.

This variation extends the basic idea in §2.3 to guarantee σ ≤ 1 + ε, for any ε > 0, albeit

at the cost of O(R+ 1
ε2 log n) messages and re-assignment of O(1/ε) existing managers per

arrival and departure. Ours is the first algorithm that allows such fine-tuning.

In §2.6, we outline a simple variant of the ID Management algorithm in §2.4 that has

experimentally been observed to yield σ ≤ 4. We also outline a deletion algorithm that

works in conjunction with the addition algorithm. We cannot presently analyze these simple

algorithms. Instead, in the next Section, we develop a rather complex algorithm that handles

both additions and deletion, and also affords analysis.

In §2.7, we incorporate deletions of randomly chosen managers into our scheme. We

guarantee σ ≤ 4 at the cost of O(R+log n) messages per arrival or departure. At most one

existing manager is re-assigned when a manager departs, which is optimal.

In §2.8, we compare our ID Management algorithm with previous proposals for the same.

In §2.9, we summarize and present future research directions.

30 CHAPTER 2. BALANCED BINARY TREES

2.2 ID Management in Distributed Hash Tables

In the context of Dipsea, the circle corresponds to the unit interval I = [0, 1), with each

manager possessing an ID in I. The managers communicate with each other through a

routing network, a graph structure that is a function of the current set of IDs. The managers

are hosts on the Internet and the routing network consists of TCP connections among the

hosts. The current set of IDs divides I into disjoint partitions, managed by one host each.

In a homogeneous system, we would like to ensure that each participating host is assigned

a fair share of the overall load. To quantify the variation in load, we define σ, the partition

balance ratio, to be the ratio between the largest and smallest partition sizes.

In Dipsea, the routing network consists of two types of links per node: (a) short-distance

links made with f successors and f predecessors along the circle, where f is a tunable

parameter, and (b) a few long-distance links with other nodes. The short-distance links

constitute a fault-tolerant ring. The long-distance links provide short routes among nodes,

and will be the subject of Chapters 5 through 9 of this dissertation. In this Chapter, we

treat the routing network as a black-box that supports two operations:

1. Local Probe: Using the short-distance links, it is possible for a manager to retrieve the

IDs of k managers adjacent to a manager in 2k messages. In fact, with f = Ω(log n),

the ring remains intact w.h.p. even if half the managers suddenly die [LNBK02]. Thus

in practice, as long as k ≤ f , the local probe is free of cost.

2. Random Probe: Using the long-distance links, it is possible to route a message to

the manager of a randomly-chosen point in I by paying a cost of R messages, with

high probability†. The earliest DHT routing networks were based on the hypercube

and its variants. With n managers, these networks can route in R = Θ(log n) mes-

sages, with only Θ(log n) connections per node. Examples of these networks are

Chord [SMK+01,GM04], Pastry [RD01a] and Tapestry [ZHS+04]. Later papers have

shown that it is possible to achieve R = Θ(log n/ log log n) with the same number of

connections. Examples of these networks are high-degree de Bruijn networks, as has

been observed by several groups [AAA+03,FG03,KK03,LKRG03,NW03], high-degree

butterflies [KMXY03], Mariposa: a Kleinberg-style randomized butterfly [M03], and

several other randomized networks that were analyzed in a recent paper [MNW04] (for

†By “with high probability” (w.h.p.), we mean “with probability at least 1 − O(n−λ) for some constant
λ > 1, for a system with n participants”.

2.2. ID MANAGEMENT IN DISTRIBUTED HASH TABLES 31

example, randomized-Chord [ZGG03,GGG+03], randomized-hypercubes [GGG+03],

Symphony [MBR03], skip-graphs [AS03] and SkipNet [HJS+03]). We discuss these

results in Chapter 8 of this dissertation.

Dipsea consists of a dynamic set of managers that join and leave the system frequently.

Upon arrival, a new manager has to select an ID for itself†. If the current set of IDs could

be retrieved from some central location, choosing an ID would be easy. However, Dipsea

is decentralized — there is no global knowledge of the current set of IDs. IDs of other

managers can be inferred by sending local and global probes, as described above.

From a systems standpoint, a good ID management algorithm should enjoy each of the

following properties: (a) the algorithm should be decentralized and simple to implement,

(b) the algorithm should entail low-cost, measured in terms of messages required for various

probes, (c) the variation in partition sizes should be small to ensure load balance among

managers, and (d) in response to arrivals and departures, the number of ID re-assignments

of existing hosts should be minimal.

Each of the schemes listed in Section 2.1 constitutes an ID management scheme for

DHTs. We study the “One Random Probe plus One Local Probe of size (c log n)” scheme in

this Chapter. This algorithm is the first to enjoy all of the following properties: (a) both

arrivals and departures of hosts are handled, (b) departure of a host causes at most one

existing host to change its ID, (c) the ratio of the largest to the smallest partition is at most

4, with high probability, and (d) the expected cost per arrival/departure is Θ(R + log n)

messages, where n denotes the current number of participants, and R denotes the cost of

routing one message using the long-distance links.

Our ID Management algorithm enjoys an additional property that is important: it

assumes the existence of short-distance links that support local probes, but is independent

of the long-distance links, which are treated as a black-box supporting random probes.

In contrast, a scheme by Adler et al [AHKV03] also guarantees σ = Θ(1) at the cost of

Θ(log n) messages. However, the scheme has been designed for a specific set of long-distance

links: the hypercube. The idea is to identify a manager with one random probe, and to split

the largest of this manager’s long-distance neighbors, as defined by a hypercubic routing

network. The advantage of having an ID management scheme that is independent of the

long-distance links is that the two modules: ID Management and Choice of Long-distance

†It is customarily assumed in DHT design that a newly-arrived manager “knows” one existing member
of the ring at the outset.

32 CHAPTER 2. BALANCED BINARY TREES

Links (see Figure 1.1 on page 2) are cleanly separated.

Variations of our algorithm diminish the ratio between the largest and the smallest

partition to (1+ ε), for any ε > 0, albeit at the cost of re-assigning the IDs of O(1
ε) existing

hosts per arrival/departure. Ours is the first algorithm that allows such fine-tuning (see

§2.5). Finally, our ID management algorithm enables (a) estimation of the total number of

hosts in the system by making only local measurements, and (b) emulation of a variety of

deterministic and randomized families of routing topologies, in a straightforward fashion.

Among these families are several networks that require O(log n/ log k) routing hops in an

n-node network with k links per node. We discuss these features of our ID management

algorithms in Chapter 4.

2.3 Three-Level Binary Trees

In this Section, we describe a stochastic process for growing binary trees that guarantees

that leaf nodes belong to at most three different levels with high probability. Each internal

node in the tree has degree two. The left and right branches of internal nodes are labeled

0 and 1 respectively. The level of a leaf node is the length of the path from the root. The

root is at level 0. There are at most 2` leaves at level `.

We mark a small fraction of internal nodes as active. Let n denote the number of leaf

nodes. With n = 2, there is only one internal node, the root node, which is marked active.

At all times, we maintain the property that for every leaf node, exactly one internal node

along the path from that leaf node to the root is active. Thus the set of active nodes

constitutes a frontier such that sub-trees hanging below active nodes partition leaf nodes

into disjoint groups. We grow the binary tree in a randomized fashion by increasing the

number of leaf nodes. Insertion of a new leaf is done in three steps:

A. Random walk down the tree to reach leaf node r: Start at the root. At each step, choose

between the two children of an internal node, uniformly at random. Let r denote the

leaf node reached.

B. Perfect insertion in the sub-tree rooted at a, the active ancestor of r: Imagine that each

internal node is labeled with the number of leaf nodes in the sub-tree rooted at that

node. Starting at a, repeatedly move to the child with fewer leaves below it, breaking

ties arbitrarily. Split the leaf node reached, into two.

C. Check if a should continue to be active: Let φ denote a monotonically non-decreasing

2.3. THREE-LEVEL BINARY TREES 33

function such that φ(`) ∈ [0, `] for non-negative integer `. We maintain the invariant that

whenever a new node is inserted at level ` under an active node a, then a is guaranteed

to be at level φ(`). Therefore, we mark a as non-active and we mark both its children

as active iff two conditions are satisfied:

1. No more leaves at level ` can be created in the sub-tree rooted at a, where ` is the

level of the leaf just created.

2. φ(`) 6= φ(`+ 1), where φ(`) is the level of a.

Different choices of φ result in a spectrum of algorithms. For example, if φ(`) = 0 for all

`, we obtain a perfectly balanced binary tree. If φ(`) = `, we obtain a random binary tree.

We will use the following function in this paper:

φ(`) = max{0, `− dlog2 `e − c}

where c denotes a small constant. The resulting tree is height-balanced, as the following

theorem claims:

Theorem 2.1. With n leaf nodes, all leaves lie in levels [log2 n] and [log2 n] ± 1, w.h.p.,

for a suitable choice of c, where [x] denotes the integer closest to real number x.

To prove Theorem 2.1, we first define the following function:

χ(`) = 1 if ` = 0

2`−1 if φ(`) = 0 but ` 6= 0

2dlog2 `e+c−1 otherwise

We now define

Y (`) =
∑̀

i=0

Gχ(i),φ(i)

where Gχ(i),φ(i) denotes the sum of χ(i) geometric random variables, each with probability

parameter 2−φ(i). Clearly, EY (`) =
∑`

i=0 χ(i)2−φ(i) = 1 +
∑`

i=1 2i−1 = 2`. What is our

interest in Y (`)? Consider a, an active node awaiting insertion of a new leaf at level `.

Our algorithm ensures that a must be at level φ(`). The probability that a newly-arrived

host gets inserted as a leaf in the sub-tree rooted at a is 2−φ(`). Thus the total number of

node arrivals before a leaf gets inserted below a happens to be a geometric variable with

34 CHAPTER 2. BALANCED BINARY TREES

probability 2−φ(`). Now χ(`) equals the number of leaf nodes inserted at level ` in the

sub-tree rooted at a when a was active. In the past, each node along the path from the root

to a has played the role of an active node. Thus the sum Y (`) denotes the total number of

node arrivals such that all leaf positions at level ` in a specific sub-tree rooted at level φ(`)

are occupied.

Lemma 2.3.1. Let N = 2`.

(a) Pr[Y (`) > (1 + δ)N] = O(1/N 2), if constant c is chosen suitably (as a function of δ).

(b) Pr[Y (`) < (1− δ)N] = O(1/N 2) if constant c is chosen suitably (as a function of δ).

Proof. A formal proof is presented in Appendix A. The intuition behind the claims is

as follows. Consider Gχ(`),φ(`), the sum of χ(`) geometric random variables, each with

probability parameter 2−φ(`). Now χ(`) = c′ logN and 2−φ(`) = 2c′ log N
N , for some constant

c′ (which is a function of constant c). Using standard Chernoff bounds, we can claim the

following:

(a) Pr[Gχ(`),φ(`) > (1 + δ)(N/2)] < 1/(N/2)2, if constant c is chosen suitably (as a

function of δ).

(b) Pr[Gχ(`),φ(`) < (1 − δ)(N/2)] < 1/(N/2)2 if constant c is chosen suitably (as a

function of δ).

In general, Gχ(`−i),φ(`−i) is the sum of χ(` − i) geometric random variables, each with

probability parameter 2−φ(`−i). Now χ(`− i) = c′ log(N/2i) and 2−φ(`−i) = 2c′ log(N/2i)
N/2i , for

some constant c′. The challenge lies in summing these geometric variables for all values of

i from 0 through `. The proof in Appendix A derives tail-bounds for such a sum from first

principles (by following the technique illustrated in Motwani and Raghavan [MR95]).

Lemma 2.3.2. Let the total number of IDs be n.

(a) If 2`−1 < n < 7
82`, then w.h.p., no leaf is at level `+ 1 or more (for a suitably large

constant c).

(b) If 5
42` < n < 2`+1, then w.h.p., no leaf is at level ` − 1 or less (for a suitably large

constant c).

Proof. (a) Let N = 2`. Consider a specific leaf node r.

(r is at level `+ 1 or more within n < 7
82` steps) ⇒ Y (`) < 7

8N

Plugging δ = 1
8 in Lemma 2.3.1(b), we get Pr[Y (`) < (1 − δ)N] < 1/N 2 for suitably large

c. Now, 1/N 2 = O(1/n2). Summing over all n nodes, we arrive at the claim.

2.4. AN INSERT-ONLY ID MANAGEMENT ALGORITHM 35

(b) Let N = 2`. Consider a specific leaf node r.

(r is at level `− 1 or less even when n > 5
4N) ⇒ Y (`) > 5

4N

Plugging δ = 1
4 in Lemma 2.3.1(a), we get Pr[Y (`) > (1 + δ)N] < 1/N 2 for suitably large

c. Now, 1/N 2 = O(1/n2). Summing over all n nodes, we arrive at the claim.

Theorem 2.1 follows from Lemma 2.3.2. A few notes:

? The constants 7
8 and 5

4 can be replaced by any r1 and r2 satisfying r2 < 2r1 and

0 < r1 < 1 < r2.

? The leaf nodes lie in as many as three different levels only when n hovers around a power

of two. Otherwise, leaf nodes belong to only two different levels.

? Theorem 2.1 can also be proved using a different proof technique that is presented in

Chapter 3, where we develop a generalization of the scheme we studied in this Section.

2.4 An Insert-Only ID Management Algorithm

The relationship between binary trees (described in §2.3) and ID Management in Dipsea is

as follows. Only leaf nodes of the tree correspond to IDs. The internal nodes of the tree are

conceptual. The sequence of 0s and 1s along the path from the root to a leaf node, treated

as the binary expansion of a fraction in [0, 1), constitutes the ID of that leaf.

Step A (Random walk down the tree) is equivalent to identifying r, the manager of a

point chosen uniformly at random from the interval I = [0, 1).

Step B (Perfect insertion into the sub-tree rooted at a, the active ancestor of r) can be

accomplished as follows: Let r have an `-bit ID. Let S(r) denote the set of IDs that share

the top φ(`) bits with r. If |S(r)| ≥ 2`−φ(`), then we split r. Otherwise, there exists an

(`− 1)-bit ID s ∈ S(r), which we split. Splitting a node x amounts to replacing x with two

IDs: x0 and x1. Treated as fractions in [0, 1), x and x0 are equivalent. The newly arrived

host is assigned x1.

Step C (Check if a should continue to be active) is implicit in step B above.

Theorem 2.2. A newly-arrived host needs Θ(R+ log n) messages w.h.p. to obtain an ID,

where n denotes the current number of hosts. The partition balance ratio is σ ≤ 4.

Proof. The cost of identifying r, the manager of a random number in [0, 1) costs R messages,

by definition ofR. Computing S(r) entails Θ(log n) messages if we use successor/predecessor

36 CHAPTER 2. BALANCED BINARY TREES

links along the circle. This is because |S(r)| ≤ 2 × 2`−φ(`) = Θ(`) (from the definition of

φ(`)) and ` = Θ(log n) (Theorem 2.1). A host with an `-bit ID manages a sub-interval of

size 2−`. From Theorem 2.1, the leaves are in at most three different levels. Therefore,

σ ≤ 4.

Optimization: In a practical system, S(r) could be maintained as the value associated

with a hash key that includes a, the active ancestor of r, as a sub-key. Alternately, a

specific node within the sub-tree rooted at a (for example, the leftmost child of the sub-

tree) could be made responsible for this data structure. In either case, the data structure

can be retrieved and updated in Θ(R) messages.

2.5 High-Degree Trees for Fine-grained Partition Balance

We can guarantee that the partition balance ratio satisfy σ ≤ 1 + ε, for any ε > 0, if we

modify the tree in §2.3 a little: we stipulate that the degree of parents-of-leaves (internal

nodes that have leaf nodes as their children), could have any value in the range [b, 2b − 1]

for some b ≥ 2. All other internal nodes still have degree exactly two. The smallest trees

we consider have b leaf nodes. The degree constraint is reminiscent of B-trees [BM72] but

limited to parents-of-leaves.

What is the ID associated with a leaf node x at level `? Let p ∈ [0, 1) be the ID

associated with the parent of x. If x is the ith out of a total of c children of its parent, its

ID is p+ i−1
c 2−`.

Steps A and B in §2.3 remain the same. Step C is different due to two changes. First, we

use the function φ(`) = `− dlog2 `e − c′ log ε−2 for a suitably large constant c′. Second, the

properties associated with an active node are different: when an internal node x becomes

active for the first time, the degree of parents-of-leaves within the sub-tree rooted at x, is

exactly b. None of these nodes becomes degree b+2 unless all of them are degree b+1, and

so on. Finally, enough leaves would have arrived so that all these parents-of-leaves below

x have degree 2b− 1. Thereafter, insertions below x split degree-(2b − 1) parents-of-leaves

into pairs of internal nodes, each with degree b.

Every insertion changes the degree of some internal node. Each such change is concomi-

tant with re-assignments – at least b− 1 and at most 2b− 2 existing hosts get re-assigned.

We now establish that by setting b = 2/ε, and by choosing a suitably large constant c ′,

the tree is highly balanced. At all times, there at most three different (level, degree) pairs

2.6. PRACTICAL ID MANAGEMENT 37

corresponding to parents-of-leaf nodes, w.h.p. For b ≥ 2, these pairs are

(`, d), (`, d + 1), (`, d + 2), where d ∈ [b, 2b− 3]

or (`, 2b− 2), (`, 2b − 1), (`+ 1, b)

or (`, 2b− 1), (` + 1, b), (` + 1, b+ 1)

For b = 2, these three pairs are

(`, 2), (`, 3), (` + 1, 2)

or (`, 3), (` + 1, 2), (` + 1, 3)

As a consequence, σ ≤ 1 + 2/b w.h.p. Since b = 2/ε, we get σ ≤ 1 + ε.

Theorem 2.3. The modified ID selection scheme guarantees σ ≤ 1 + ε, w.h.p., when

φ(`) = `− dlog2 `e − c′ log ε−2 for a suitably chosen constant c′.

Proof. We define operators � and � as follows:

(x, y) � (x′, y′) iff (x < x′) or ((x = x′) and (y ≤ y′)).
(x, y) � (x′, y′) iff (x > x′) or ((x = x′) and (y ≥ y′)).

Using arguments similar to those in Lemma 2.3.1, we can show that for a suitably large value

of c′, if 5
4(b+ i)2` < n < (b+ i+1)2` for 0 ≤ i < b, then w.h.p., (`+1, b+ i) � (level, degree)

pair for any parent-of-leaves. Similarly, we can show that (a) if (b+i−1)2` < n < 7
8(b+i)2`,

for 1 ≤ i < b, then w.h.p., (`+ 1, b+ i) � (level, degree) pair for any parent-of-leaves, and

(b) if (2b− 1)2` < n < 7
8(2b)2`, then w.h.p., (`+ 2, b) � (level, degree) pair for any parent-

of-leaves. It follows that σ ≤ 1 + 2/b w.h.p. Since b = 2/ε, we get σ ≤ 1 + ε.

Notes: In terms of levels, for b ≥ 2, leaves belong to two different levels only when n is

very close to b2` for some `; otherwise, leaves occupy just one level.

2.6 Practical ID Management

A simple variant of the ID Management algorithm developed in Section 2.4 works as follows:

Identify r, the manager of a random number in [0, 1). Let r have an `-bit ID.

Identify the IDs of c` managers in the vicinity of r along the circle, where c

is a suitably-large constant. Split the largest manager into two.

38 CHAPTER 2. BALANCED BINARY TREES

The resulting set of IDs still corresponds to leaf nodes of a binary tree. Experiments

indicate that the scheme results in σ ≤ 4 w.h.p. The primary difference from the algorithm

in Section 2.4 is that the “vicinity” of a host has not been restricted to be a proper sub-

tree. It would be an interesting exercise to adapt the proof of Theorem 2.1 to this general

strategy of identifying the manager to split.

A simple deletion algorithm that works in conjunction with the above scheme for inser-

tion and has experimentally been observed to guarantees σ ≤ 4, works as follows:

Let r, a randomly-chosen manager that departs, have an `-bit ID. Identify the

IDs of c` managers in the vicinity of r along the circle, where c is a suitably-

large constant. Re-assign the smallest manager to occupy the position of the

manager that departed, unless such a re-assignment increases the size of the

largest manager in the vicinity.

It would be interesting to devise proof techniques to analyze the above algorithms since they

are quite simple. In the next Section, we develop a rather complex scheme that handles

both additions and deletions. IDs correspond to leaf nodes of a binary tree. We guarantee

σ ≤ 4 by ensuring that leaf nodes lie in at most three different levels.

2.7 Handling Host Departures

In this Section, we develop a variant of our algorithm in §2.3 to handle host departures

as well. From a practical perspective, the algorithm briefly described in §2.6 handles both

insertions and deletions while ensuring σ ≤ 4. From a theoretical perspective, it would be

nice to devise a proof for the scheme in §2.6 since the scheme we develop in this Section

entails considerable book-keeping.

The intuition underlying our scheme in this Section is as follows: if n hosts choose

random numbers in [0, 1) uniformly at random, then an interval of size c log n
n receives at

least 1
2c log n and at most 2c log n hosts with high probability, if c is a sufficiently large

constant. Imagine that we divide [0, 1) into disjoint sub-intervals of size 2−i each, where

i =
⌈

log2
n

c log n

⌉

. Now, if we could perturb the random numbers chosen by all the hosts

such that each sub-interval of size 2−i is (almost) evenly divided among those hosts whose

random numbers fall into that sub-interval, we could guarantee σ ≤ 4. The challenge lies

(a) in making sure that at most one existing ID is re-assigned per arrival/departure, and

(b) in decentralized maintenance of sub-interval boundaries as n itself changes over time.

2.7. HANDLING HOST DEPARTURES 39

2.7.1 Overview

We create binary trees, as before. The ID of a leaf node is the sequence of 0s and 1s from the

root to that node. When a randomly-chosen host departs, we restore balance in the tree by

making an adjustment in a small-sized sub-tree that includes the departed host. As before,

a “frontier” of internal nodes defines the set of sub-trees within which local adjustments

are made. The challenge lies in maintaining the frontier in response to both arrivals and

departures, and being able to analyze the shape of the resulting tree (in terms of levels to

which various leaf nodes belong).

We maintain a 1-1 correspondence between hosts and leaf nodes in the tree, their IDs

being the same. When a host joins, it arrives with an infinite string of random bits. During

the lifetime of a host, it can swap its bit-string with that of another host. Each host

possesses exactly one bit-string at any time – this bit-string is not necessarily the one it

joined the system with. The departure of a randomly chosen host is equivalent to deletion

of a randomly chosen bit-string in the system. Swapping of bit-strings is different from re-

assignment of host IDs, which occurs only when the tree itself undergoes structural changes.

In the next Section, we describe two simple procedures on sub-trees.

2.7.2 Perfect Insertion and Perfect Deletion

Definition of “perfect insertion of a newly-arrived host below internal node x”: Starting at

x, we repeatedly move down either the left or the right sub-tree, whichever has fewer leaf

nodes, breaking ties arbitrarily. Let r denote the leaf node we reach. We split r into two

by creating two leaf nodes. The newly-arrived host occupies the right leaf. The host that

occupied r now occupies the left leaf.

Definition of “perfect deletion of a specific host (corresponding to some leaf node) below

a specific internal node x”: Let the host correspond to leaf node r at level `. If ` is the

deepest level at which leaf nodes exist below x, we delete both r and its sibling from the

tree. The host at r leaves the system. The host at the sibling effectively “moves up”, its

ID possibly having been re-assigned since we chopped off its least-significant bit. If ` is not

the deepest level below x, we identify some pair of sibling leaf nodes that lie at the deepest

level. We delete both of these leaf nodes. In terms of hosts, the host corresponding to

the left sibling “moves up”, its ID remaining effectively the same (we chopped off its least-

significant bit, which was 0). The host corresponding to the right sibling is re-assigned – it

40 CHAPTER 2. BALANCED BINARY TREES

takes up the ID corresponding to leaf node r. The host that previously occupied r leaves

the system. The bit-string in its possession also vanishes from the system.

2.7.3 Definitions

Each internal node belongs to one of four states: b, f, f* or a. The letters are acronyms

for the words below, frontier, frontier* and above, respectively. We maintain the

invariant that for every leaf node, exactly one of its ancestors is marked as f or f* at any

time. Thus the union of f and f* nodes acts as a frontier, partitioning leaf nodes into

disjoint groups. Every internal node that is above the frontier is in state a. All other

internal nodes are below and in state b. The frontier “moves down” in response to additions

and “moves up” in response to deletions. When a new host arrives, the state of an existing

node either remains the same, or one of the following transitions takes place: b→f, b→f*,

f→f*, or f*→a. In response to deletions, either the state remains the same, or one of the

following transitions occurs: b←f, b←f*, f←f*, or f*←a.

For brevity, we will use x to denote both an internal node and the string of 0s and

1s from the root to that node. Thus x0 and x1 denote the left and the right child of x,

respectively.

Definitions: Function N(x) denotes the number of random bit-strings with prefix x,

currently in the system. Function φ remains unchanged: φ(`) = max{0, `− dlog2 `e − c}.
We define function ψ for any integer k ≥ 0:

ψ(k) = 2x−k where x = max{` | φ(`) = k}

Notes:

If n = 2k, then ψ(φ(k)) ≥ d log n for some constant d (that depends upon constant c).

From the definition of φ, we infer that ψ(k+1) equals either ψ(k) or 2ψ(k), for all k ≥ 0.

For string x, ψ(x) ≡ ψ(|x|), where |x| denotes the length of string x.

Invariants: We maintain the following invariant for every node x in state a, f or f*:

a bit-string is possessed by some leaf node below x iff x is a prefix of that bit-string. A

node in state b (the “non-frontier” nodes) may or may not satisfy this invariant. Figure 2.1

describes six additional invariants that are always maintained. The addition and deletion

algorithms in §2.7.4 and §2.7.5 basically show how all the invariants can be maintained in

response to arrivals and departures of hosts.

2.7. HANDLING HOST DEPARTURES 41

x is in state f ⇒ N(x) ≥ ψ(x) ∧
(

N(x0) < ψ(x)/2 ∨ N(x1) < ψ(x)/2
)

x is in state f* ⇒ N(x) ≥ ψ(x) ∧ ψ(x)/2 ≤ N(x0) < ψ(x0) ∧ ψ(x)/2 ≤ N(x1) < ψ(x1)
x is in state a ⇒ N(x) ≥ ψ(x) ∧ N(x0) ≥ ψ(x0) ∧ N(x1) ≥ ψ(x1)

Figure 2.1: Three of the invariants maintained by our algorithm are listed above. For each
invariant, the condition on the Right-Hand-Side and the condition that all ancestors of x
are in state a, implies the Left-Hand-Side. This results in three additional invariants.

2.7.4 Addition Algorithm

If there are fewer than ψ(0) hosts in the system, all internal nodes are in state b – we

maintain a complete binary tree (using “perfect addition” and “perfect deletion” below the

root node). When there are exactly ψ(0) hosts in the system, the root node undergoes the

transition b→f, or b→f*. If N(0) = N(1) = ψ(0)/2, then b→f* occurs; otherwise, b→f

occurs. For the rest of the Section, we assume that the root is not in state b.

When a new host arrives, it is in possession of an infinite random bit-string. Corre-

sponding to the bits of this bit-string, we carry out a random walk down the tree. Let r

denote the leaf node we reach. Let a denote the ancestor of r in state f or f*.

Case I (a is in state f)

If N(a0) < ψ(a)/2, we carry out “perfect insertion” below the sub-tree rooted at a1.

Otherwise, N(a1) < ψ(a)/2 and we carry out “perfect insertion” below the sub-tree

rooted at a0. The bit-string of the newly-arrived host increments either N(a0) or

N(a1). After the increment, if min{N(a0), N(a1)} ≥ ψ(a)/2, then a undergoes the

transition f→f*; otherwise it remains in state f. Note that in state f*, the number of

leaf nodes below a0 and a1 are exactly N(a0) and N(a1), respectively. This property

is maintained in state f*, as described below.

Case II (a is in state f*)

If a0 is a prefix of the random bit-string of the newly-arrived host, we carry out

“perfect insertion” below a0. Otherwise, we carry out “perfect insertion” below a1.

After the insertion, if N(a0) ≥ ψ(a0) and N(a1) ≥ ψ(a1), we invoke procedure

handle(a), described below: handle(x) first re-distributes the bit-strings currently

in possession of leaf nodes below x: All bit-strings with prefix x0 are made to lie

below x0, and all bit-strings with prefix x1 are made to lie below x1. The state of

42 CHAPTER 2. BALANCED BINARY TREES

x then changes to a. At this point, if N(x00) ≥ ψ(x00) and N(x01) ≥ ψ(x01), we

invoke handle(x0) recursively; else if N(x00) ≥ ψ(x0)/2 and N(x01) ≥ ψ(x0)/2, x0

is assigned state f*; else x0 is assigned state f. Node x1 is dealt with similarly. We

note that a recursive call is in fact, a rare event, as shown in §2.7.6.

The addition algorithm differs from that in §2.3 in the following way: the transition f→a

has been delayed by introducing an intermediate state f*. Plus, we maintain some random

bit-strings with hosts.

2.7.5 Deletion Algorithm

Let r denote a randomly-chosen host that departs. Let a denote the ancestor of r in state

f or f*. Departure of r will decrement N(a). Moreover, either N(a0) or N(a1) will also

be decremented, depending upon the prefix of the random bit-string in possession of r. In

the cases below, the values of N(a), N(a0) and N(a1) correspond to the updated values

(following the decrement).

Case I: N(a) ≥ ψ(a)

a) ψ(a)/2 ≤ N(a0) < ψ(a0) and ψ(a)/2 ≤ N(a1) < ψ(a1)

We carry out “perfect deletion” of r below a0 or a1, whichever happens to be

the ancestor of r. Node a remains in state f*.

b) N(a0) < ψ(a)/2 or N(a1) < ψ(a)/2

We carry out “perfect deletion” of r below a. Node a undergoes f←f* if its

state was f* before the departure of r.

Case II: N(a) < ψ(a)

We carry out “perfect deletion” of r below a. Internal node a′, the parent of a,

undergoes the transition f*←a. Node a, its sibling, and all descendants of its sibling

which are presently in state f or f*, undergo b←f or b←f*, whichever is applicable.

This cascade of state-transitions is the “inverse” of the recursive call to procedure

handle that was described earlier. Only the sibling changes state w.h.p.

2.7.6 Analysis

Lemma 2.7.1. If 5
42` < n < 2`+1, then w.h.p., no leaf is at level `−1 or less (for a suitably

large constant c).

2.7. HANDLING HOST DEPARTURES 43

Proof. If φ(`) 6= φ(`+1), the lemma follows from the following series of claims, each holding

w.h.p.

A1: If |a| ≤ φ(`), then N(a) ≥ ψ(a).

A2: If |a| < φ(`), then a is in state a.

A3: If |a| = φ(`), then a is in state a, f or f*.

A4: No leaf is at level `− 1 or less.

If φ(`) = φ(`+1), the lemma follows from the following series of claims, each holding w.h.p.

B1: If |a| ≤ φ(`)− 1, then N(a) ≥ ψ(a).

B2: If |a| < φ(`)− 1, then a is in state a.

B3: If |a| = φ(`)− 1, then a is in state a, f or f*.

B4: Let a′ denote the sibling of a. Then N(a) ≥ ψ(a)/2 and N(a′) ≥ ψ(a′)/2.

B5: No leaf is at level `− 1 or less.

Claim A1 is proved as follows. Let η = 2`. Then N(a) = B(5
4η, 2

−|a|), the sum of 5
4η

Bernoulli variables, each with probability 2−|a|. The expected value of N(a) is 5
42`−|a| ≥

5
4ψ(a). Since ψ(a) ≥ d log η, where d is some constant that depends on c. Application of

Chernoff bound shows that the event N(a) < ψ(a) holds with probability at most 1/η2 (for

a suitably large constant c). A union bound on all n nodes makes the probability of failure

at most O(1/η) = O(1/n).

Claims A2 and A3 follow from A1 and the invariants in Figure 2.1. Claim A4 follows

from the fact that all nodes in level `− 1 and less are occupied if all nodes in level φ(`) are

in state a, f or f*.

Claims B1—B5 can be proved along the same lines.

Lemma 2.7.2. If 2`−1 < n < 7
82`, then w.h.p., no leaf is at level ` + 1 or more (for a

suitably large constant c).

Proof. Consider internal node a with |a| = φ(`). The lemma follows from the following

claims:

C1: If φ(`) 6= φ(`+ 1), then N(a) < ψ(a) w.h.p.

C2: If φ(`) = φ(`+ 1), then N(a) < ψ(a)/2 w.h.p.

C3: In either case, the “next insertion” below any f/f* node is going to be at level ` or

less. Thus, there is no leaf at level `+ 1 or above, w.h.p.

44 CHAPTER 2. BALANCED BINARY TREES

Theorem 2.4. With n hosts, all leaves lie in levels [log2 n] and [log2 n] ± 1, where [x]

denotes the integer closest to real number x. Thus σ ≤ 4.

Proof. Follows from Lemmas 2.7.1 and 2.7.2.

2.7.7 Extensions

The algorithm outlined in §2.7.4 and §2.7.5 can be extended along the lines of §2.5 (high-

degree trees) to achieve partition balance ratio 1 + ε, w.h.p. Further, an accurate estimate

of n can be obtained by scaling the size of the sub-tree below any internal node in state f

or f*. This enables emulation of a variety of inter-connection topologies with only two sets

of links per host, as described in Chapter 4.

2.8 Comparison with Previous Work

Early DHT designs allowed each host to independently choose a number in [0, 1) uniformly at

random [SMK+01,ZHS+04,RD01a,RFHK01,FG03,KK03,MBR03,MNR02,HJS+03]. This

corresponds to the “No Probes” scheme described in §2.1. King and Saia [KS04] recently

established that σ = Θ(n log n) w.h.p., where σ denotes the ratio between the largest to the

smallest partition sizes.

If a newly-arrived host first chooses a random number in [0, 1) and then splits the

partition the number falls into, σ diminishes to Θ(log n) (see Adler et al [AHKV03] or Naor

and Wieder [NW03]). This corresponds to the “One Random Probe” scheme described in

§2.1. Further improvement is possible. If each host creates Ω(log n) virtual IDs [DKK+01],

σ reduces to O(1). However, the number of overlay connections per host gets amplified by

a factor of Ω(log n) – this is costly because higher degree overlay networks require more

resources for maintenance.

Two different approaches for ID management have recently been proposed, each of which

guarantees σ = Θ(1) with only one ID per host. The first approach [NW03, AAA+03,

KR04] is overlay-independent while the second is overlay-dependent [AHKV03]. Naor and

Wieder [NW03] and Abraham et al [AAA+03] proposed that a new host should choose

Θ(log n) random points from [0, 1), identify the managers of these points and split the

largest manager into two. This corresponds to the “(c log n) Random Probes” scheme in

§2.1. Karger and Ruhl [KR04] have proposed an elegant variation on the idea that supports

departures as well. However, their variation necessitates O(log log n) hosts to change their

2.8. COMPARISON WITH PREVIOUS WORK 45

Algorithm Overlay σ Message Handles Number of
Indep. Cost Deletions Re-assigns

Random Binary Tree Yes Θ(logn) R No –
Adler et al [AHKV03] No Θ(1) Θ(R+ logn) No –
Naor and Wieder [NW03] Yes Θ(1) Θ(R logn) (Yes) (?)
Abraham et al [AAA+03] Yes Θ(1) Θ(R logn) No –
Karger and Ruhl [KR04] Yes Θ(1) Θ(R logn) Yes O(log logn)

Algorithms in Ch 2 Yes 4 Θ(R+ logn) Yes 1
Yes 2 Θ(R+ logn) Yes 2
Yes (1 + ε) Θ(R+ 1

ε2 logn) Yes O(1/ε)

Algorithms in Ch 3 Yes Θ(1) Θ(rR + v) No -
with rv = Θ(logn)

Table 2.1: R denotes the average number of messages required by the overlay routing layer.
Typically, R = Θ(log n) or R = Θ(log n/ log log n), w.h.p. σ denotes the ratio of the largest
partition to the smallest partition. For the scheme by Adler et al [AHKV03], R = Θ(log n)
since the scheme is tied to a specific overlay routing topology: the hypercube.

IDs in response to both arrivals and departures – a costly operation. Adler et al [AHKV03]

analyzed an overlay-dependent scheme that is specific to hypercubes. The idea is to identify

the manager of a random point in [0, 1), probe other managers it has established overlay

connections with, and to split the largest of these managers into two. A scheme for handling

departures exists, but it has not yielded to formal analysis yet. The idea in [AHKV03] had

earlier been proposed as a heuristic in [RFHK01].

Our algorithm enjoys the following features (see Table 2.1):

i) Generality: Our algorithm is independent of the overlay routing topology.

ii) Low cost: Our algorithm requires Θ(R + log n) messages. Other overlay-independent

schemes require Θ(R log n) messages [AAA+03,NW03,KR04].

iii) Host departures: [AAA+03] and [AHKV03] do not handle departures. A full exposition

of the departure-scheme in [NW03] has been deferred to the final version of their

paper. The scheme in [KR04] requires O(log log n) re-assignments for both arrivals and

departures. Departures entail only one re-assignment in our algorithm, for σ ≤ 4.

46 CHAPTER 2. BALANCED BINARY TREES

iv) Optimal re-assignments: To guarantee σ ≤ 4 w.h.p., arrivals engender no ID re-

assignments and departures entail re-assignment of at most one existing host. To guar-

antee σ ≤ 1 + ε, for 0 < ε ≤ 1, only O(1/ε) existing hosts have to be re-assigned.

v) Small partition balance ratios: Ours is the first algorithm that allows σ to be fine-tuned

to 1 + ε, albeit at the cost of O(1/ε) re-assignments per arrival and departure. None of

the existing schemes with a single ID per host can obtain σ < 4.

vi) Spectrum of schemes: A simple generalization of our algorithm yields a variety of

schemes ranging from completely centralized (perfectly balanced binary trees) to com-

pletely decentralized (random binary trees).

vii) Overlay construction: Our algorithm enables emulation of various families of determin-

istic and randomized inter-connection network topologies. A host makes exactly three

sets of links with other hosts. See Chapter 4 for a description of the Emulation Engine

of Dipsea.

viii) Estimation of n: Our algorithm permits a simple scheme for estimating n, the total

number of participants currently in the system. In fact, a factor-4 estimate can be

derived from a host’s own ID. Sharper estimates can be obtained by modifying the ar-

rivals/departure protocols at no extra cost. The resulting estimation scheme diminishes

the number of sets of links required for emulation to only two. See Chapter 4 for further

details.

2.9 Summary and Future Directions

We described efficient algorithms for the ID Management layer of Dipsea. Our algorithms

ensure that the ratio of the largest to the smallest partition is small. The key idea is for a

newly arrived host to identify the manager of a random number in [0, 1), to ascertain the

IDs of (c log n) managers in its vicinity along the circle, and to split the largest manager into

two. Departures of hosts are handled similarly: a local adjustment within a neighborhood

of (c log n) managers is made. At most one existing host is re-assigned its ID, which is

optimal. We also presented a variation of the basic algorithm that diminishes the ratio of

the largest to the smallest partition to 1 + ε, albeit at the cost of re-assigning the IDs of

O(1/ε) existing hosts per arrival and departure.

Possible directions for future work:

2.9. SUMMARY AND FUTURE DIRECTIONS 47

1. Experiments indicate that the following scheme for handling arrivals also ensures σ ≤ 4:

Identify r, the manager of a random number in [0, 1). Let r have an `-bit

ID. Identify the IDs of c` managers in the vicinity of r along the circle,

where c is a suitably-large constant. Split the largest manager into two.

The scheme works even if the “vicinity” of a host is not a proper sub-tree. It would be

interesting to adapt the proof of Theorem 2.1 to this general strategy of identifying the

manager to split.

2. Experiments also indicate that a deletion scheme along the following lines, in conjunction

with the insertion scheme outlined above, ensures σ ≤ 4:

Let r, a randomly-chosen manager that departs, have an `-bit ID. Iden-

tify the IDs of c` managers in the vicinity of r along the circle, where

c is a suitably-large constant. Re-assign the smallest manager to occupy

the position of the manager that departed, unless such a re-assignment

increases the size of the largest manager in the vicinity.

It would be interesting to devise proof techniques that handle this deletion scheme since

the algorithm developed in Section 2.7 is rather complex.

3. Are Ω(1/ε) re-assignments necessary to guarantee σ = 1 + ε?

4. ID Management for heterogeneous managers is an interesting open problem. See Godfrey

and Stoica [GS04] for initial results along this direction.

48 CHAPTER 2. BALANCED BINARY TREES

Chapter 3

Coupon Collection over Cliques

In this Chapter, we develop an ID Management algorithm for Dipsea (see Figure 1.1 on

page 2 for a block-diagram of its architecture). The algorithm is a generalization of the

algorithm we developed in Chapter 2, and is superior to the earlier algorithm for certain

overlay routing networks.

ID Management is responsible for assigning IDs to new hosts as they join the system. It

also re-assigns the IDs of a few existing hosts in response to arrivals and departures. At any

instant, the current set of IDs divides the hash table into disjoint partitions. Our goal is to

devise decentralized algorithms that ensure that the variation in partition sizes is minimal,

at the cost of as few messages and as few re-assignments of existing IDs as possible.

In Chapter 2, we devised the following ID Management algorithm:

One Random Probe plus One Local Probe of size (c log n): An ID for a newly-arrived

manager is derived as follows. We identify the manager of a random number in [0, 1),

ascertains the IDs of (c log n) managers in its vicinity along the circle, and split the

partition owned by the largest manager into two equal halves. In response to deletion

of a randomly chosen manager, a local probe of size c log n is carried out in the vicinity

of the departed manager and at most one existing manager is re-assigned.

In this Chapter, we develop the following ID Management algorithm:

r Random Probes plus r Local Probes of size v, with (rv ≥ c log n): A newly arrived

host identifies the manager of r random numbers in [0, 1), ascertains the IDs of v

managers in the vicinity of each of the r managers, and splits the largest manager

into two equal halves.

49

50 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

We show that as long as rv ≥ c log n, for a suitably large constant c, the ratio be-

tween the largest and the smallest partition is Θ(1) with high probability. The new

algorithm requires O(rR + v) messages per arrival, where R is the average cost of

sending a message using the routing network of Dipsea. Apart from being an inter-

esting randomized system for analysis, the new algorithm is superior to the algorithm

developed in Chapter 2 when R = o(log n), which is true for several routing networks.

The algorithm is a generalization of the algorithm in Chapter 2, but handles only host

arrivals. A simple heuristic for deletions is experimentally shown to perform well –

we do not have a technique for analyzing it yet.

3.1 Introduction

In the standard coupon collector process, there are n types of coupons and in each trial, a

coupon is chosen independently and uniformly at random. It is well known that the number

of trials needed to collect at least one copy of each type is sharply concentrated around n log n

(see [MR95], for example). One generalization is to have multiple choices: in each trial,

pick d coupons at random and if any of them is not collected, collect a random uncollected

coupon. Another generalization is to introduce a graph structure: coupon collection is

carried out on a graph whose nodes correspond to coupons and are initially uncovered. In

each trial, pick a node at random and if any of its neighbors is uncovered, cover a random

uncovered neighbor. Adler et al [AHKV03] call this process Structured Coupon Collection

over graphs. They establish that with high probability†, O(n) steps suffice to cover all

nodes of hypercubes on n nodes, ∆-regular graphs with ∆ = Ω(log n log log n) and random

∆-regular graphs with ∆ = Ω(log n).

Summary of Results

In §3.2, we analyze Structured Coupon Collection over n/b disjoint cliques, each of size

b. In each trial, we choose d ≥ 1 nodes independently and uniformly at random. If all

the nodes in the corresponding cliques are covered, we do nothing. Otherwise, from among

the chosen cliques containing an uncovered node, we select one at random and cover an

uncovered node in it. We show that w.h.p., all the nodes are covered in O(n) trials and

†By “with high probability” (w.h.p.), we mean “with probability at least 1 − O(n−λ) for an arbitrary
constant λ > 1”.

3.2. STRUCTURED COUPON COLLECTION OVER CLIQUES 51

each of the first Ω(n) trials covers an uncovered node, for any choice of b and d satisfying

bd ≥ c log2 n for a suitably large constant c.

In §3.3, we use the results proved in Section 3.2 to analyze a stochastic process for

growing binary trees, thereby extending the suite of results known in this space. Adler et al

[AHKV03] showed that if we repeatedly perform a random walk down the tree and split the

shallowest of the “hypercubic neighbors” of the leaf node encountered, the resulting tree

has leaves in Θ(1) levels. Abraham et al [AAA+03] and Naor and Wieder [NW03] showed

that the same property holds for trees resulting from the following process: at each step, we

perform c log n random walks down the tree and split the shallowest leaf node encountered.

Manku [M04] showed that if we perform one random walk, and split the shallowest leaf in

the “vicinity” of the leaf node, where the vicinity has size c log n, the resulting tree has

leaves in at most three different levels, w.h.p. The process we analyze is a generalization

of these two extremes (and includes both as special cases): we perform r random walks,

inspect vicinities of size v for each of the r leaf nodes and then identify the shallowest leaf.

We show that as long as rv ≥ c log n, the tree has leaves in at most four different levels,

w.h.p. Analysis of the generalized process requires a new proof technique, for which we

borrow ideas from [AHKV03] – the proof is different from the approaches taken by authors

who analyze the extreme cases [AAA+03,NW03,M04].

In §3.4, we show how balanced binary trees are useful for addressing the load balancing

problem in Distributed Hash Tables (DHTs). The tradeoff between r, the number of random

walks and v, the vicinity-size, is exploited to arrive at the optimal number of random walks

required. We show that with r =
√

log log n random walks, O(log n/
√

log log n) messages are

sufficient w.h.p., when a new member joins the DHT. Existing algorithms require O(log n)

messages [AHKV03,M04] or O(log2 n/ log log n) messages [AAA+03,NW03,KR04].

In §3.5, we review previous proposals for DHT load balancing.

In §3.6, we summarize our results and outline future directions for research.

3.2 Structured Coupon Collection over Cliques

Consider the problem of collecting b copies each of n/b coupons. In each trial, exactly one

of the n/b coupons is chosen independently and uniformly at random. If b is a constant,

the number of trials needed to collect all copies is sharply concentrated around n
b (ln n

b +

(b− 1) ln ln n
b) [MR95]. In this Section, we study the following variant: we have to collect b

52 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

copies each of n/b coupons. In each trial, d coupons are chosen independently and uniformly

at random but at most one of them can be retained to augment our collection: if we have

already collected b copies of each of these d coupons, we do nothing; otherwise, from among

the chosen coupons having less than b copies, we randomly select one to include in our

collection. This process is equivalent to the process on cliques defined at the beginning of

this Chapter. In this Section, our main results are that if bd ≥ c log n for some suitably

large constant c, then with high probability, (a) O(n) trials suffice to collect b copies of all

the coupons, and (b) each of the first Ω(n) trials increases the size of our collection.

3.2.1 Analysis

In terms of bins and balls, we have n/b bins, each with capacity b. In each trial, we choose

d bins independently and uniformly at random. If all the d bins are full, we do nothing (the

trial fails). Else, we select one of the non-full bins (from among the d choices) at random

and place a ball into it. The first lemma below contains two useful forms of inequalities

by Chernoff [C52] and Hoeffding [H63]. The second lemma helps us derive tail bounds for

dependent binary random variables under certain conditions.

Lemma 3.2.1. Let Z denote a random variable with a binomial distribution Z ∼ B(n, p).

For every λ > 1, Pr[Z > λnp] < (eλ−1λ−λ)np.

For every a > 0, Pr[Z < np− a] < e−a2/(2np).

Lemma 3.2.2. Let ω1, ω2, . . . , ωn be a sequence of random variables. Let Z1, Z2, . . . , Zn

be a sequence of binary random variables, with the property that Zi = Zi(ω1, . . . , ωi−1). Let

Z =
∑n

i=1 Zi. Then

Pr[Zi = 1 |ω1, . . . , ωi−1] ≤ p ⇒ Pr[Z ≥ k] ≤ Pr[B(n, p) ≥ k].
Pr[Zi = 1 |ω1, . . . , ωi−1] ≥ p ⇒ Pr[Z ≤ k] ≤ Pr[B(n, p) ≤ k].

Theorem 3.1. There exists a constant α such that, with high probability, all bins are full

in αn trials, for any choice of b and d satisfying bd ≥ c log2 n, where c is a sufficiently large

constant.

Proof. We will use the fact that (1− 1
x)x < e−1 < (1− 1

x)x−1 for all x > 1.

Let f denote the fraction of non-full bins at any time. Fraction f is non-increasing

over time, and we divide the process into two phases: In Phase I, f ≥ 1/d. In Phase II,

0 < f < 1/d. The intuition underlying our analysis is as follows. In Phase I, many bins are

3.2. STRUCTURED COUPON COLLECTION OVER CLIQUES 53

non-full. Hence we make rapid progress in populating the bins, terminating the phase in

O(n) steps. In Phase II, progress is slow. However, from the perspective of an individual

non-full bin, progress is fast enough to fill it in O(n) steps.

Claim: Phase I terminates within t1 = (e
e−1 + ε1)n trials, w.h.p., where ε1 is a small

constant.

Proof: At any time-step, the success probability, i.e., the probability that the ball

gets placed into some non-full bin is at least 1 − (1 − f)d > 1 − 1/e. Let ns denote

the number of balls lying in various bins when Phase I terminates. Clearly ns ≤ n.

Let T be the total number of trials in this phase and Yt be the number of successes in

the first t trials. Yt =
∑t

i=1 Zi where Zi is the indicator random variable corresponding

to success in the ith trial. Let ωi denote the random choices available to the ith ball.

Then, Pr[Zi = 1|ω1, . . . , ωi−1] ≥ 1 − 1/e. Using Lemma 3.2.2 , we can conclude that

Pr[T > n(1+δ)
1−1/e] = Pr[Yn(1+δ)

1−1/e

< ns] ≤ Pr[B(n(1+δ)
1−1/e ,

e−1
e) < ns] ≤ Pr[B(n(1+δ)

1−1/e ,
e−1

e) < n]

Using Lemma 3.2.1, the probability is less than e−nδ2/2(1+δ), which is o(1/n2) when δ =

ε1(1− 1/e). Thus Phase I terminates within t1 steps w.h.p.

Claim: Phase II terminates within t2 = (2e + ε2)n trials, w.h.p., where ε2 is a small

constant.

Proof: Let C denote a bin that is non-full at the end of Phase I. The probability that

C is one of the d bins selected is 1− (1 − b/n)d > db/2n. Given that one of the bins is C,

the probability that each of the other d − 1 bins is full is (1 − f)d−1 > 1/e. Overall, the

probability that C gets the ball in any time-step in Phase II is at least db/2en. As before,

it follows from Lemma 3.2.2 that the number of balls in C stochastically dominates† the

random variable B(t2, db/2en). Using bd ≥ c log2 n, Lemma 3.2.1 yields that, in t2 trials, C

becomes full with probability 1− o(1/n2). By taking the union bound over all the n bins,

Phase II terminates within t2 steps w.h.p.

Choosing α = (e
e−1 + 2e + ε1 + ε2), we find that αn trials are sufficient to fill all bins

w.h.p., where ε1 can be made arbitrarily small, and ε2 can be made small by choosing a

large c.

Note that Theorem 3.1 holds even if at any step, we choose a non-full bin (from among

the d choices) arbitrarily (for example, in an adversarial fashion).

†A random variable X stochastically dominates random variable Y iff Pr[X ≥ r] ≥ Pr[Y ≥ r]∀r ∈ <.

54 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

Theorem 3.2. With high probability, each of the first βn trials succeeds in placing a ball,

for any β < 1
2 and any choice of b and d satisfying bd ≥ c log2 n, for a sufficiently large

constant c.

Proof. The proof follows from a series of four claims:

Claim: In any of the first βn trials, for any β, the probability that a specific bin receives

a new ball is at most b
n(1−β) .

Proof: At any time-step, for a specific bin C,

Pr[C is chosen] = 1− (1− b/n)d < db/n

Let f denote the fraction of non-full bins at any time-step. Then Pr[Ball is placed in C | C
is chosen] =

∑d
i=1(

1
i)
(

d−1
i−1

)

f i−1(1 − f)d−i = (1
df)
∑d

i=1

(

d
i

)

f i(1 − f)d−i = 1−(1−f)d

df < 1
df . At

the end of the first βn trials, the fraction of full-bins is at most β. Therefore, at any earlier

time-step, f > 1− β. By conditioning on the number of non-full bins found in the d bins,

we get

Pr[Ball is placed in C | C is chosen] < 1
d(1−β)

Therefore, the probability that C receives a new ball is at most db
n · 1

d(1−β) = b
n(1−β) .

Claim: For any β < 1
2 , there exists a constant µ > 1 such that the probability that a

specific bin becomes full at the end of βn trials, is at most 1/µβ .

Proof: From Lemma 3.2.2 and the previous claim, the random variable B(βn, b
n(1−β))

stochastically dominates the number of balls received by a specific bin C in βn trials. Using

the Chernoff/Hoeffding inequalities in Lemma 3.2.1, the probability that C becomes full is

at most 1/µb where µ = (β
1−β)e

(1−2β
1−β

)
, and µ > 1 iff β < 1

2 .

Claim: With high probability, the fraction of full bins at the end of βn trials is at most

1/νb, for some constant ν > 1.

Proof: Let ν =
√
µ > 1. There are two cases:

a) b < logν n − logν logν n: Let Ii for i = 1, . . . , n/b, denote a set of indicator variables,

one per bin. The variable is 1 if the bin becomes full within βn trials. The set of

variables are dependent but negatively correlated [DR98]. Therefore, for tail bounds on

their sum, it suffices to replace them by a set of independent variables. The sum is dom-

inated by the random variable B(n/b, 1/µb). Using the Chernoff/Hoeffding inequalities

in Lemma 3.2.1, the number of full bins is at most n
bνb (where ν =

√
µ > 1) w.h.p.,

provided b < logν n− logν logν n.

3.2. STRUCTURED COUPON COLLECTION OVER CLIQUES 55

b) b ≥ logν n− logν logν n: Any process with b ≥ logν n− logν logν n dominates the corre-

sponding process with d = 1. A simple application of Chernoff/Hoeffding inequalities

in Lemma 3.2.1 shows that the first βn trials succeed w.h.p., for sufficiently large c.

Claim: Each of the first βn trials succeeds in placing a ball w.h.p., where β < 1
2 .

Proof: The fraction of full bins at the beginning of ith trial, for any i ≤ βn, is also at

most 1/νb. Therefore, the ith trial fails with probability at most (1/ν b)d = o(1/n2), if c is

sufficiently large. By taking the union bound over the first βn trials, we obtain that w.h.p.,

all of them succeed.

The constant α in Theorem 3.1 can be improved (see Theorem 3.4 in Section 3.3). We

suspect that further improvement is possible – a sharp threshold result should hold. Further,

we speculate that Theorem 3.2 should hold for any β < 1, not just β < 1
2 . In Section 3.3,

we use Theorems 3.1 and 3.2 to prove that binary trees resulting from a certain stochastic

process are highly balanced.

3.2.2 Related Work

The classic balls-and-bins problem involves bins with infinite capacity and d = 1 (see John-

son and Kotz [JK77] or the book by Kolchin et al [KSC78]). Recently, there has been

interest in the computer science community in analyzing the height of the fullest bin. With

n bins and n balls, the height of the fullest bin is Θ(log n/ log log n) (see Gonnet [G81],

Mitzenmacher [M96] and Raab and Steger [RS98]). For the case d ≥ 2, a breakthrough

was achieved by Azar et al [ABKU99] who showed that the height of the fullest bin is

log log n/ log d+ Θ(1), if the least-loaded bin among the d bins is chosen at each trial. For

further results and a survey of proof techniques for d ≥ 2, see Mitzenmacher et al [MRS01].

Our focus is on cliques, which are equivalent to bins with finite capacity. Moreover, we wish

to bound the height of the bin with the fewest balls.

Structured Coupon Collection over graphs was defined by Adler et al [AHKV03] who

proved that O(n) steps suffice for covering all nodes of hypercubes, ∆-regular graphs with

∆ = Ω(log n log log n) and random ∆-regular graphs with ∆ = Ω(log n). Alon [A04] has

shown that at least n − n
∆ + n

∆ loge
n
∆ steps are necessary to cover all nodes for any ∆-

regular graph. The processes analyzed in [A04,AHKV03] choose exactly one random node

per trial. Our focus is on cliques but with multiple nodes chosen in each trial. In fact, we

allow a tradeoff between the number of random choices and clique sizes by allowing any

56 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

〈b, d〉 satisfying bd ≥ c log n for an n-node graph. In Section 3.4, this tradeoff is exploited to

derive the optimal number of random messages to be sent for load balancing in Distributed

Hash Tables.

3.3 Balanced Binary Trees

In this Section, we study a variety of stochastic processes over binary trees which result in

highly balanced trees. Balance is measured in terms of the number of different levels to

which leaf nodes belong. We begin with some definitions:

Level and vicinity: In a binary tree, the level of a node is the length of the path from

the root to that node. The root has level 0. There are at most 2` nodes at level `. The

vicinity of a node at level ` is the set of v(`) nodes at level ` that have a common ancestor

at level `− log2 v(`).

Functions
�
x � , r and v: Let

�
x� ≡ 2k where integer k satisfies 2k−1 < x ≤ 2k. Let

r : � → � be a monotonically non-decreasing function, i.e., r(`+ 1) ≥ r(`). Let v : � → �
be a function satisfying v(0) = 1 and v(`) ≤ 2`. Moreover, either v(` + 1) = v(`) or

v(`+ 1) = 2v(`). Thus v(`) always equals some power of two.

In order to motivate the stochastic process that we analyze, we summarize related results

established in earlier papers. Each paper studies a different stochastic process for growing

the tree:

1. At each step, we carry out one random walk and split the leaf node encountered. Adler et

al [AHKV03] and Naor and Wieder [NW03] show that leaf nodes belong to Θ(log log n)

different levels w.h.p.

2. At each step, we carry out c log n random walks down the tree and split the shallowest

leaf node encountered. Abraham et al [AAA+03] showed that after n steps, the tree

has leaves in Θ(1) different levels w.h.p. Naor and Wieder [NW03] analyze a similar

stochastic process: we first estimate log n and then carry out c log n random walks.

3. Let v(`) =
�
c` � , where c is a suitably-large constant. First, we carry out a random walk

to reach a leaf node r. If all nodes in the vicinity of r’s parent are split, we split r itself.

Else, we split one of the leaf nodes in the vicinity of r’s parent. Manku [M04] showed

that the leaf nodes in the resulting tree belong to at most three different levels w.h.p.

4. First, we carry out a random walk to reach a leaf node r. We then identify the shallowest

3.3. BALANCED BINARY TREES 57

hypercubic neighbor† of r, splitting it into two. Adler et al [AHKV03] established that

the resulting tree has leaf nodes in Θ(1) different levels.

3.3.1 A Stochastic Process for Growing Binary Trees

In this paper, we study a generalization of processes 2 and 3 above. We grow the binary

tree in a randomized fashion by splitting some leaf node at each step, as follows:

We first carry out a random walk down the tree. Let ` denote the level of the

leaf node encountered. We then carry out r(`)− 1 additional random walks, to

obtain a set of leaf nodes X. For leaf node x ∈ X, if all nodes in the vicinity of

its parent are already split, we retain x in the set. Otherwise, we replace x by

its parent. Let X ′ denote the new set thus obtained. Let `′ denote the level of

the shallowest node in X ′. We shrink X ′ to arrive at set X ′′ ⊆ X ′, limited to

nodes at level `′. We then choose some x′′ ∈ X ′′ uniformly at random, and split

an un-split node belonging to the vicinity of x′′.

Different combinations of functions r and v result in different processes: Process 1

corresponds to r(`) = v(`) = 1. Process 2 is equivalent to r(`) = c log n and v(`) = 1. A

variation of this process is r(`) = c` and v(`) = 1. Process 3 amounts to r(`) = 1 and

v(`) =
�
c �̀ . Process 4 amounts to r(`) = 1 and v(`) = ` where the vicinity is defined to be

the hypercubic neighbors of a node (see [AHKV03] for more details). Our interest in this

paper lies in the following general condition: ∀` : r(`)v(`) ≥ c`. This includes Processes 2

and 3 as special cases. Our main result is the following theorem:

Theorem 3.3. For any combination of r and v satisfying ∀` : r(`)v(`) ≥ c`, where c is

a suitably large constant, the tree is highly balanced – leaf nodes belong to at most four

different levels.

The motivation for analyzing the generalized stochastic process are three-folds:

1. We are able to demonstrate that the binary tree is balanced for all combinations of

〈r(`), v(`)〉 ranging from 〈1, c`〉 to 〈c`, 1〉. In other words, randomness can be traded off

for vicinity-size smoothly.

†Label the left and right branches of the tree with 0’s and 1’s respectively. Let the sequence of bits along
the path from the root to r denote the ID of r. A hypercubic neighbor of a leaf node is obtained by flipping a
bit in the ID string, and identifying the leaf node with the longest matching prefix of the new string. Please
see reference [AHKV03] for a pictorial definition and more details.

58 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

2. The generalized process requires a new proof technique, for which we borrow ideas

from [AHKV03]. The proof involves the analysis of an interesting balls-and-bins problem

as a sub-problem (Section 3.2).

3. In Section 3.4, we design a simple load-balancing scheme for Distributed Hash Tables in

peer-to-peer systems. The scheme is based upon the generalized stochastic process. The

smooth tradeoff between r and v allows us to identify the optimal number of messages

necessary for load balance. We show that O(
√

log log n) random walks are sufficient,

resulting in a total of O(log n/
√

log log n) messages. The message complexity improves

upon all previous schemes [AAA+03,AHKV03,NW03,M04,KR04] for comparable load

balance. See Section 3.4 for more details.

3.3.2 Proof of Theorem 3.3

Throughout this Section, we assume that ∀` : r(`)v(`) ≥ c` for a suitably large constant c.

Lemma 3.3.1. Assume that the following three claims hold for some constants µ1 and µ2:

1. When n > µ12
L, no leaf is at level L or less, w.h.p., where 2a < µ1 < 2a+1 for some

a ≥ 1.

2. When n < µ22
L, no leaf is at level L or more, w.h.p., where 2b < 1/µ2 < 2b+1 for

some b ≥ 1.

3. µ1/µ2 < 2a+b+1.

Then with high probability, the leaves of the tree belong to most a+ b+ 1 different levels.

Proof. Let 2k ≤ n < 2k+1 for some integer k. There are three cases to consider:

a) 2k ≤ n ≤ µ12
k+1: Leaves belong to levels [k − a, k + b] w.h.p.

b) µ12
k+1 < n < µ−1

2 2k+1: Leaves belong to levels [k − a+ 1, k + b] w.h.p.

c) µ−1
2 2k+1 ≤ n < 2k+1: Leaves belong to levels [k − a+ 1, k + b+ 1] w.h.p.

In any case, the leaves are in at most a+ b+ 1 different levels.

Consider the structured coupon collection process over a graph with 2i/v(i) cliques, each

of size v(i). At each step, r(i) random choices are made. Let Ai denote the process that

terminates when all nodes in the graph have been covered. Let Bi denote the process that

terminates when the first failure occurs, i.e., no new node could be covered. Let A(`) and

B(`) denote series of processes 〈A0,A1, . . . ,A`〉 and 〈B0,B1, . . . ,B`〉, respectively.

In the remainder of the Section, we will use four constants: α, β, γ and δ. The first two

are defined as follows: Let α2i denote an upper bound on the number of steps taken by Ai

3.3. BALANCED BINARY TREES 59

to terminate, with probability at least 1 − 1/poly(2i) (see Theorem 3.1). Let β2i denote

a lower bound on the number of steps taken by Bi to terminate, with probability at least

1− 1/poly(2i). From Theorem 3.2, β can be set to any constant less than half. Constants

γ and δ emerge in Lemmas 3.3.2 and 3.3.3 respectively. The interplay of all four constants

will appear towards the end of this Section, when we prove Theorem 3.3.

Lemma 3.3.2. A(k) terminates in at most α(2+γ)2k steps, w.h.p., where γ is an arbitrarily

small constant.

Proof. Let j = dlog2 1/γe, a constant depending upon γ. For process Ai where 0 ≤ i <

k − log2 k − j, we allocate αk2i steps. The probability that Ai does not terminate in α2i

steps is at most 1/poly(2i). Therefore, the probability that Ai does not terminates in αk2i

steps is at most (1/poly(2i))k = O(1/poly(2k)). The total number of steps we have allocated

so far is
∑i=k−log2 k−j−1

i=0 αk2i < α2−j2k ≤ αγ2k.

We now allocate α2i time-steps to each process Ai where k − log2 k − j ≤ i ≤ k. With

probability at least 1 − 1/poly(2i) = 1 − O(1/poly(2k)), process Ai terminates within α2i

steps. The total number of steps is
∑i=k

i=k−log2 k−j α2i <
∑i=k

i=0 α2i < α2k+1.

The total number of steps is at most α(2 + γ)2k.

Lemma 3.3.3. B(k) takes at least β(2 − δ)2k steps to terminate, w.h.p., where δ is an

arbitrarily small constant.

Proof. Let j = dlog2 1/δe, a constant depending upon δ. For k−j−1 ≤ i ≤ k, the probability

that process Bi runs for less than β2i steps is at most O(1/poly(2i)) = O(1/poly(2k)).

Therefore, the series of processes 〈Bk−j−1,Bk−j, . . . ,Bk〉 runs for at least
∑i=k

i=k−j−1 β2i ≥
β(2− δ)2k steps w.h.p. Thus B(k) takes at least β(2− δ)2k steps to terminate, w.h.p.

Lemma 3.3.4. When n > α(2 + γ)2L, no leaf is at level L or less, with high probability,

where γ is an arbitrarily small constant.

Proof. We divide the growth of the tree into phases. Phase i is over (and phase i + 1

starts) when no node at level i is a leaf node. Let Ti denote the time-step at which phase

i terminates. To prove that no leaf is at level L or less, we will show that TL is stochas-

tically dominated by the time taken for A(L) to terminate. The claim then follows from

Lemma 3.3.2.

Let ` denote the level of the leaf node encountered in the first random walk down the

tree. In phase i, all leaves are in level i or more. Therefore, ` ≥ i. Since function r is

60 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

monotonically non-decreasing, r(`) ≥ r(i). Moreover, each vicinity that permits splitting

of a leaf at level i, has size exactly v(i), corresponding to a clique in process Ai. Thus it

follows that TL is dominated by the time taken for A(L) to terminate.

Lemma 3.3.5. When n < 1
4β(2− δ)2L, no leaf is at level L or more, with high probability,

where δ is an arbitrarily small constant.

Proof. Consider the following variant of our algorithm: As soon as the first leaf at some

level ` is created, we instantly create all leaf nodes at level `− 1 as well. This variant grows

the tree faster than our original algorithm. Clearly, the variant is dominated by the original

algorithm, in terms of the number of steps taken before creating the first leaf at level L.

The variant is equivalent to process β(L−2), which runs for at least 1
4β(2− δ)2L steps (from

Lemma 3.3.3).

We are now ready to prove a claim slightly weaker than Theorem 3.3: we will establish

that leaf nodes of the tree belong to at most five different levels. Let µ1 = α(2 + γ) and

µ2 = 1
4β(2− δ). From Theorem 3.1, α = e

e−1 + 2e+ ε1 + ε2, where ε1 and ε2 are arbitrarily

small constants. It is possible to fix these constants so that µ1 satisfies 22 < µ1 < 23.

Moreover, with a suitable choice of β < 1/2 (allowed by Theorem 3.2), and sufficiently

small δ, we can arrive at a value for µ2 that satisfies 22 < 1/µ2 < 23, and µ1/µ2 < 25. From

Lemma 3.3.1, it then follows that leaf nodes belong to at most five different levels.

To prove that leaf nodes belong to at most four different levels, as claimed in Theo-

rem 3.3, we need a tighter version of Theorem 3.1, which we now prove.

Theorem 3.4. With high probability, all bins are full in 9
5n trials, for any choice of d and

b satisfying db ≥ c log2 n for a sufficiently large constant c.

Proof. We treat d ≤ d0 (where d0 is a constant to be defined later) as a special case. For a

fixed value of b, the process with d > 1 choices dominates the process with a single choice

(d = 1). A simple application of Chernoff/Hoeffding inequalities in Lemma 3.2.1 shows

that if 9
5n balls were placed into n/b ≤ d0n/(c log2 n) bins (of unlimited capacity), each ball

choosing a bin uniformly at random (i.e., d = 1), then every bin would get at least b balls

w.h.p. for a suitably large value of c.

For the rest of the proof, we assume d > d0. We divide the process into two phases as

in the proof of Theorem 3.1. The analysis for Phase I is the same as before.

3.4. LOAD BALANCE IN DISTRIBUTED HASH TABLES 61

Claim: Phase II terminates within t2 = (1
5 + ε2)n trials, w.h.p., where ε2 is a small

constant.

Proof: As before, for a specific bin C that is non-full at the end of Phase I, the number

of balls in C stochastically dominates the random variable B(t2, db/2en). Choosing d0 = 28

and using db ≥ c log2 n, application of Chernoff/Hoeffding inequalities in Lemma 3.2.1 yields

that, in t2 trials, C becomes full with probability 1−o(1/n2). Taking the union bound over

all the n bins yields the claim.

We need (e
e−1 + 1

5 + ε1 + ε2)n trials w.h.p., where ε1 can be made arbitrarily small, and

ε2 can be made small by choosing a large c. The total is less than 9
5n.

3.4 Load Balance in Distributed Hash Tables

In this Section, we bring out the connection between the stochastic process for growing bi-

nary trees (Section 3.3) and the load-balancing problem in Distributed Hash Tables (DHTs)

in P2P networks. In order to make this Chapter self-contained, we briefly summarize DHTs.

3.4.1 Distributed Hash Tables: A Brief Summary

A DHT is maintained cooperatively, but in a decentralized fashion, by a large number of

distributed hosts as follows. Imagine [0, 1) as a circle with unit perimeter. Hosts are allowed

to dynamically join the system (the set of participants is not fixed a priori). Upon joining,

a host is assigned an ID in [0, 1). At any instant, the current set of IDs partitions [0, 1) into

disjoint sub-intervals – each host is the manager of one such sub-interval. A host is connected

with its successor and its predecessor along the circle with TCP connections, thereby forming

a “ring” of hosts. The ring connections constitute the short-distance connections. Each host

also makes long-distance TCP links with a few other hosts, as a function of its own ID. Taken

together, the short- and long-distance TCP connections form the overlay routing network

that is responsible for routing messages between hosts.

The problem of designing a good DHT routing network has received much attention

recently. For our purposes, it suffices to treat the routing network as a black-box with the

following property: Using the routing network, it is possible to send a message to the “man-

ager” of a randomly-chosen point in [0, 1) by paying a cost of R messages, with high prob-

ability. The earliest DHT routing networks were based on the hypercube and its variants.

62 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

These can route in R = Θ(log n) messages, with only Θ(log n) connections per node. Exam-

ples of these networks are Chord [SMK+01,GM04], Pastry [RD01a] and Tapestry [ZHS+04].

Later papers have shown that it is possible to achieve R = Θ(log n/ log log n) with the same

number of connections. Examples of these networks are high-degree de Bruijn networks,

as has been observed by several groups [AAA+03, FG03, KK03, LKRG03, NW03], high-

degree butterflies [KMXY03], Mariposa: a Kleinberg-style randomized butterfly [M03], and

several other randomized networks that were analyzed in a recent paper [MNW04] (for

example, randomized-Chord [ZGG03,GGG+03], randomized-hypercubes [GGG+03], Sym-

phony [MBR03], skip-graphs [AS03] and SkipNet [HJS+03]).

3.4.2 Balanced Binary Trees for Decentralized Load Balancing in DHTs

Upon arrival, a new host has to select an ID for itself†. DHTs are decentralized — there

is no global knowledge of the current set of IDs. At any instant, any member of the ring

can ascertain the IDs of k adjacent hosts in the ring by paying a cost of 2k messages, or

it can identify the ID of a host that manages a random number in [0, 1), by paying a cost

of R messages. A good ID selection algorithm should enjoy three properties: (a) simplicity

and decentralization, (b) low-cost in terms of number of messages, and (c) small variation

in partition sizes for load balance among managers. We will quantify variation in partition

sizes by defining σ, the partition balance ratio, as the ratio between the largest and smallest

partition sizes.

The relationship between binary trees (described in Section 3.3) and host IDs is as

follows. Only leaf nodes of the tree correspond to host IDs. The internal nodes of the tree

are conceptual. The sequence of 0s and 1s along the path from the root to a leaf node,

treated as the binary expansion of a fraction in [0, 1), constitutes the ID of that leaf.

A “random walk down the tree” is equivalent to identifying the manager of a point

chosen uniformly at random from the interval I = [0, 1). We need R messages per random

walk. Inspecting the “vicinity” of a leaf node or its parent (see Section 3.3 for a formal

definition of vicinity) is equivalent to identifying whether the corresponding set of IDs

along the circle exists or not. To make the inspection low-cost, we stipulate that each host

maintain knowledge of its vicinity at all times. Thus when a new host is added to the ring

(some leaf node splits in the corresponding tree), all other nodes in its vicinity are informed

†It is customarily assumed in DHT design that the new host “knows” one existing member of the ring
at the outset.

3.4. LOAD BALANCE IN DISTRIBUTED HASH TABLES 63

of the arrival. By choosing r(`) =
√

log ` and v(`) =
�
c`/
√

log ` � , we obtain the following

theorem:

Theorem 3.5. A new host needs Θ(log n/
√

log log n) messages w.h.p. to obtain an ID,

where n denotes the current number of hosts and R = Θ(log n/ log log n). The partition

balance ratio is σ = Θ(1) w.h.p.

Proof. From Theorem 3.3, the tree has leaves in at most four different levels w.h.p. With

n leaf nodes, the level of any leaf is Θ(log n) w.h.p. With r(`) =
√

log `, the number of

random walks down the tree is Θ(
√

log log n). With R = Θ(log n/ log log n) messages per

random walk, the total number of messages is Θ(log n/
√

log log n).

Whenever a new host is inserted, all other members of the vicinity it belongs to, are in-

formed of its existence. Informing all members of a vicinity of size v(`) requires at most v(`)

messages (by using only the short-distance “ring”-connections). With n leaf nodes, the level

of a leaf node is Θ(log n) w.h.p. With v(`) =
�
c`/
√

log ` � , a vicinity has Θ(log n/
√

log log n)

nodes, requiring as many messages.

Since leaf nodes are in Θ(1) different levels, σ = Θ(1) w.h.p.

3.4.3 Lower Bound on σ with Balanced Binary Trees

How small a value of σ can possibly be realized in a decentralized setting? Ideally, we would

like to have a distributed algorithm which ensures that the number of bits in any ID is either

blog2 nc or dlog2 ne, when the current number of hosts is n. This goal seems unattainable for

a decentralized algorithm because of the following intuition. When n = 2k−1, all leaf nodes

in the corresponding tree should ideally be in levels {k − 1, k}. However, with n = 2k + 1,

all leaf nodes should be in levels {k, k+1}. Therefore, a decentralized algorithm is likely to

have leaves in at least three different levels, especially when n is close to a power of two†.

3.4.4 Experimental Results

Figure 3.1 studies various 〈r, v〉 schemes for growing binary trees. With 〈r, v〉 = 〈1, 1〉, host

IDs belong to as many as six different levels when n = 211. With 〈r, v〉 = 〈1, 4`〉, host IDs

are in only three different levels. Thus 8 appears to be a safely large value for constant c in

the constraint: ∀` : r(`)v(`) ≥ c`. Finally, five random walks are sufficient to obtain 3-level

†A formal proof requires a precise definition of the notion of decentralization.

64 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

22
24
26
28

210
212
214
216
218

25 26 27 28 29 210 211 212 213 214 215 216

N
um

be
r

of
 N

od
es

Total Number of Nodes

(1, 1)-Algorithm

Level 7
Level 8

Level 9
Level 10

Level 11
Level 12

Level 13
Level 14

Level 14
Level 16

(a) ID distribution with 〈1, 1〉 scheme.

22
24
26
28

210
212
214
216
218

25 26 27 28 29 210 211 212 213 214 215 216

N
um

be
r

of
 N

od
es

Total Number of Nodes

(1, cl) Algorithm

Level 12

c=1/8
c=1/4
c=1/2

c=1
c=2
c=4
c=8

(b) Effect of increasing c in 〈1, c`〉 schemes.

22
24
26
28

210
212
214
216
218

25 26 27 28 29 210 211 212 213 214 215 216

N
um

be
r

of
 N

od
es

Total Number of Nodes

<1, 4l> Algorithm

Level 7
Level 8

Level 9
Level 10

Level 11
Level 12

Level 13
Level 14

Level 15
Level 16

(c) ID distribution with 〈1, 4`〉 scheme.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25 30 35 40

T
ot

al
 C

os
t (

#M
es

sa
ge

s)

Function r(l) [Number of random walks]

n = 213 hosts
n = 215 hosts
n = 217 hosts
n = 219 hosts

(d) Total cost for varying # of random walks.

Figure 3.1: In (a), the dotted curve shows the number of hosts with 12-bit IDs, as the total number
of hosts increases over time, with the 〈1, 1〉 scheme. The number of curves intersecting a vertical
line equals the number of different levels at which leaf nodes exist, for that n. In (c), using c = 4,
the 〈1, c`〉 scheme results in 3-level trees. In (d), the four curves correspond to n = 2` hosts for
` = 13, 15, 17 and 19 respectively. The total cost is Rx+ y, where x is the number of random walks,
y = � 4`/x � , and R = `/ log2 ` hops on average.

trees, when the number of hosts is n = 216. In terms of messages, this is superior to either

of the two extremes: 〈1, c`〉 and 〈c`, 1〉.
Figure 3.2(a) shows the distribution sub-tree sizes at levels `− 3, `− 4 and `− 5, with

n = 216 leaf nodes. At level `− 5, over 99% of the sub-trees have 16 or more leaf nodes.

Figure 3.2(b) shows that our ID management algorithm restores balance quickly. If we

carry out 64K insertions with the 〈1, 1〉 scheme, followed by an equal numbers of insertions

with the 〈4, `〉 scheme, the resulting tree has leaf nodes in only three levels.

Virtual IDs were proposed in CFS [DKK+01], where each host chose Θ(log n) IDs for

itself, each ID being a random number in [0, 1). The scheme results in σ = Θ(1) at the

cost of amplifying the number of overlay connections by Θ(log n). In fact, σ can be made

arbitrarily close to 1 by choosing a sufficiently large number of virtual IDs. Figure 3.3 shows

that our algorithm requires far fewer virtual IDs to achieve a given value of σ.

Intuitively, we would expect that an increase in the number of virtual IDs per host

would always diminish the variation in partition-sizes from the mean. However, Figure 3.3

3.5. RELATED WORK 65

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

F
ra

ct
io

n
of

 s
ub

tr
ee

s

Size of subtree

Level l - 3
Level l - 4
Level l - 5

(a) Cumulative distribution of sub-tree sizes

(n = 216 hosts).

 8

 10

 12

 14

 16

 18

 20

 22

 0 20000 40000 60000 80000 100000 120000

Le
ve

l i
n

th
e

tr
ee

Time-step

Phase I Phase II

(b) Phase I: We use 〈1, 1〉 scheme to carry

out 64K insertions. Phase II: We use 〈4, `〉
scheme for 64K interleaved insertions and

deletions. Our algorithm restores balance

quickly.

Figure 3.2: Evaluation of our ID management algorithm.

presents a curious phenomenon. Consider n, the number of hosts, when it is a power of two.

If we make 2i virtual IDs per host for some i, there are hardly any hosts whose sizes deviate

from the mean. However, if we make (1.5)2i virtual IDs per host, the number of such hosts

increases, since leaves are now (almost) evenly split between two successive levels.

We believe that the ability to tune σ ≤ 1 + ε, where ε is a user-defined parameter, is

important. If we restrict ourselves to one ID per host, none of the algorithms based on

binary-trees can achieve σ < 2. A proposal in reference [M04] is to create binary trees with

the following twist: parents of leaves have degree between b and 2b − 1, for some b ≥ 2.

By setting b ≈ 1
ε , it is possible to achieve σ = 1 + ε. However, at least b − 1 hosts require

re-assignments per arrival/departure – a costly operation.

It would be interesting to devise ID management schemes to avoid the behavior in

Figure 3.3 while using minimal re-assignments.

3.5 Related Work

Early DHT designs allowed each host to independently choose a number in [0, 1) uniformly

at random [SMK+01, ZHS+04, RD01a, RFHK01, FG03, KK03, MBR03, MNR02, HJS+03].

Such an algorithm is decentralized and requires zero messages to select an ID. However,

σ = Ω(log2 n) [NW03] w.h.p., where σ denotes the partition balance ratio, defined as the

ratio between the largest and the smallest partition sizes. King and Saia [KS04] recently

established that σ = Θ(n log n) w.h.p. If each host chooses a random number in [0, 1)

66 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35

F
ra

ct
io

n
of

 h
os

ts
 th

at
 a

re
 B

A
D

Number of Virtual IDs

Delta = 0.0625
Delta = 0.125
Delta = 0.25
Delta = 0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

F
ra

ct
io

n
of

 h
os

ts
 th

at
 a

re
 B

A
D

Number of Virtual IDs

Delta = 0.0625
Delta = 0.125
Delta = 0.25
Delta = 0.5

Figure 3.3: A BAD host is one whose size lies outside the interval (1± δ)/N . The scheme for ID
management is 〈1, 1〉 for the top graph and 〈4, `〉 for the bottom graph.

and splits the partition the number falls into, σ diminishes to Θ(log n) [AHKV03,NW03].

Further improvement is possible. If each host creates Ω(log n) virtual IDs [DKK+01], σ

reduces to O(1). However, the number of overlay connections per host gets amplified by

a factor of Ω(log n) – this is costly because higher degree overlay networks require more

resources for maintenance.

Two different approaches for ID management have recently been proposed, each of which

guarantees σ = Θ(1) with only one ID per host. The first approach [NW03,AAA+03,KR04,

M04] is overlay-independent while the second is overlay-dependent [AHKV03]. Naor and

Wieder [NW03] and Abraham et al [AAA+03] proposed that a new host should choose

Θ(log n) random points from [0, 1), identify the managers of these points and split the

largest manager into two. Karger and Ruhl [KR04] proposed an elegant variation on the

idea that supports departures as well, albeit at the cost of re-assignment of IDs of at most

O(log log n) hosts w.h.p. per arrival and departure. Adler et al [AHKV03] analyzed an

overlay-dependent scheme that is specific to hypercubes. The idea is to identify the manager

of a random point in [0, 1), probe other managers it has established overlay connections

with, and to split the largest of these managers into two. A scheme for handling departures

3.5. RELATED WORK 67

exists, but it has not yielded to formal analysis yet. The idea in [AHKV03] had earlier

been proposed as a heuristic in an early DHT paper [RFHK01]. Manku [M04] recently

established that σ ≤ 4 for the following scheme: a new host first randomly identifies the

manager of a random number in [0, 1), inspects Θ(log n) managers in its “vicinity” and

splits the largest manager. Departures are handled similarly and cause at most one host

ID to be re-assigned. The message complexity for the schemes outlined above is either

Θ(log2 n/ log log n) messages [AAA+03,NW03,KR04] or Θ(log n) messages [AHKV03,M04],

for networks with R = Θ(log n/ log log n).

Two additional approaches to load-balancing are as follows. Byers et al [BCM04]

suggest a variant of the power-of-two choices paradigm (see Mitzenmacher et al [MRS01]

for a survey). In their scheme, nodes continue to choose random numbers in [0, 1) as their

IDs. However, an object is stored at one out of several possible locations (determined by

multiple hash-values of the object-name). A drawback of this idea is the overhead associated

with multiple probes necessary when storing and retrieving objects. Godfrey et al [GLS+04]

take a systems approach, identifying the run-time loads on various nodes. They propose

heuristics for re-distributing objects between pairs of lightly- and heavily-loaded nodes.

Load balance for range-queries over an ordered list of data elements has also received

attention in the context of DHTs. The goal is to divide a sorted list of elements among a

fixed number of blocks in the face of adversarial insertions and deletions of elements, such

that the ratio of the largest and the smallest block is Θ(1). Essentially, two operations

are allowed: (a) two adjacent blocks are re-balanced, or (b) two adjacent blocks are fused

into one block while a large block is split into two. The cost associated with a fusion

or a split is proportional to the number of data elements that have to move. Ganesan

et al [GBGM04] present an efficient deterministic algorithm that guarantees a constant

number of moves per data element, amortized over the lifetime of the data structure. If

each block is assigned to one machine in a DHT, and if a skip-graph [AS03] is maintained

over the starting keys of blocks, we obtain an efficient load-balanced range-queriable data

structure. The scheme by Ganesan et al assumes that the largest (and the smallest) block

can be efficiently discovered. It is not clear how this operation can be implemented in a

decentralized fashion without causing congestion in a DHT. Karger and Ruhl [KR04] and

Aspnes et al [AKK04] present efficient congestion-free algorithms that match large blocks

with small blocks. Their algorithms are randomized, decentralized and handle a dynamic

number of blocks.

68 CHAPTER 3. COUPON COLLECTION OVER CLIQUES

3.6 Summary and Future Directions

We studied Structured Coupon Collection, a problem introduced by Adler et al [AHKV03],

over n/b disjoint cliques with b nodes per clique. Nodes are initially uncovered. At each

step, we choose d nodes independently and uniformly at random. If all the nodes in the

corresponding cliques are covered, we do nothing. Otherwise, from among the chosen cliques

with at least one uncovered node, we select one at random and cover an uncovered node

within that clique. We showed that as long as bd ≥ c log n, O(n) steps are sufficient to

cover all nodes w.h.p. and each of the first Ω(n) steps succeed in covering a node w.h.p..

These results were then utilized to analyze a stochastic process for growing binary trees that

are highly balanced – the leaves of the tree belong to at most four different levels w.h.p.

The stochastic process constitutes the core idea underlying a practical P2P load balancing

scheme that beats earlier proposals for the same, in terms of message complexity.

Possible directions for future work:

1. Our load-balancing algorithm does not address host departures. Only two known algo-

rithms handle departures [KR04,M04]. Simulations show that a simple variation of the

insertion algorithm maintains 3-level trees: “A departed host is replaced by the deepest

leaf in the union of vicinities probed.” It would be interesting to formally analyze this

scheme.

2. If we could establish Theorem 3.2 for any β ∈ (1
2 , 1), we could show that leaf nodes

belong to at most three different levels, which we believe is optimal. Note: The special

case d = 1 corresponds to the algorithm in Section 2.3, for which Theorem 3.2 can easily

be shown to hold for any β ∈ (1
2 , 1).

3. It would be interesting to analyze structured coupon collection over cliques when bd 6≥
c log n, and to explore the impact of multiple choices (d ≥ 2) over general graphs.

Perhaps the results derived by Adler et al [AHKV03] can be extended to larger families

of graphs with/without multiple choices per trial.

Chapter 4

Scalable and Dynamic Emulation

of Network Families

In this Chapter, we describe the Emulation Engine of Dipsea, (see Figure 1.1 on page 2

for a block-diagram of its architecture). Dipsea consists of a dynamic set of managers,

each manager having an ID in I = [0, 1). It is convenient to visualize I as a circle with

unit perimeter. In Chapters 2 and 3, we described efficient decentralized ID Management

algorithms that assign IDs to managers as they arrive and depart. As a function of their IDs,

managers make links among themselves to form an overlay routing network. This network

is used for routing messages and consists of two sets of links: (a) the short-distance links

connect each manager with a few of its neighbors along the circle – these result in a fault-

tolerant ring, and (b) the long-distance links connect each manager to a few non-neighbors

along the circle – these result in an efficient routing network with short routes.

A common design goal is to make the long-distance links of the overlay routing network

mimic or look like a well-known graph structure, e.g., a hypercube, a butterfly network or

a de Bruijn graph. These three basic graphs, along with several of their variants, have been

well-studied by computer scientists since 1980’s in the context of inter-connection networks

for parallel machine architectures (see Leighton [L92] for theoretical foundations of this

area, and Duato et al [DYN03] for practical design issues). Four challenges arise when we

attempt to make the long-distance links mimic such graphs:

a) Arbitrary Number of Nodes: Hypercubes are defined for 2k nodes, butterflies have k2k

nodes, and de Bruijn graphs are defined for mk nodes, where k,m ≥ 1 are both integers.

69

70CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

However, in a DHT, the current number of nodes is not necessarily 2k or k2k or mk.

b) Dynamism: The set of nodes in a DHT changes over time as new managers arrive and

existing managers depart. In contrast, the number of nodes in a parallel machine is

fixed.

c) Scale: The number of nodes in a DHT exhibits large variation, spanning several orders

of magnitude.

d) Physical Network Proximity : Since DHT nodes belong to different geographical regions

of the world, the latency (or the ping-time) between a pair of randomly-chosen nodes is

quite high. We would like to make almost all long-distance links low latency.

Recently, certain families of random graphs have been investigated for routing purposes

(see Chapters 8 and 9 for more details). Some of these are defined for arbitrary integers

whereas others are defined over successive powers of two. The same four challenges arise if

we desire that the long-distance links mimic one of these random graphs. On the whole, the

problem of mimicking a given family of graphs, deterministic or randomized, can succinctly

be stated from the perspective of a manager:

Definition (The Problem of Scalable and Dynamic Emulation of Network Families).

Assume that we would like to mimic a specific family of graphs, say the hypercube.

Given a manager with a specific ID, which other managers should it make long-

distance links with?

The Emulation Engine addresses the above problem for two different distributions of IDs:

Definition (RANDOM distribution of IDs). Each manager chooses an ID indepen-

dently and uniformly at random from I.

Definition (BALANCED distribution of IDs). Manager IDs correspond to leaf nodes

of a binary tree whose leaf nodes belong to at most three different levels: [log2 n] and

[log2 n]± 1, where [x] denotes the integer closest to x.

random distribution of IDs results from the No Probes scheme (see Section 2.1), and is

highly skewed. With n managers, the ratio between the largest and the smallest partition

is Θ(n log n) (see King and Saia [KS04]). balanced distribution of IDs results from ID

Management algorithms in Chapters 2 and 3, where the IDs correspond to leaf nodes of a

binary tree in which each internal node has exactly two children. If we label the left and

right branches of internal nodes with 0 and 1 respectively, then the sequence of bits from

4.1. EMULATION WITH THREE SETS OF LINKS 71

the root to a leaf node, treated as a fraction in I, constitutes the ID associated with that

leaf. The resulting distribution of IDs is balanced.

Summary of Results

In §4.1, we show how families of graphs defined over successive powers of two can easily

be emulated for balanced distribution of IDs. Each node has to make three sets of links.

In §4.2, we introduce the problem of physical network proximity, presenting a simple

idea that works in conjunction with the emulation scheme in §4.1. In fact, we show that

the issue of physical network proximity can be addressed independent of the family we wish

to emulate.

In §4.3, we show how families of graphs defined over successive powers of two can

be emulated with only two sets of links per node. For both random and balanced

distribution of IDs, we require two abstractions: network size estimation and clustering.

In §4.4, we present related work.

In §4.5, we summary our results and outline directions for further research.

4.1 Emulation with Three Sets of Links

In this Section, we describe the Emulation Engine for balanced distribution of IDs. Let

〈G0, G1, G2, . . .〉 denote an infinite family of directed graphs where graph Gi is defined over

2i nodes. Let C(x) denote a cluster consisting of all managers whose IDs have prefix x.

Consider a manager with an `-bit ID x. This node computes three B-values: B1 = `−2,

B2 = ` − 3, B3 = ` − 4. It then establishes three sets of links: one set corresponding to

x1, the B1-bit prefix of its ID, another set corresponding to x2, the B2-bit prefix of its ID,

and finally, a set corresponding to x3, the B3-bit prefix of its ID. Let x1
1,x

2
1, . . . ,x

i1
1 denote

the i1 neighbors of label x1 in graph GB1 . Let x1
2,x

2
2, . . . ,x

i2
2 denote the i2 neighbors of

label x2 in graph GB2 . Let x1
3,x

2
3, . . . ,x

i3
3 denote the i3 neighbors of label x3 in graph

GB3 . Then node x makes i1 + i2 + i3 links with one member each of the following clusters:

C(x1
1), C(x2

1), . . . , C(xi1
1), C(x1

2), C(x2
2), . . . , C(xi2

2), and C(x1
3), C(x2

3), . . . , C(xi3
3). For the

other end of a link, any member of the destination cluster suffices. For example, a manager

with ID 0.010111 would make links corresponding to B1 = 0.0101, B2 = 0.010 and B3 =

0.01. When emulating hypercubes, these links would be established with any member of

clusters with the following prefixes:

72CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

0.1101 0.0001 0.0111 0.0100

0.110 0.000 0.011

0.11 0.00

Routing starts off along that set of links that correspond to the smallest B-value at the

source. Routing switches to the next higher B-value if it encounters a node which believes

in a different triple of B-values. In balanced distribution of IDs, IDs correspond to leaf

nodes in a binary tree at levels [log2 n] or [log2 n]± 1, where n is the total number of leaf

nodes. Therefore, each cluster on [log2 n] − 1 or fewer bits is non-empty. Also, there are

at most three different triples of B-values that various nodes believe in. Therefore, it is

guaranteed that the values [log2 n]− 1 is a member of all the triples. Therefore, a message

will eventually be delivered to a cluster on [log2 n]−1 bits. At this point, only Θ(1) distance

remains to the destination, which can be covered by using the short-distance links.

Notes:

1. Among the three sets of links, several links can be shared in the case of certain families

of networks, for example, the hypercube and de Bruijn graphs. We illustrate the idea

with an example. Consider the set of links established by a node with ID 0.010111 when

it is emulating a hypercube. Since cluster C(0.1101) is a subset of cluster C(0.11), a link

established with some member of C(0.1101) suffices when it comes to link-establishment

with some member of C(0.11).

For the butterfly and its variants, the three sets of links are indeed quite different.

2. Families of networks defined over non-powers of two are handled as follows. We transform

the given family into another family defined over powers of two. Then the emulation

technique developed so far is readily applicable.

4.2 Physical-Network Proximity

In Dipsea, participating hosts belong to different geographical regions of the world. There-

fore, the latency (or the ping-time) between a pair of randomly-chosen nodes is quite high.

If most of the long-distance links are high-latency, and if routes are O(log n) hops long (as

in a hypercube, for example), then the total time taken to transmit any message to its

destination would be quite large. Such high latencies would render the DHT practically

unusable.

The problem of physical network proximity has been addressed for two specific routing

4.2. PHYSICAL-NETWORK PROXIMITY 73

networks: Chord and the hypercube. In both cases, the basic topology is altered by intro-

ducing randomization: Chord gets transformed into randomized-Chord [GGG+03,ZGG03],

and the hypercube gets transformed into randomized-hypercube [GGG+03,CDHR03]. The

key idea is to make the topology less rigid by introducing choices for every link that is es-

tablished. This allows a manager to establish a link with the closest manager, from among

the choices available. See Bamboo [RGRK04] and recent improvements to Chord [DLS+04]

for performance numbers.

The methodology proposed for Chord and the hypercube raises some questions: How do

we address the problem for other graph structures, e.g., butterflies and de Bruijn graphs?

How do we deal with graphs which are already randomized e.g., Symphony [MBR03] or

Viceroy [MNR02]? Do we have to deal with each graph structure on a case-by-case basis,

or is there a generic technique that works for all graphs, deterministic and randomized?

In this Section, we present a generic scheme for incorporating physical network proximity

into arbitrary graph families. The scheme is a simple extension of the idea presented in

Section 4.1. We justify and validate our idea through a series of experiments, using actual

traces of inter-host ping times.

4.2.1 The Power of 16 Choices

We begin by understanding the distribution of inter-host IP latencies on wide-area networks.

In a recent measurement study on an Internet router-level topology, Zhang et al [ZGG03]

observed that the latency expansion follows a power law, i.e., the number of hosts within

latency x of any given host is roughly proportional to a polynomial in x. In fact, their

measurements indicate that the power-law exponent is close to 1, suggesting that the world

“looks like a ring” with respect to latency characteristics. Therefore, intuitively speaking,

a host can find a “nearby” host by randomly sampling a very small number of hosts, and

selecting the “closest” of these†. More precisely, let d be the exponent of the power-law

expansion, and δ be the maximum latency between a pair of hosts. Then, if a host samples

k other hosts independently and uniformly at random, the expected latency to the closest

of these hosts is O(δ/k1/d) [ZGG03]. The improvement in latency drops off rapidly as k,

the number of random samples, increases.

†This observation was first made by Zhang et al [ZGG03] who developed a random-sampling scheme to
optimize Chord.

74CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

F
ra

ct
io

n
of

 N
od

es

Latency (ms)

Tokyo
Sweden

Palo Alto
Champagne

Figure 4.1: CDF (Cumulative Distribution Function) of latencies as measured from four hosts in
different parts of the world. We analyzed data obtained by the Skitter project [Ski].

Analysis of Skitter Data: In order to understand the tradeoff between random sam-

pling and reduction in inter-host latency, we analyzed data from the Skitter project [Ski].

The data consists of latency measurements from a fixed set of geographically dispersed hosts

to a large numbers of end hosts, spanning most routable IP prefixes. We observe that all

the CDF curves in Figure 4.1 initially exhibit a roughly linear behavior†.

Random Sampling: Using Skitter data, we quantify the benefit of random sampling by

plotting the expected latency to the closest of k randomly chosen hosts, in Figure 4.2 on the

facing page. Observe that the latency drops very sharply as k increases beyond 1, showing

that sampling even a small number of hosts is very beneficial. However, the benefits of

sampling taper off rather quickly, irrespective of the location of the host performing the

sampling. Even for the relatively “isolated” host in Japan, the expected latency drops from

146ms for one sample, to 39ms after eight samples, and to 24ms for sixteen samples. For

the hosts in the United States, the latency drops even more sharply. We thus conclude the

following:

(The Power of 16 Choices) In a global P2P system with geographically-diverse

participants, a host is likely to find a “nearby” host by sampling 16 hosts at

random. The utility of further sampling is marginal.

We note that a sample of size 16 yields a nearby host in expectation. For high probability

guarantees, we would have to oversample significantly. However, 16 samples is good enough

for DHT routing, as we now show.

†We also observe non-linear step-like behavior which is not surprising, given that the world is clustered
into continents separated by vast bodies of water.

4.2. PHYSICAL-NETWORK PROXIMITY 75

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 4 8 12 16 20 24 28 32

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Number of Samples

Tokyo
Sweden

Palo Alto
Champagne

Figure 4.2: Expected latency as a function of the number of hosts sampled, using data from the
Skitter project [Ski]. The curve appears hyperbolic, as expected with exponent ≈ 1 in power-law
expansion.

4.2.2 Network-Proximity with BALANCED Distribution of IDs

Let us gain intuition into the relationship between long-distance links in Dipsea and physical-

network proximity, by starting off with a simple idealized configuration: 2k hosts, each host

having a unique k-bit ID. Hosts lie in geographically disparate regions, and the sorted

sequence of IDs is a random permutation of hosts. Let σ denote the average inter-host

latency in the physical-network. Now if each host makes k overlay links corresponding to

the hypercube, the average routing latency would be ≈ k
2σ because k

2 is the average path

length in the hypercube and σ is the average IP-latency. The fundamental question is: How

could we reduce average latency to 2σ or less? One possibility is to relax the definition of

the hypercube [RD01a, ZHS+04]: For 1 ≤ i ≤ k, the ith link would correspond to flipping

the ith most-significant bit along with any bit-combination in the low-order k− i bits. The

new network is non-deterministic. It introduces choices for each link – this gives a host the

privilege to select a nearby host from among the choices available. The relaxed hypercube

continues to guarantee worst-case routes of length O(k). The Chord network can also be

relaxed along the same lines [GGG+03,ZGG03]. From among the choices available, a nearby

host can be identified by random sampling at run time [ZGG03].

Limited Relaxation of the Hypercube: The relaxation of the hypercube, as de-

scribed above, gives certain links too many choices. In Figure 4.2 , we saw that 16 samples

is sufficient. This motivates the following experiment:

76CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

N
et

w
or

k
La

te
nc

y
(m

s)

Average Number of Nodes per Cluster

Network Latency as function of Cluster Size

N = 210 Nodes
N = 211 Nodes
N = 212 Nodes
N = 213 Nodes
N = 214 Nodes
N = 215 Nodes
N = 216 Nodes
N = 217 Nodes

Figure 4.3: Average latency as a function of cluster size.

We relax the hypercube such that for each 1 ≤ i ≤ k − c, the ith link

corresponds to flipping the ith bit and choosing any bit-combination in

the c low-order bits, where c is a tunable parameter. It is easy to see that

this network can be used to correct the top k−c most-significant bits when

routing. For the c low-order bits, we assume that the message is routed

directly, thereby incurring a delay of σ on average. A relaxed version of

chord can be defined along the same lines. Effectively, we have divided

2k hosts into 2k−c clusters, each cluster having 2c hosts. Question: How

does average path latency vary as a function of cluster-size c?

For the experiment, we need knowledge of pair-wise IP latencies for a large number of

geographically distributed hosts. The Skitter project [Ski] provides latency measurements

only from a small number of hosts and does not provide a matrix of pairwise latencies. We

therefore resort to the standard GT-ITM topology generator [ZCB96], and assign latencies

of 5ms, 20ms and 100ms to stub-stub, stub-transit and transit-transit links, in order to

generate a latency model.

Figure 4.3 plots the equivalent of Figure 4.2 on the page before for the GT-ITM topology.

The drop in average latency (resulting from choosing the closest among 2c hosts) is not as

spectacular as in Figure 4.2 on the preceding page. This is not surprising – it is well-

known that the GT-ITM model results in exponential latency expansion and, thus, does

not reflect real Internet latency distributions [GGG+03, ZGG03], which have power-law

expansion. However, we choose to utilize this model as a conservative evaluation of the

utility of clusters. Using a model with power-law expansion would only serve to improve

the results we report hereafter.

4.2. PHYSICAL-NETWORK PROXIMITY 77

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

2 4 8 16 32 64 128 256

S
tr

et
ch

Number of hosts in Cluster (2c)

(Unoptimized) Chord
(Unoptimized) R-Chord

Figure 4.4: N = 216. Increases in cluster-size result in diminishing returns.

Figure 4.4 shows the result of the experiment on chord (and one of its variants called

Randomized-Chord that we discuss in Chapter 8) It is clear that as c increases, the path

latency is dominated by the last hop†. Figure 4.4 convinces us that our limited relaxation of

the hypercube is good enough – with clusters of size 32, average route lengths are within 2σ.

Figures 4.3 on the preceding page and 4.4 also illustrate that increases in cluster-sizes have

diminishing returns. Figure 4.2 on page 75 reminds us that 32 is a conservative estimate.

We believe that clusters of size 16 should be good enough in practice.

Optimizing the Last Hop: The average routing latency can be further reduced by

taking advantage of replicas. Let us say that each host replicates its content at the R − 1

hosts immediately succeeding it in circular ID-space. Then a host would maintain R − 1

short-distance links with its successors. With an additional ≈ 2c/R links, a host can reach

a copy of every key-value pair within its cluster (we do not need 2c links per host). For

each of these additional links, there is a choice of R hosts to choose from. For example,

with c = 32 and R = 4, each hosts needs eight additional links. With R = 1, the last hop

costs σ. However, with R = 2, 4, 6, or 8, the cost of the last hop diminishes from σ down to

0.80σ, 0.64σ, 0.52σ, and 0.46σ, respectively.

4.2.3 Cluster-based Network-Proximity

The insight gained in the previous Section suggest a technique for introducing flexibility into

any family of routing networks – deterministic or randomized – in a generic fashion. The

†The same phenomenon occurs in the relaxation of the hypercube we defined earlier due to limited choices
available when flipping low-order bits [CDHR03,ZGG03,GGG+03].

78CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

0
4
8

12
16
20
24
28
32

8 16 32 64

N
um

be
r

of
 L

in
ks

Average Blob Size

#Replicas = 2
#Replicas = 4
#Replicas = 6
#Replicas = 8

Figure 4.5: Replication and Intra-Cluster Links

0
50

100
150
200
250
300

8 16 32 64

N
et

w
or

k
La

te
nc

y
(m

s)

Average Blob Size

(b) Replication and Last Hop Cost

#Replicas = 2
#Replicas = 4
#Replicas = 6
#Replicas = 8

Figure 4.6: Replication and last-hop cost

design for a static collection of 2k hosts can be summarized as follows: we divide the hosts

into clusters of 16 hosts each. The top k − c bits of a host’s ID, where c = 4, constitute its

cluster ID. On the basis of its cluster ID and the family of networks being emulated, a host

figures out which other clusters it should have overlay connections with. These connections

constitute the inter-cluster network. Once a message has reached some host belonging to

the destination cluster, one last hop is required to reach the target host within the cluster.

The last hop can be optimized, as discussed earlier.

As long as the sorted sequence of hosts in ID-space is a random permutation, a con-

tiguous sequence of 16 hosts is effectively a random sample of size 16. As noted earlier

(Figure 4.2 on page 75), a sample of this size yields a nearby host in expectation. For high

probability guarantees, we would need many more samples. However, 16 samples is good

enough, for three reasons: First, routes in DHTs consist of multiple hops, so it is the sum of

latencies over multiple-hops that is of concern, not individual latencies. Second, the aver-

age latency over all host-pairs improves only marginally with additional samples. Third, on

those rare occasions that all 16 samples are to geographically distant hosts, we rely on the

redundancy in the family of routing networks to forward messages along alternative links.

4.2. PHYSICAL-NETWORK PROXIMITY 79

4.2.4 Clusters in a Dynamic Network

In this Section, we adapt the basic idea in §4.2.3 to dynamic networks, highlighting issues

that arise due to scale and dynamism. The crux of the matter lies in

(a) identifying which cluster(s) a host belongs to (this defines the set of out-going links),

and

(b) for each out-going link, making sure that it points to a nearby host in the destination

cluster.

Both these tasks are challenging. For example, agreement in cluster -sizes among large

numbers of hosts is ruled out. Moreover, the number of clusters as well as their mem-

bership changes over time, possibly necessitating re-linking. We address these issues by

exploiting certain properties of balanced distribution of IDs that are guaranteed by our

ID management schemes in Chapters 2 and 3.

Cluster IDs: How does a host figure out which cluster it belongs to? A host with an

`-bit ID believes in three different k-values, where k ∈ {`−3, `−4, `−5}. It then constructs

three sets of inter-cluster links, one corresponding to each value of k. For inter-cluster links,

a host gets to choose from among 16, 32 and 64 different hosts, in expectation. Figure 3.2 on

page 65(b) assures us that the deviation from these sub-tree sizes is small. Thus, with high

probability, there exists a complete inter-cluster network at some level k̂ such that each

cluster has at least 16 hosts. Routing proceeds as described in §4.1. Indeed, for several

networks like the hypercube, the three sets of links can be shared, as mentioned in §4.1.
Link Establishment: How does a host identify a nearby host within a destination

cluster? One approach is to obtain the IP addresses of all (or 16 randomly chosen) hosts

within a cluster, and ping each host individually to estimate the latency to that host.

Currently, research is being carried out whether hosts can reliably be assigned “coordinates”

or “vectors” in a metric space (see Vivaldi [DCD+04] or GNP [NZ02]) such that inter-host

ping-times can be accurately deduced from these coordinates, obviating the need of actual

pinging. With such coordinates in place, each host should learn the coordinates of 32 hosts

in its vicinity. This enables fast identification of the nearest host in a cluster.

Re-linking Criteria: How often does a host re-establish a link with some destina-

tion cluster? Links are re-established only under two circumstances: (a) when a hosts

fails/departs, any other host that had a link with the departed host, will attempt to find

an alternative host within the same cluster to link to, and (b) when a host’s ID changes in

80CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

0

100

200

300

400

500

600

8 16 32 64 128 256 512 1024 2048

N
et

w
or

k
La

te
nc

y
(m

s)

Num of Clusters

AVG CLUSTER SIZE = 32

Average Pairwise Latency

Symphony
Chord
Chord (randomized)

Symphony + 1-LA
Chord (randomized) + 1-LA

Symphony (undirected)
Chord (randomized+undirected)

Symphony (undirected) + 1-LA
Chord (randomized+undirected)
 + 1-LA

Figure 4.7: Path latency for inter-cluster routing

length, all three sets of links it possesses, are re-evaluated.

Note that the arrival of a host does not trigger a re-linking operation at any host that

currently has links coming into the cluster that the new host just joined. The newly arrived

host, along with one other host which was split (as a leaf node in the tree), create inter-

cluster links. Having created its inter-cluster links (with destination clusters), a host remains

oblivious of hosts that join any of the destination clusters.

The number of hosts affected by a host leaving in case (a) above depends upon the graph

structure we are emulating. In several graphs, this number is O(log n). To understand

when case (b) arises, observe that each host join or leave causes exactly one other host

ID to change in length, in our ID Management scheme. Therefore, each host needs to re-

establish its entire set of links only once per half-life of the system. As an optimization,

this re-establishment of links may be done lazily, since it affects only the performance, not

the correctness of routing.

Experiments: Figure 4.7 plots the stretch for a variety of networks, simulated on top

of GT-ITM. Assuming 0 replicas and 64K hosts, we get a stretch of 1.6 with randomized-

Chord using bi-directional links and 1-lookahead. With 4 replicas, the stretch reduces to

1.24 (because the last hop requires only 0.64σ latency on average).

4.3. EMULATION WITH ONLY TWO SETS OF LINKS PER NODE 81

4.2.5 Discussion

Our approach for incorporating network proximity awareness into long-distance links is

unique because of its generality. Previous work has focused on specific topologies like

Chord [GGG+03, ZGG03,DLS+04] or hypercubes [GGG+03,CDHR03,RGRK04]. In fact,

we show that network proximity can be factored into the design independent of the choice

of long-distance links, in a generic fashion. Moreover, our approach is quite simple to im-

plement, as compared with other proposals that address network proximity [KR02,AMD04,

HKMR04].

4.3 Emulation with only Two Sets of Links per Node

In this Section, we describe the design of an Emulation Engine for both random and

balanced distribution of IDs. The improvement over the scheme in §4.1 is that each node

has to make only two sets of links with other nodes instead of three.

The intuition underlying our scheme as follows: Emulation is challenging primarily due

to two sources of uncertainty. First, the total number of participants is not known accurately

to all managers. Second, the distribution of IDs is uneven. We address the first issue by

developing a network-size estimation protocol. The second issue is addressed by clustering.

1. Network Size Estimation: Each manager runs a black-box whose goal is to maintain

ñ, an estimate for n, the current number of managers. We stipulate that ñ ∈ n/(1±δ)
where δ is a tunable parameter. In practice, network size estimates could be derived

from random sampling of partition sizes. Theoretically, a manager can derive an

estimate by inspecting the distribution of IDs in its vicinity along the circle (see

§4.3.2 and §4.3.3).

A node with estimate ñ computes two B-values: B1 = blog2(ñ/α)c and B2 =

dlog2(ñ/α)e, where α depends upon the distribution of IDs. For random distri-

bution, α = 16
ε2 log ñ. For balanced distribution, α = 4. By fixing δ < 1/3, we can

ensure that there are no more than three different B-values that nodes believe in, and

there exists some B-value that is common to all nodes.

2. Clustering : Let 〈G0, G1, G2, . . .〉 denote an infinite family of directed graphs where

graph Gi has 2i nodes. Let C(x) denote a cluster consisting of all managers whose

IDs have prefix x.

82CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

Consider a node with label x which has computed two B-values: B1 and B2, as

per the procedure outlined above. This node establishes two sets of links: one set

corresponding to x1, the B1-bit prefix of its ID and another set corresponding to

x2, the B2-bit prefix of its ID. Let x1
1,x

2
1, . . . ,x

i1
1 denote the i1 neighbors of label x1

in graph GB1 . Let x1
2,x

2
2, . . . ,x

i2
2 denote the i2 neighbors of label x2 in graph GB2 .

Then node x makes i1 + i2 links with one member each of the following clusters:

C(x1
1), C(x2

1), . . . , C(xi1
1) and C(x1

2), C(x2
2), . . . , C(xi2

2). For the other end of a link,

any member of the destination cluster suffices.

Routing starts off along those links that correspond to the smaller of the two B-

values at the source. Routing switches to the next higher B-value if it encounters a

node which believes in a different pair of B-values. This B-value is guaranteed to be

common to all nodes. Once the destination cluster has been reached, the distance

remaining to the destination manager is Θ(1) hops for balanced distribution of IDs,

and Θ(log n) for random distribution of IDs. The remaining distance can be covered

by following the short-distance links, or by setting up a small local routing network.

4.3.1 Flapping of Link-Sets

An issue that we have overlooked so far is the flapping of link-sets when ñ hovers around a

power of two. A simple modification prevents flapping. We stipulate that δ < 3− 2
√

2 for

the Network Size Estimator. Consequently, the difference between log2 ñ for two different

managers is at most 1/2. We now introduce hysteresis to absorb small fluctuations in log2 ñ:

A manager switches from a pair of B-values 〈b, b+1〉 to 〈b+1, b+2〉 only when log2 ñ crosses

the boundary b+ 1/2 by increasing in value. The switch from 〈b+ 1, b + 2〉 to 〈b, b + 1〉 is

made only when log2 ñ crosses the boundary b by decreasing in value.

4.3.2 Network Size Estimation with RANDOM Distribution of IDs

In this Section, we develop a distributed scheme for estimating n, the current size of the

network, for random distribution of IDs. Although different nodes arrive at different

estimates of n, each estimate is guaranteed to lie in the range n/(1±δ) with high probability†

(w.h.p.) where δ ∈ (0, 1) is a user parameter. The intuition behind our scheme is captured

by the following questions: Could a node with ID x deduce n by simply measuring the

†A guarantee is said to be with high probability if it fails with probability at most 1/nc for some constant
c.

4.3. EMULATION WITH ONLY TWO SETS OF LINKS PER NODE 83

density of IDs close to x? How large a sub-interval suffices so that w.h.p., the actual

number of IDs in the sub-interval does not deviate significantly from that expected?

Theorem 4.1 (Chernoff Inequality). Let X1, X2, . . . , Xt denote independent Bernoulli

variables with probability of success pi ∈ [0, 1] for 1 ≤ i ≤ t. Let X =
∑t

i=1Xi and

µ = EX =
∑t

i=1 pi. Then for any 0 < ε < 2e − 1, Pr[X > (1 + ε)µ] < exp−µε2/4 and

Pr[X < (1− ε)µ] < exp−µε2/4.

Lemma 4.3.1. Let n points be chosen independently, uniformly at random from the interval

[0, 1). Let pα be a random variable that equals the total number of points chosen in a

fixed interval of size α. If α > (8ε−2 lnn)/n, then Pr[pα > (1 + ε)Epα] < 1/n2 and

Pr[pα < (1− ε)Epα] < 1/n2.

Lemma 4.3.1 follows immediately from Chernoff’s Inequality. It suggests that we should

measure the size of the interval spanned by Ω(lnn) successive points and scale the observed

density. Two issues remain: (a) How do we estimate lnn itself? (b) Exactly how many

points suffice to arrive at an estimate for n lying in the range n/(1 ± δ)? Both issues are

addressed by the following scheme: Consider a specific node with ID x. Let ni denote the

number of nodes that share the top i (most significant) bits with x. Node x identifies the

largest ` such that n` ≥ 16(1 + δ)δ−2 ln(2`n`).

Lemma 4.3.2. (a) log2(2
`n`) > 0.5 log2 n with probability at least 1 − 1/n2. (b) 2`n` lies

in the interval n/(1± δ) with probability at least 1− 2/n2.

Proof. (a) If 2knk ≤
√
n, then (1 − 1/2k) ≤ (1 − nk/

√
n). We assume that nk < n for

otherwise, there is no error in estimate. Let us fix the IDs of the nodes that contribute to

nk. The probability that none of the remaining n− nk nodes chooses its id in the interval

of size 1/2k is given by (1−1/2k)n−nk ≤ (1−nk/
√
n)n−nk ≤ e−(n−1)/

√
n < 1/n2 for large n.

(b) We know that n` ≥ 16(1 + δ)δ−2 ln(2`n`). Part (a) above assures us that ln 2`n` >

0.5 lnn with probability at least 1−1/n2. Therefore, n` ≥ 8δ−2(1+δ)) ln n with probability

at least 1− 1/n2.

n` successive points are expected to lie in a sub-interval of size n`/n. However, we

observed n` to lie in a sub-interval of size 1/2`. The probability that 1/2` does not lie in the

range (1±δ)n`/n is given by Pr[|1/2k−n`/n| > δn`/n] ≤ Pr[1/2` < (1−δ)n`/n]+Pr[1/2` >

(1 + δ)n`/n]. We now prove that the first term is at most 1/n2. The proof for the second

term is along similar lines.

84CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

Consider the probability Pr[1/2` < (1 − δ)n`/n]. This is identical to the probability

Pr[p(1−δ)n`/n > n`] (using the definition of pα from Lemma 4.3.1). We can rewrite it as

Pr[p(1−δ)n`/n > (1+ε)(1−δ)n`/n] where ε = δ/(1−δ). From Lemma 4.3.1, this probability

is less than 1/n2 as long as α = (1 − δ)n`/n > (8ε2 lnn)/n, which is indeed true for

ε = δ/(1 − δ).
Consider the probability Pr[1/2` > (1 + δ)n`/n]. This is identical to the probability

Pr[p(1+δ)n`/n < n`] (using the definition of pα from Lemma 4.3.1). We can rewrite it as

Pr[p(1+δ)n`/n < (1−ε)(1+δ)n`/n] where ε = δ/(1+δ). From Lemma 4.3.1, this probability

is less than 1/n2 as long as α = (1 + δ)n`/n > (8ε2 lnn)/n, which is indeed true for

ε = δ/(1 + δ).

Theorem 4.2. With probability at least 1−2/n, the estimate of network size made by every

node lies in the range n/(1± δ).

Proof. From Lemma 4.3.2 by summing the failure probability over all n nodes.

The estimates of n made by all nodes lies in the range n/(1 ± δ) w.h.p. On a log-

scale in base two, the difference between the upper and lower bounds on the estimates is

log2[(1 + δ)/(1− δ)]. Setting δ < 1/3 makes this difference less than 1. Let us label a node

with estimate ñ with a pair of B-values: 〈blog2 ñc, dlog2 ñe〉. Then at most three different

integers are used in labeling the nodes and at least one integer is common to all labels.

Effectively, we have developed a decentralized scheme for reaching a rough consensus on

the current size of the network, i.e., the current number of managers along the circle.

Clustering

Lemma 4.3.3. Let k be such that 2k ≤ (ε2n)/(8 ln n). With probability at least 1 − 2/n,

the number of points in each of 2k equi-sized non-overlapping sub-intervals of [0, 1) lies in

the range (1± ε)n/2k.

Proof. From Lemma 4.3.1, we conclude that with probability at least 1− 2/n2, the number

of points in a specific sub-interval lies in the range (1 ± ε)n/2k. Summing the failure

probability over 2k ≤ n intervals, we obtain the desired bound.

Lemma 4.3.3 suggests a scheme for clustering. We label a node with estimate ñ with a

pair of integers 〈B1, B2〉 where B1 =
⌊

log2(ε
2ñ)/(16 ln ñ)

⌋

and B2 =
⌈

log2(ε
2ñ)/(16 ln ñ)

⌉

.

4.3. EMULATION WITH ONLY TWO SETS OF LINKS PER NODE 85

Assuming δ < 1/3 in the estimation scheme, at most three B-values are used for labeling

all nodes and at least one B-value is common to all labels. For each B-value used in a label,

Lemma 4.3.3 assures us that each of 2B clusters will be populated by (1± ε)n/2B node IDs

w.h.p.

A family of networks over successive powers of two is emulated by constructing an inter-

cluster and an intra-cluster network as follows. A node with label 〈B1, B2〉 makes two sets

of links. The first set corresponds to using B1 most significant bits of its ID and assuming

2B1 clusters. The second set corresponds to using B2 most significant bits and assuming

2B2 clusters. When establishing a particular link, a node can choose any node belonging to

the destination cluster. Since at least one integer is common to all labels, there is at least

one value of B such that the network over 2k clusters is complete, i.e., every node makes

links with a B-bit ID.

Routing initially follows links corresponding to the smaller of the two B-values at the

source. Along the way, routing switches to the next higher k-value if necessary. Upon

reaching the destination cluster, intra-cluster routing is done by some local routing network.

Each cluster has Θ(log n) nodes. So if each node is connected to Ω(log n) nodes along the

circle (as advocated by Liben-Nowell et al [LNBK02] to address fault-tolerance concerns),

intra-cluster routing takes O(1) hops.

Remark: The paradigm of first routing to the destination cluster and then to a node

within the cluster could also form the basis of a common proof technique for the analysis

of existing routing networks like Chord, Koorde [KK03], D2B [FG03], which are defined for

random distribution of IDs.

4.3.3 Network Size Estimation with BALANCED Distribution of IDs

For balanced distribution of IDs, a factor-4 approximation of n can be deduced from the

number of bits in a manager’s own ID. This follows from the fact that IDs correspond to

leaf nodes of a binary tree in which all leaves are guaranteed to lie in levels [log2 n] and

[log2 n] ± 1, w.h.p. Is it possible possible to improve upon this estimate? In general, how

could a manager derive a sharp estimate ñ satisfying ñ ∈ n/(1± δ) for a fixed δ < 3− 2
√

2,

from local measurements alone?

Theorem 4.3. Imagine n manager arrivals where each manager chooses a random number

in I = [0, 1). If X(k) managers choose the same top k bits for their IDs such that X(k) ≥
8(1 + δ)δ−2 lnn, then 2kX(k) ∈ n/(1± δ) with probability at least 1− 2/n2.

86CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

Proof. Follows from Lemma 4.3.2(b).

Theorem 4.4. Each manager can estimate ñ ∈ n/(1± δ) w.h.p., if c is large enough, by a

modification of the ID selection algorithm in Section 2.3 (at no extra cost).

Proof. We borrow terminology from our description of the scheme in §2.3. A new manager,

upon joining the system, identifies the size of the sub-tree hanging below the parent of its

active ancestor, and deduces ñ from this size, as discussed below. The new manager then

informs all other managers below the sub-tree about its estimate.

Let the newly-arrived manager correspond to a leaf node at level `. Let a denote the

active ancestor of the leaf node when it was created. Then a is at level φ(`). Consider a ′, the

parent a, which would be at level φ(`)− 1. Let Z denote the total number of leaf nodes in

the sub-tree rooted at a′. Then Z ≥ χ(`) = 2dlog2 `e+c−1 ≥ `2c−1. Now, ` ≥ log2 n− 2 since

all leaves lie in the bottom three levels of the tree. Therefore, Z ≥ (log2 n−2)2c−1. Each of

these leaves chose the same top φ(`)− 1 bits for their ID. In the past, for each i ∈ [0, `− 2],

χ(i) managers chose their IDs such that the top φ(i) bits form a prefix of the ID of a ′. If we

(conceptually) let each of these managers carry out further coin tosses so as to decide which

one of them would eventually have gone on to share the top φ(`)− 1 bits with a′, we would

augment Z to obtain a quantity Z ′. We claim that ñ = 2φ(`)−1Z ′ is an unbiased estimate for

n. In fact, if we fix c to the smallest integer that satisfies (log2 n−2)2c−1 ≥ 8(1+δ)δ−2 lnn,

we can apply Theorem 4.3 to claim that ñ ∈ n/(1 ± δ) w.h.p. The construction in §4.3
works with any constant δ < 3− 2

√
2, which makes c a constant.

4.4 Related Work

Network Size Estimation

Estimation of log n is a sub-problem that often emerges in the context of DHTs.

Viceroy [MNR02], Symphony [MBR03] and Mariposa [M03] (see also Chapter 9) re-

quire the estimate for constructing the overlay routing network. CFS [DKK+01]

requires the estimate to establish Θ(log n) virtual IDs per host. The ID Management

algorithm by Naor and Wieder [NW03] needs to probe Θ(log n) random points in

[0, 1). Assuming that each host independently chooses an ID from [0, 1) uniformly at

random, a constant-factor approximation of log n can be deduced from two succes-

sive IDs (see Viceroy [MNR02]). Recently, a new scheme for estimating log n within

4.5. SUMMARY AND FUTURE WORK 87

constant-factors has been devised by Horowitz and Malkhi [HM03b]. Our algorithm

in §4.3.2 improves the estimate to constant-additive error in log n.

Emulation of Network Families

Concomitant with our work, two other proposals for emulation of graph families have

emerged: Naor and Wieder [NW03] propose the “Continuous-Discrete Approach” –

the main limitation is that their approach does not handle butterfly networks, or ran-

domized networks. Abraham et al [AAA+03] have developed a scheme for emulating

families of graphs. Members of a family are required to possess a certain kind of

recursive structure that allows parent-child functions to have a property called “child-

neighbor commutativity”. The authors show that hypercubes, de Bruijn graphs and

butterflies can be defined recursively so as to enjoy the property. Randomized net-

works have not been addressed.

Three big advantages of our emulation scheme in §4.1 are: (a) We can handle families

of randomized routing networks, (b) The graph family is not required to possess any

kind of recursive structure – in fact, the graphs over successive powers of two could

be quite different, say a torus and a butterfly, and (c) Our scheme allows for physical-

network proximity to be incorporated into the design cleanly.

4.5 Summary and Future Work

We described the design of an Emulation Engine for Dipsea. We showed how a variety of

graph families could be emulated in a generic fashion. The Emulation Engine absorbs the

complexity arising out of dynamism (arrivals/departure of hosts), scale (variation in the

average number of hosts), and concerns of physical network proximity. We validated our

design through a series of experiments using real-world latencies measured by the Skitter

project [Ski] and by using the GT-ITM topology generator [ZCB96]. This leaves us free to

explore the top-most module of Dipsea: Choice of Long-Distance Links (see Figure 1.1 on

page 2). We devote Chapters 5 through 9 in understanding that module.

Future Work: It would be interesting to identify and to address practical issues that arise

in an implementation of the Emulation Engine, on PlanetLab [CCR+03], for example.

88CHAPTER 4. SCALABLE AND DYNAMIC EMULATION OF NETWORK FAMILIES

Chapter 5

Shortest Paths in Chord

In Chapters 5 through 9, we study the module “Choice of Long-Distance Links” in the Overlay

Routing layer of Dipsea (see Figure 1.1 on page 2 for a block-diagram of its architecture).

In this Chapter, we focus on Chord, a routing topology proposed in an early DHT design

paper [SMK+01].

5.1 Introduction

In the original paper [SMK+01], Chord is defined over n nodes where each node chooses a

random number in [0, 1) as its ID. Edges in Chord are defined as follows: Imagine placing

all nodes along a circle with unit perimeter. Then a node manages that portion of [0, 1)

that lies between its own ID and that of its clockwise successor along the circle. Each

node creates edges with the managers of points which lie at the following distances in the

clockwise direction: 〈 12 , 1
4 ,

1
8 , . . .〉. Nodes in Chord represent hosts on the Internet and edges

represent network connections. The edges in Chord should be treated as undirected because

the corresponding TCP connections allow message delivery along both directions.

In this Chapter, we study an idealized version of Chord, which is defined over n = 2b

nodes lying at the corners of a regular n-gon circumscribed by a unit circle. This is rea-

sonable because the Emulation Engine for Dipsea (which we covered in detail in Chapter 4)

allows emulation of arbitrary families of graphs defined over successive powers of two. With

that in mind, we define Chord as follows:

89

90 CHAPTER 5. SHORTEST PATHS IN CHORD

Definition (Chord). Consider an undirected graph on 2b nodes arranged in a

circle. Nodes are labeled with b-bit identifiers from 0 through 2b − 1 going clockwise.

An edge (x, y) exists iff x and y are 2k positions apart on the circle for some k ≥ 0,

i.e., |x− y| equals either 2k or 2b − 2k for some 0 ≤ k < b.

Our goal in this Chapter is to characterize shortest paths in Chord by identifying routes

of minimal length between pairs of nodes. From the perspective of shortest paths, the

definition of Chord is deceptively simple; it hides a rich combinatorial structure, some of

which we unearth in this Chapter.

In the standard Chord routing algorithm [SMK+01], messages are forwarded along only

those edges that diminish the clockwise distance by some power of two. Routing is clockwise

and greedy, never overshooting the destination. If a message is destined for a node that

is clockwise distance d away, routing is equivalent to performing left-to-right bit-fixing to

convert the 1s in the binary representation of d to zero. For example, if d is 14 (1110 in

binary), the standard Chord routing algorithm uses steps of 8, 4 and 2 in that order, thus

converting the leftmost 1 in the remaining distance to a 0 at each step. The longest path

has length b and the average path length is b/2. Clockwise greedy routing is non-optimal

because it uses the non-diagonal edges in only one direction.

We show that shortest paths in Chord have a strong connection with the Binary Sub-

traction Problem: Given a positive integer d, find a pair of non-negative integers 〈d ′, d′′〉
such that the number of 1-bits in d′ and d′′ is minimal, subject to the constraint d = d′−d′′.
For example, the shortest route to cover clockwise distance 14 (1110 in binary) is to use

a clockwise step of 16 in combination with an anti-clockwise step of length 2, which can

be seen as an optimal way of expressing 14 as the difference of two numbers. Using the

solution of the Binary Subtraction Problem as a building-block, we devise a procedure for

identifying shortest paths between any pair of nodes in Chord. Analysis of this procedure

shows that a shortest path in Chord has length at most bb/2c and that the average length

of the shortest path is only b/3 + Θ(1).

Summary of Results

In §5.2, we study a simple but non-optimal variant of the standard Chord routing

algorithm: each node chooses between the shorter of clockwise-greedy and anti-clockwise-

greedy routes, on a per-destination basis. We show that the average path length drops to

b/2−
√

b/(2π) + Θ(1).

5.2. CHOICE OF TWO 91

In §5.3, we expose the interplay between shortest path in Chord and binary subtraction.

In §5.4, we solve the Binary Subtraction Problem. In general, there is no unique solution.

We present a non-deterministic procedure that generates all the optimal solutions.

In §5.5, we identify optimal routing algorithms for Chord. We show that Chord’s di-

ameter is bb/2c. However, the average all-pairs shortest-path length is only b/3 + Θ(1).

Interestingly, two simple algorithms that discover optimal routes can be encoded compactly

by finite-state automata. The average shortest-path lengths are then computed by treating

the automata as Markov Chains.

In §5.6, we extend our results to higher-base versions of Chord.

In §5.7, we describe the Hyperskewbe, a rather mysterious topology obtained by sub-

tracting the hypercube edges from Chord but retaining the diameter edges.

In §5.8, we present related work.

In §5.9, we summarize our results and present possible directions for future research.

5.2 Choice of Two

A simple variant of the standard Chord routing algorithm is as follows: When node x wishes

to send a message to y, it chooses the shorter of

(a) the clockwise greedy route to y, and

(b) the anti-clockwise greedy route to y’s clockwise successor (namely (y + 1) mod 2b),

followed by an anti-clockwise step to y.

When both (a) and (b) have equal path lengths, we arbitrarily choose (b). The clockwise-

greedy route in (a) considers only those edges that diminish the clockwise distance by some

power of two. Similarly, the anti-clockwise-greedy route in (b) considers only those edges

that diminish the anti-clockwise distance by some power of two. If we replace (b) by the

more natural “anti-clockwise greedy route to y”, Theorem 5.1 (see below) remains largely

unchanged (the longest path is bb/2c instead of db/2e). However, analysis of link-congestion

becomes involved (see reference [GM04] for details).

We now compute the average path length for Choice of Two. Let d = (y − x +

2b) mod 2b, the clockwise distance from x to y. Then the length of the clockwise-greedy

route is H(d) where H(x) denotes the Hamming norm of x, i.e., the number of 1-bits in

x. The length of the anti-clockwise greedy route, as described above, is b−H(d) + 1. The

92 CHAPTER 5. SHORTEST PATHS IN CHORD

shorter of the two has length min{H(d), b −H(d) + 1}. Let

S =
∑

d:H(d)≤b min{H(d), b −H(d)} T =
∑b

i=0 i
(b

i

)

= b2b−1

The average shortest-path length for clockwise greedy routes is T/2b = b/2. The average

for Choice of Two is S/2b + Θ(1). The quantity S/2b can be viewed in terms of a bins-

and-balls problem: if b balls are thrown at random into one of two identical bins, then S/2b

is the expected size of the smaller bin.

Lemma 5.2.1. For 0 ≤ m < b,
∑m

j=0(b− 2j)
(b
j

)

= (m+ 1)
(b
m+1

)

Proof. By induction.

Theorem 5.1. The average path length for the Choice of two algorithm is b/2−
√

b/2π+

Θ(1) while the longest path has length db/2e.

Proof. The average path length is at most S/2b + 1. If b is odd, S = Sodd, otherwise

S = Seven, where

Sodd =
∑(b−1)/2

i=0 i
(

b
i

)

+
∑b

i=(b+1)/2(b− i)
(

b
i

)

Seven =
∑b/2

i=0 i
(

b
i

)

+
∑b

i=b/2+1(b− i)
(

b
i

)

Then

T − Sodd =
∑b

i=(b+1)/2(2i− b)
(b

i

)

T − Seven =
∑b

i=(b+2)/2(2i− b)
(b

i

)

Substituting j = b− i, we get

T − Sodd =
∑(b−1)/2

j=0 (b− 2j)
(b
j

)

T − Seven =
∑(b−2)/2

j=0 (b− 2j)
(b
j

)

Using Lemma 5.2.1, we get

T − Sodd = (b+1)
2

(b
(b+1)/2

)

T − Seven = (b/2)
(b
b/2

)

We use Stirling’s approximation,
√

2πx(x/e)xe1/(12x+1) < x! <
√

2πx(x/e)xe1/12x, to deduce

T − Sodd =
[

√

(b+ 1)/2π + Θ(1)
]

2b T − Seven =
[

√

b/2π + Θ(1)
]

2b

Thus, the average path length is b/2 −
√

b/2π + Θ(1). The longest path length is db/2e,
corresponding to those values of d with db/2e ones and bb/2c zeros.

5.3. OPTIMAL ROUTING AND BINARY SUBTRACTION 93

5.3 Optimal Routing and Binary Subtraction

Consider a route from node x to node y in Chord. Let us label each edge in the route by

either a positive or a negative power of two as follows: Let c denote the clockwise distance

traversed by following some edge. If c = 2b−1, we label the edge arbitrarily as −2b−1 or

+2b−1. If c = 2k for some 0 ≤ k < b − 1, then the label is +2k. Otherwise, c = 2b − 2k

for some 0 ≤ k < b − 1 and the label is −2k. In other words, we mark clockwise and

anti-clockwise usage of edges of length 2k with positive and negative signs respectively.

Chord is symmetric with respect to every node. Therefore, a route corresponding to

one of the shortest paths between x and y enjoys two properties: (a) no two labels along

the path sum to zero, and (b) no label appears twice. Let d′ be the sum of the positive

labels, and d′′ the sum of the absolute values of the negative labels. Recall that H(x) is the

Hamming norm of x, i.e., the number of ones in the binary representation of x.

Since each 1-bit in the binary representation of d′ and d′′ corresponds to some edge

along the route, the length of the route is H(d′) +H(d′′). Moreover, either d = d′ − d′′ or

2b − d = d′′ − d′. To explain, when d′ is greater than d′′, their difference is the clockwise

distance covered, and when d′′ is greater than d′, their difference is the anti-clockwise

distance covered. We are now ready for a formal definition of the Chord routing problem.

Definition (Chord Routing Problem). Given b ≥ 1 and 0 < d < 2b, identify 〈d′, d′′〉
such that H(d′) +H(d′′) is minimal, subject to two constraints:

(i) either d = d′ − d′′ or 2b − d = d′′ − d′. (ii) both d′, d′′ ∈ [0, 2b).

In general, for fixed b and d, there are several optimal solutions for this problem. For

example, if b = 4 and d = 0110, then 〈0110, 0000〉, 〈1000, 0010〉 and 〈0000, 1010〉 are three

different optimal solutions. Moreover, a specific 〈d′, d′′〉 actually encodes a set of optimal

routes in Chord because any permutation of edges corresponding to 1s in 〈d′, d′′〉 covers

clockwise distance d.

It turns out that the Chord Routing Problem can be reduced to the following problem:

Definition (Binary Subtraction Problem). Given positive integer d, find a pair of

non-negative integers 〈d′, d′′〉 such that H(d′) + H(d′′) is minimized, subject to the

constraint d = d′ − d′′.

Both Binary Subtraction and Chord Routing produce a tuple 〈d′, d′′〉 as output. How-

ever, the two problems differ in two respects, both involving the number of bits b. First,

94 CHAPTER 5. SHORTEST PATHS IN CHORD

Binary Subtraction has only one constraint d = d′−d′′ whereas Chord Routing has a choice:

either d = d′−d′′ or 2b−d = d′′−d′. Second, in Chord Routing, both d′ and d′′ are restricted

to lie in the range [0, 2b). There is no such restriction in Binary Subtraction.

Procedure Opt Route(b, d) below shows how the Chord Routing Problem can be solved

by using procedure Opt Subtract(d), which solves the Binary Subtraction Problem.

procedure Opt Route(b, d)

if (d < 2b−1)

〈d′, d′′〉 ← Opt Subtract(d)

output 〈d′, d′′〉
else

〈d′, d′′〉 ← Opt Subtract(2b − d)
output 〈d′′, d′〉

The next two Lemmas establish the correctness of procedure Opt Route. We will

discuss procedure Opt Subtract in detail in §5.4.

Lemma 5.3.1. If 〈d′, d′′〉 = Opt Subtract(d) and 1 ≤ d ≤ 2b−1, then 〈d′, d′′〉 is a valid

solution for the Chord Routing Problem with parameters b and d.

Proof. The proof is in two parts: First, we show that when 1 ≤ d ≤ 2b−1, then constraint

(i) in the definition of the Chord Routing Problem can be simplified by dropping the latter

condition. Second, we show that constraint (ii) can be dropped altogether. The resulting

problem is simply the Binary Subtraction Problem with input d.

(a) Let S(b, x) denote the set of all tuples 〈x′, x′′〉 such that x = x′ − x′′ and both

x′, x′′ ∈ [0, 2b). We will now show that if d ≤ 2b−1, then for any 〈d′, d′′〉 ∈ S(b, 2b − d),
〈

2b−1 + d′′, d′ − 2b−1
〉

∈ S(b, d). We will also that H(d′) +H(d′′) = H(2b−1 + d′′) +H(d′ −
2b−1) Together, the two claims will prove that for 1 ≤ d ≤ 2b−1, we can simplify constraint

(i) in the Chord Routing Problem by dropping the second condition.

Consider 〈d′, d′′〉 ∈ S(b, 2b−d). By definition, 2b−d = d′−d′′. Re-arranging the terms, we

get d = (2b−1+d′′)−(d′−2b−1). By assumption, d ≤ 2b−1. Therefore, 2b−d ≥ 2b−1, in which

case, d′ ≥ 2b−1 and d′′ < 2b−1. In other words, the “diagonal” edge is necessarily a part of d′

and definitely not in d′′. Now, consider the tuple
〈

2b−1 + d′′, d′ − 2b−1
〉

. Loosely speaking,

this tuple can be obtained from 〈d′, d′′〉 by “flipping” the direction of the diagonal. Since

5.4. SOLVING THE BINARY SUBTRACTION PROBLEM 95

d′ ≥ 2b−1 and d′′ < 2b−1, it follows that both members of the tuple
〈

2b−1 + d′′, d′ − 2b−1
〉

lie in the interval [0, 2b). Thus
〈

2b−1 + d′′, d′ − 2b−1
〉

∈ S(b, d). It is easy to see that

H(d′) +H(d′′) = H(d′ − 2b−1) +H(2b−1 + d′′).

(b) Since d ≤ 2b−1, if 〈d′, d′′〉 is a solution of Opt Subtract(d), then both d′, d′′ ∈
[0, 2b). Therefore, constraint (ii) in the Chord Routing Problem can be dropped.

Lemma 5.3.2. If 〈d′, d′′〉 is a solution for the Chord Routing Problem with parameters b

and d, then 〈d′′, d′〉 is a solution for the Chord Routing Problem with parameters b and

2b − d.

Proof. Follows from the problem definition.

Next, we present the solution to the Binary Subtraction Problem in §5.4. In §5.5, we

will derive two simple, intuitive algorithms to directly discover optimal routes in Chord. In

fact, these algorithms are simple enough to be described as finite-state automata.

5.4 Solving the Binary Subtraction Problem

Figure 5.1 on the next page shows pseudo-code for procedure Opt Subtract(d), which

solves the Binary Subtraction Problem. The output tuple 〈d′, d′′〉 is produced bit-by-bit,

right to left. In fact, the procedure is non-deterministic and can produce all optimal pairs

for a given value of input d.

Opt Subtract scans the binary representation of d, right to left, producing the corre-

sponding bits of 〈d′, d′′〉 along the way. As long as the current bit is 0, the output is 〈0, 0〉
since both bits at that position ought to be 0 in 〈d′, d′′〉 for optimality. The current bit

becomes 1 when d mod 2 = 1. Then the output must be either 〈1, 0〉 or 〈0, 1〉. Depending

upon whether we choose 〈1, 0〉 or 〈0, 1〉, the algorithm continues scanning the remainder,

i.e., (d − 1)/2 or (d + 1)/2 respectively. The crux of the matter lies in deciding which of

the two possible outputs to produce when d mod 2 = 1. Opt Subtract provides a pre-

cise characterization of how the decision should be made. The decision involves regular

expressions (see the book by Hopcroft, Motwani and Ullman [HMU00], for example).

Suffix(x,R) denotes a predicate that takes a positive integer x and regular expression

R as input. Let x denote the binary representation of x in the form of a string with a leading

1. Then Suffix(x,R) evaluates to true iff string 00x satisfies regular expression (0+1)∗R.

96 CHAPTER 5. SHORTEST PATHS IN CHORD

procedure Opt Subtract (d)
while (d > 0) {

while (d mod 2 = 0) {
d← d/2
output 〈0, 0〉

}

t :=







〈1, 0〉 if Suffix(d, 0(01)∗01)
〈0, 1〉 if Suffix(d, 1(10)∗11)

〈1, 0〉 or 〈0, 1〉 otherwise

d :=

{

(d− 1)/2 if t = 〈1, 0〉
(d+ 1)/2 if t = 〈0, 1〉

output t
}

Figure 5.1: Opt Subtract(d) solves the Binary Subtraction Problem. It outputs all 〈d′, d′′〉 where
d = d′ − d′′ and H(d′) +H(d′′) is minimal.

In other words, Suffix checks whether some suffix of 00x satisfies R. Prepending a pair of

zeros to x might seem unnatural. However, it simplifies proofs by reducing the number of

cases that we have to consider.

We now prove that this algorithm produces optimal solutions for the Binary Subtraction

Problem. A reader interested in the algorithms for optimal routing in Chord, rather than

in proofs of their optimality, may wish to proceed directly to §5.5.

Lemma 5.4.1. If x mod 2 = 1 then exactly one of the following four predicates is true:

(a) Suffix(x, 0(01)∗01) (c) Suffix(x, 00(10)∗11)

(b) Suffix(x, 11(01)∗01) (d) Suffix(x, 1(10)∗11)

Proof. Suffix(x,R) is true iff string 00x satisfies R. If x mod 2 = 1, then exactly one of

the following two mutually exclusive conditions holds:

00x ends in 01: Either (a) or (b) is true, depending upon whether a pair of zeros or a

pair of ones is encountered when scanning 00x from right to left.

00x ends in 11: Either (c) or (d) is true, depending upon whether a pair of zeros or

a pair of ones is encountered first when scanning 00x from right to left, and ignoring the

right-most bit.

5.4. SOLVING THE BINARY SUBTRACTION PROBLEM 97

The non-determinism of Opt Subtract stems from the fact that we assign t := 〈0, 1〉
or t := 〈1, 0〉 arbitrarily if the suffix of d is neither 0 nor 0(01)∗01 nor 1(10)∗11. In other

words, whenever d satisfies conditions (b) or (c) in the above lemma, the algorithm has

a choice in producing its output. For example, any of the following five outputs can be

produced for input d = 1110011010:

d′ 10000011010 10000100010 10000100000 10000000010 10000000000

−d′′ - 00010000000 - 00010001000 - 00010000110 - 00001101000 - 00001100110

d 1110011010 1110011010 1110011010 1110011010 1110011010

Proof of Optimality

We begin by defining functions Φ and G over the set of positive integers.

Φ: For d ≥ 1, Φ(d) = min[H(d′)+H(d′′)] over all possible d′, d′′ ≥ 0 such that d = d′−d′′.

G: We first define G for strings that satisfy the regular expression 1(1 + 0)∗. Later,

we will extend the definition to include positive integers. For string x that satisfies regular

expression (1+0)+1, let g denote the number of “groups” of 1s in x; if all groups are singleton

ones, G(x) = g, otherwise, G(x) = g+ 1. For example, G(110111) = 2 + 1 = 3, G(101) = 2

and G(10111) = 2 + 1 = 3. For any x that satisfies (0 + 1)∗1(0 + 1)∗, we claim that

it is possible to write x = (0∗)σ1(000
∗)σ2(000

∗) . . . σ`(0
∗) uniquely, where each sub-string

σ1, σ2, . . . , σ` satisfies the regular expression (1+0)+1. We are essentially breaking up the

string x whenever we encounter consecutive zeros, and we are ignoring leading and trailing

strings of zeros. Now, G(x) =
∑`

i=1G(σi). For positive integer x, G(x) = G(x) where x

denotes the string representing x in binary.

Theorem 5.2. For d ≥ 1, Φ(d) = G(d). If 〈d′, d′′〉 is produced by Opt Subtract(d) as

output, then d = d′ − d′′ and H(d′) +H(d′′) = G(d).

Proof. Proof by induction on integer d. Base case: d = 1. Induction step: Consider d > 1.

Assuming that the claim holds for all integers less than d, there are two cases:

• d mod 2 = 0

Clearly, Φ(d) = Φ(d/2) and G(d/2) = G(d). By induction hypothesis, Φ(d/2) =

G(d/2). Thus Φ(d) = G(d). Opt Subtract indeed outputs 〈0, 0〉 when d mod 2 = 0.

98 CHAPTER 5. SHORTEST PATHS IN CHORD

• d mod 2 = 1

If d = d′−d′′, then exactly one of d′ and d′′ has 1 in the last bit. Therefore, for d > 1,

Φ(d) = 1 + min[Φ((d− 1)/2),Φ((d + 1)/2)]

By induction hypothesis,

Φ((d− 1)/2) = G((d − 1)/2)

Φ((d+ 1)/2) = G((d + 1)/2)

Therefore,

Φ(d) = 1 + min[G((d − 1)/2), G((d + 1)/2)] (5.1)

The following identities are easily seen to hold:

a) Suffix(x, 0(01)∗01)⇒
{

G((x − 1)/2) = G(x) − 1

G((x + 1)/2) = G(x)

b) Suffix(x, 11(01)∗01)⇒
{

G((x− 1)/2) = G(x) − 1

G((x+ 1)/2) = G(x) − 1

c) Suffix(x, 1(10)∗11)⇒
{

G((x − 1)/2) = G(x)

G((x + 1)/2) = G(x) − 1

d) Suffix(x, 00(10)∗11)⇒
{

G((x− 1)/2) = G(x) − 1

G((x+ 1)/2) = G(x) − 1

From Lemma 5.4.1, exactly one of the four Suffix predicates holds for d. Thus

min[G((d + 1)/2), G(d − 1)/2)] = G(d) − 1 (5.2)

Eq (5.1) and Eq (5.2) together yield Φ(d) = G(d).

The correctness of Opt Subtract is clear if we rewrite the assignment to t as follows:

t :=















〈1, 0〉 if G((d − 1)/2) < G((d + 1)/2)

〈0, 1〉 if G((d − 1)/2) > G((d + 1)/2)

〈1, 0〉 or 〈0, 1〉 if G((d − 1)/2) = G((d + 1)/2)

In fact, it can be shown that Opt Subtract(d) produces all possible tuples 〈d ′, d′′〉
such that d = d′ − d′′ and H(d′) +H(d′′) = G(d).

5.5. OPTIMAL ROUTING ALGORITHMS FOR CHORD 99

5.5 Optimal Routing Algorithms for Chord

We present two deterministic algorithms for solving the Chord Routing Problem that we

defined in §5.3. For fixed values of b and d, exactly one output tuple 〈d′, d′′〉 is produced.

Both algorithms run the automaton in Figure 5.2 for exactly b steps.

5.5.1 Right-to-Left Chaining

The binary representation of d, possibly padded

11 0

0

S2S1

S3S0

1

0

1

0

Figure 5.2: A state machine for solving

the Chord Routing Problem.

with leading 0s to make it exactly b bits long, is

fed as input right-to-left. The output tuple 〈d′, d′′〉
is also generated right-to-left. The start state is

S0. Each transition produces a pair of bits as out-

put, the first bit for d′ and the second for d′′. All

thin edges produce 〈0, 0〉 as output. Thick edges

(S0
1→ S1 and S2

0→ S3) require a lookahead: If

the next input bit is 0, the output is 〈1, 0〉. If the

next input bit is 1, the output is 〈0, 1〉. If there is

no next input bit, i.e., the input string just termi-

nated, the output is arbitrarily chosen as 〈0, 1〉 or

〈1, 0〉. Observe that the traversal of a thick edge corresponds to exactly one 1-bit in either

d′ or d′′.

Further intuition into Right-to-Left Chaining is gained by understanding the algo-

rithm in terms of two ideas: chain fixing and chain coupling.

Chain fixing is simple: a distance corresponding to a chain of at least two 1s can be

covered using a combination of only two steps: a short backward step and a long forward

step. For example, a distance of 7 (000111 in binary) in a 64-node graph can be covered

with a forward step of 8 combined with a backward step of 1. Chain fixing applies only to

chains of length at least two. A chain consisting of a solitary 1 is handled by taking a single

forward step.

Chain coupling comes into play when two chains are separated by a solitary zero.

We explain the idea with an example. Let us say we had to cover clockwise distance

238(011101110). We know that the last five bits can be fixed by a backward step of 2 and

a forward step of 16. However, we observe that taking the backward step of 2 leads to a

100 CHAPTER 5. SHORTEST PATHS IN CHORD

distance 240(011110000), in which the bit corresponding to the intended forward step of 16

becomes part of a longer chain of 1s. Thus, instead of a forward step of 16, we can instead

use a backward step of 16 followed by a forward step of 256 to fix this entire chain of 1s.

The behavior of the finite-state automaton in Figure 5.2 on the page before can be

understood in terms of chain-fixing and chain-coupling. The automaton starts in State S0,

moving between S0 and S1 to fix singleton ones. Transition S1
1→ S2 marks the onset of

chain-fixing because two consecutive ones were just encountered in the input. Transition

S2
0→ S3, followed by S3

1→ S2 marks the onset of chain-coupling. Transition S3
0→ S1

signals the end of chain-coupling since two consecutive zeroes were just encountered, taking

us to the start state S0. If the input string happens to terminate in state S1 or S3, the

output can be chosen arbitrarily as 〈1, 0〉 or 〈0, 1〉. The choice is immaterial because 1s in

the most significant bit-positions of d′ and d′′ correspond to clockwise distances 2b−1 and

2b − 2b−1 respectively, which are equivalent.

Examples:

d d′ d′′

0001 0001 0000

0011 0100 0001

0111 0000 1001

d d′ d′′

101010 101010 000000

110101 000101 010000

000111 001000 000001

Observe that the automaton solves Opt Subtract(d) when d < 2b−1. The determin-

istic algorithm is equivalent to replacing the two lines in Figure 5.1 on page 96 that assign

values to t and d , as follows:

t :=

{

〈1, 0〉 if Suffix(d, 01)

〈0, 1〉 if Suffix(d, 11)

d :=

{

(d− 1)/2 if t = 〈1, 0〉
(d+ 1)/2 if t = 〈0, 1〉

5.5.2 Left-to-Right Bi-directional Greedy

Thanks to Qixiang Sun, a colleague at Stanford University, for suggesting this algorithm.

The idea is simple: Node x chooses the edge that takes the message the closest, in terms

of absolute distance on the circle, to y. This algorithm can also be encoded using the

automaton in Figure 5.2 on the page before. The input string d[1..b] is treated as a bit-

array of length b and is processed from left to right. The start state is S0. The output

5.5. OPTIMAL ROUTING ALGORITHMS FOR CHORD 101

is stored in bit-arrays d′[1..b] and d′′[1..b], both of which are initialized to all-zeros. The

output arrays get altered only when a thick edge is traversed. Let us assume that the thick

edge was traversed due to the ith input bit, where 1 ≤ i ≤ b.

S0
1→ S1: if (i = b) or (d[i+ 1] = 0)

then set d′[i]← 1

else set d′[i− 1]← 1

S2
0→ S3: if (i = b) or (d[i + 1] = 0)

then set d′′[i− 1]← 1

else set d′′[i]← 1

5.5.3 Proof of Optimality

Lemma 5.5.1. Let d denote the binary representation of integer d ≥ 1. The automaton

traverses exactly G(d) thick edges if string 0d is fed right-to-left.

Proof. Let 0d = 0σ1(00
∗0)σ2(00

∗0)σ3 . . . σ`(0
∗) where each σi satisfies the regular expression

(1+0)+1. We claim that the number of thick edges traversed when processing 0d is G(d) =
∑`

i=1G(σi). For convenience, we rewrite 0d = (0σ10)0
∗(0σ20)0

∗(0σ30)0
∗ . . . (0σ`)0

∗. The

automaton traverses no thick edges while processing the sub-strings corresponding to 0∗.

For each 0σi, the automaton performs one state transition from S0 to S1 for each of the

initial singleton 1s, one state transition from S0 to S1 for the first of a non-singleton group

of 1s, and one state transition from S2 to S3 at the end of every group of 1s thereafter.

Observe that if the input string does not have a leading zero, i.e., the last input bit fed

to the automaton is a 1, the automaton could potentially terminate in state S2 without

traversing a thick edge for the last group of 1s.

Lemma 5.5.2. For 1 ≤ d < 2b,

d ≤
⌊

2b/3
⌋

⇒ G(d) = G(2b − d)− 1
⌊

2b/3
⌋

< d ≤
⌊

2b+1/3
⌋

⇒ G(d) = G(2b − d)

d >
⌊

2b+1/3
⌋

⇒ G(d) = G(2b − d) + 1

Proof. For d = 2b−1, the Lemma is true. For d ≥ 1 and d 6= 2b−1, the b-bit strings

representing d and 2b−d satisfy three properties: (a) the position of the right-most 1 is the

same in both strings, (b) all digits to the left of the right-most 1 are complements of each

other in the two strings, and (c) there is at least one digit to the left of the right-most 1.

102 CHAPTER 5. SHORTEST PATHS IN CHORD

Consider two copies of the automaton in Figure 5.2 on page 99, one scanning the b-bit

string representing d and the other scanning the b-bit string representing 2b−d, both right-

to-left. Both automata reach state S1 upon consuming the right-most 1. Thereafter, for

every digit (0 or 1) processed as input by the first automaton, its complement is processed

by the second. It is easy to see that the two automata are in diagonally opposite states at

all times. Therefore, both traverse exactly the same number of thick edges when processing

b bits. From Lemma 5.5.1, we conclude that if we were to run both automata for one more

step, with an additional 0 as input, the number of thick edges traversed would be exactly the

function G over the respective inputs. The only thick transition upon receiving 0 as input

corresponds to S2
0→ S3. Therefore, G(d) = G(2b−d) iff the automaton terminates in S1 or

S3, andG(d) = G(2b−d)−1 iff the automaton terminates in S0. Finally, G(d) = G(2b−d)+1

iff the automaton terminates in S2. We are now left with the job of characterizing strings

that terminate in the four states.

The automaton is in state S2 when scanning a string right-to-left iff there exists a prefix

of the string that satisfies the regular expression 1(01)∗1. For 1 ≤ d < 2b, a prefix of the

string representing d satisfies the regular expression 1(01)∗1 iff d >
⌊

2b+1/3
⌋

. Therefore, the

automaton is in state S2 iff d >
⌊

2b+1/3
⌋

. Similarly, it can be shown that the automaton is

in state S0 iff d ≤
⌊

2b/3
⌋

. The automaton is in state S1 or S3 otherwise.

Thus G(d) = G(2b − d) + 1 iff d >
⌊

2b+1/3
⌋

, and G(d) = G(2b − d) − 1 iff d ≤
⌊

2b/3
⌋

.

Otherwise, G(d) = G(2b − d).

Theorem 5.3. An optimal solution to the Chord Routing Problem has path length

0 if d = 0

G(d) if 1 ≤ d ≤
⌊

2b+1/3
⌋

G(d) − 1 otherwise

Proof. Follows from Lemma 5.5.2 and the definition of procedure Opt Route.

In fact, Lemma 5.5.2 suggests an improvement to Opt Route, as shown in Figure 5.3 on

the next page. This procedure is a complete characterization of the Chord Routing Problem

and produces all possible optimal solutions for inputs b and d.

Theorem 5.4. Right-to-Left Chaining solves the Chord Routing Problem optimally.

The diameter of Chord is bb/2c.

5.5. OPTIMAL ROUTING ALGORITHMS FOR CHORD 103

procedure Opt Route(b, d)
if (d ≤

⌊

2b/3
⌋

)
〈d′, d′′〉 ← Opt Subtract(d)
output 〈d′, d′′〉

else if (d >
⌊

2b+1/3
⌋

)
〈d′, d′′〉 ← Opt Subtract(2b − d)
output 〈d′′, d′〉

else

〈d′, d′′〉 ←







Opt Subtract(2b − d)
or
Opt Subtract(d)

output 〈d′, d′′〉

Figure 5.3: Opt Route(d) is a non-deterministic procedure that solves the Chord Routing
Problem.

Proof. The path length of a route produced by Right-to-Left Chaining for distance d is

exactly equal to the number of thick edges traversed when scanning the binary representa-

tion of d right-to-left. As outlined in the proof of Lemma 5.5.1, Right-to-left Chaining

traverses thick edges exactly G(d) times iff G(d) ≤
⌊

2b+1/3
⌋

. Otherwise, it traverses thick

edges G(d)− 1 times. From Theorem 5.3, we see that this is optimal.

One of the strings that requires the maximum number of steps is d = (01)b/2 when b is

even and d = (01)(b−1)/20 when b is odd. For both cases, G(d) = bb/2c.

The proof of Theorem 5.4 sheds light on the reason for the automata for both Right-to-

Left Chaining and Left-to-Right Bi-directional Greedy being identical in struc-

ture: the automaton is essentially a computation of G over the input string. The automaton

remains the same irrespective of whether strings are scanned right-to-left or left-to-right.

5.5.4 Average Path Length

Theorem 5.3 characterizes the path length of optimal solutions for the Chord Routing

Problem. Combining this theorem with Lemma 5.5.2, we see that the path length for

2b−1 < d < 2b is simply G(2b − d). Therefore, the average path length over all distances

0 ≤ d < 2b is [1 + 2
∑d=2b−1

d=1 G(d)]/2b. (The additive constant 1 appears because the path

length for d = 0 is zero, while it is 1 for d = 2b−1.) It turns out that the computation of

this average is greatly simplified if we analyze the automaton in Figure 5.2 on page 99.

We have already seen that the path length for a given distance d is just the number

104 CHAPTER 5. SHORTEST PATHS IN CHORD

of thick edges traversed by the automaton when processing the b-bit binary representation

of d. Computing the average path length simply requires us to run this automaton on all

possible b-bit binary strings and compute the average number of thick edges traversed. This

suggests an interesting approach for analysis.

We visualize the automaton as describing a 4-state Markov chain (each transition has

probability 1/2) and we count the expected number of times a thick edge (S0
1→ S1 or

S2
0→ S3) is traversed, in b steps. 1 in either d′ or d′′, thereby contributing to the

sum H(d′) + H(d′′). The stationary distribution for the 4-state Markov chain would

be [1/3 1/6 1/3 1/6]. Assuming that the probability of being in a particular state

converges to the stationary distribution very quickly (after a small number of bits have

been processed by the automaton), the expected number of thick edges taken is roughly

(1
2 · 13 + 1

2 · 13) · b = b/3. Therefore, average path length should be ≈ b/3 for large values of b.

Our formal analysis validates this intuition by computing the exact probability distribution

after ` bits are seen by the automaton, and computing the expected number of thick edges

taken using exact probabilities.

For ` ≥ 1, let A`,s denote the fraction of binary strings of length exactly ` that cause the

automaton to stop in state Ss on reading them. From Figure 5.2 on page 99, it follows that

for 1 ≤ ` < b, A` = A0P
`, where matrix P and vectors A` and A0 are defined as follows:

P =















1/2 1/2 0 0

1/2 0 1/2 0

0 0 1/2 1/2

1/2 0 1/2 0















A` = [A`,0 A`,1 A`,2 A`,3]

A0 = [1 0 0 0]

Lemma 5.5.3. For 1 ≤ ` < b,

A`,0 =
⌈

2`/3
⌉

/2` A`,1 =
⌈

2`/6
⌉

/2`

A`,2 =
⌊

2`/3
⌋

/2` A`,3 =
⌊

2`/6
⌋

/2`

Proof. By induction. The base case (` = 1) is true because A1 = [1/2 1/2 0 0]. The

induction step follows from the fact that for 1 ≤ ` < b,

A`+1,0 = [A`,0 +A`,1 +A`,3]/2 A`+1,1 = A`,0/2

A`+1,2 = [A`,1 +A`,2 +A`,3]/2 A`+1,3 = A`,2/2

5.6. CHORD IN BASE-K 105

S00

S1 S2

0 0

S3
0

S4k−1

k−1

k−1

k−1
m

k−1

0 m

m

m
m

Figure 5.4: State machine diagram for algorithm Right-to-Left Chaining for Base-k.

Theorem 5.5. The average path length for both Left-to-Right Chaining and Right-

to-Left Bi-directional Greedy is b/3 + Θ(1).

Proof. The average number of thick edges encountered for strings of length b is given by
∑b−1

`=0 [A`,0/2 +A`,2/2]. Plugging probabilities from Lemma 5.5.3 and using the identity
⌈

2`/3
⌉

+
⌊

2`/3
⌋

= 2`+1/3 + (−1)`/3 for ` ≥ 0, the sum simplifies to b
3 + 1

9(1− (−1
2)b).

5.6 Chord in Base-k

In this Section, we study Chord in base-k, a natural generalization of Chord, similar to

higher-base hypercube topologies. The higher base construction is of considerable practical

interest because it offers routing in fewer steps than base-2 Chord when k > 2.

Definition (Chord in Base k). Consider kb nodes arranged clockwise in a circle

with labels going from 0 to kb − 1. An edge connects a pair of nodes iff they are

separated by a clockwise or anti-clockwise distance of αkβ for some 0 < α < b and

0 ≤ β < b.

Right-to-Left Chaining for Base-k: The algorithm uses the automaton in Fig-

ure 5.4, which generalizes the one in Figure 5.2 on page 99. An extra state has been

introduced to accommodate the middle digits, i.e., the digits other than 0 and k− 1. State

106 CHAPTER 5. SHORTEST PATHS IN CHORD

S4 can actually be merged with state S3 to obtain a smaller automaton. However, we keep

the two states separate for clarity.

The input string d comprises of digits from the set {0, 1, . . . k − 1} and is scanned from

right to left. Symbolm is a short-hand for the “middle digits”, i.e., the set {1, 2, . . . k−2}.
Each transition also produces a pair of digits as output, the first digit for d ′ and the second

for d′′. The start state is S0. All thin edges produce 〈0, 0〉 as output. All thick edges

produce non-zero output and require lookahead:

S0
k−1→ S1:

if (next digit is k − 1)

then output 〈0, 1〉
else output 〈k − 1, 0〉

S2
0→ S3:

if (next digit is k − 1)

then output 〈0, k − 1〉
else output 〈1, 0〉

X
m→ S4:

if (next digit is k − 1)

then output 〈0,m − 1〉
else output 〈m, 0〉

where X denotes any of the five states.

Theorem 5.6. The average length of shortest paths for base-k Chord on kb nodes is k−1
k+1b+

Θ(1).

Proof. The stationary distribution for the Markov chain associated with the automaton in

Figure 5.4 on the preceding page is [1
k+1

1
k(k+1)

1
k+1

k−1
k(k+1)

k−2
k+1

]. A cost of 1 hop

is paid every time a thick edge is traversed. Continuing in the same fashion as in the

proof of Theorem 5.5, it can be shown that the average number of thick edge traversals is
k−1
k+1b+ Θ(1).

5.7 The HyperSkewbe

We define the HyperSkewbe, a variant of the hypercube, as follows:

Definition (HyperSkewbe). A HyperSkewbe of dimension k is defined on 2k ver-

tices, labeled 0 through 2k − 1. S1 consists of two nodes with an edge between them.

Sk+1 is defined as follows: Consider one copy of Sk, and suffix all node identifiers

with a 0 to create a graph Sk,0. Consider another copy of Sk and suffix all node

identifiers with a 1 to create Sk,1. Now, create an edge between node x in Sk,0 and

node (x− 1) mod 2k+1 in Sk,1. The resulting graph is Sk+1.

We observe that the above recurrence is almost identical to the standard hypercube

definition. The only difference is that node x in Sk,0 is attached to (x − 1) mod 2k+1 to

5.8. RELATED PROBLEMS 107

create the HyperSkewbe, instead of to x + 1, which would have resulted in the standard

Hypercube. This small variation in the definition results in an intriguing structure which

appears to have properties rather different from that of the Hypercube. For example, the

diameter of the k-dimensional HyperSkewbe is smaller than k for all k > 2.

Figure 5.5 shows a HyperSkewbe in three dimen-

0

6

5 1

7 3

4

2

Figure 5.5: 3-dimensional Hyper-

Skewbe on 8 nodes.

sions. The Chord network is simply the union of the

hypercube of dimension k with the HyperSkewbe of

dimension k, and it appears that it is the presence

of this HyperSkewbe that makes the routing proper-

ties of Chord so different from that of the standard

hypercube.

One algorithm for routing on the HyperSkewbe

is to perform right-to-left bit-fixing, which results in

an average path length of b/2 on the b-dimensional HyperSkewbe. One improvement to

this routing algorithm is the following: Suppose we wish to route from node x to node y.

We find the length of the route obtained by right-to-left bit-fixing to convert x to y. We

also find the length of the route obtained by right-to-left bit-fixing converting y to x. In

general, these two routes, and their lengths, are not identical. We can then choose the

shorter of these two routes as the route from x to y. Experiments indicate that this idea

improves upon simple right-to-left bit-fixing considerably. However, this algorithm is not

optimal either. The characterization of optimal routes on the HyperSkewbe appears to be

an interesting open problem.

5.8 Related Problems

1. A graph that is closely related to Chord is the hypercube:

Definition (Hypercube). Consider an undirected graph on 2b nodes, labeled with

b-bit identifiers from 0 through 2b − 1. An edge (x, y) exists iff the labels of x and y

differ at exactly one bit-position.

Each hypercube edge travels either a clockwise- or an anti-clockwise distance that is

some power of two. Shortest paths in the hypercube are easy to characterize. For source

s and destination d, a shortest path corresponds to fixing the bits of s⊕ d in succession.

108 CHAPTER 5. SHORTEST PATHS IN CHORD

2. The following graph is obtained by replacing all occurrences of 2 by 3 in the definition

of Chord:

Definition (Chord on 3b Nodes). Consider an undirected graph on 3b nodes ar-

ranged in a circle. Nodes are labeled with b-bit identifiers from 0 through 3b−1 going

clockwise. An edge (x, y) exists iff x and y are 3k positions apart on the circle for

some k ≥ 0, i.e., |x− y| equals either 3k or 3b − 3k for some 0 ≤ k < b.

Shortest paths in the graph above are much easier to characterize than shortest paths in

Chord. The clockwise distance to some destination, x, can be identified by expressing

it in ternary using the digits 0 and ±1. Each +1 and −1 represents clockwise and

anti-clockwise powers of three respectively. A shortest path corresponds to fixing the

non-zero digits of x in any order.

5.9 Summary and Future Directions

We characterized shortest paths in Chord, a deterministic routing network defined for rout-

ing in DHTs. We showed how the problem can be reduced to the Binary Subtraction

Problem: Given integer d, express it as d = d′ − d′′ such that the number of 1-bits in

d′ and d′′ taken together is minimized. The average length of shortest paths in Chord is

b/3 + Θ(1). The average was computed using an interesting technique: An algorithm for

computing the shortest paths can be encoded as a finite-state automaton. Average path

length is easy to compute if we treat the automaton as a Markov chain and compute its

steady state distribution. Finally, Chord in base higher than two was analyzed and average

length of shortest paths turns out to be k−1
k+1b+ Θ(1).

Future research directions:

1. The characterization of shortest paths on the HyperSkewbe appears to be an inter-

esting combinatorial problem.

2. Greedy routing on a circle, that forwards a message along that out-going link which

minimizes the absolute distance remaining to the destination, is optimal for Chord.

With Θ(log n) links per node, Chord can route in Θ(log n) steps. Is this tradeoff

asymptotically optimal? We provide a partial answer to this question in Chapter 6,

where we construct novel routing networks which can route in Θ(log n/ log log n) hops

with greedy routing on the circle.

Chapter 6

Papillon: Greedy Routing on a

Circle

In this Chapter, we study an interesting combinatorial problem. Consider n nodes labeled

0 through n− 1, placed in a circle. greedy routing, formally defined below, is the strategy

of forwarding a message along that out-going edge that minimizes the distance remaining

to the destination:

Definition (Greedy Routing). In graph (V,E) with distance function δ : V ×
V → R+, greedy routing entails the following decision: Given a target node t, a

node u with neighbors N(u) forwards a message to its neighbor v ∈ N(u) such that

δ(v, t) = minx∈N(u) δ(x, t).

Two natural distance metrics over n nodes placed in a circle are the clockwise-distance and

the absolute-distance between pairs of nodes:

δclockwise(u, v) =







v − u v ≥ u

n+ v − u otherwise

δabsolute(u, v) =







min{v − u, n+ u− v} v ≥ u

min{u− v, n+ v − u} otherwise

In this Chapter, we study the following related problems:

109

110 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

I. Given integers d and ∆, what is the largest graph that satisfies two constraints: the

out-degree of any node is at most d, and the length of the longest greedy route is

at most ∆ hops?

II. Given integers d and n, design a network in which each node has out-degree at most

d such that the length of the longest greedy route is minimized.

The motivation for these problems arises from our analysis of Chord in Chapter 5. In

Chord, greedy routing with distance function δabsolute routes along shortest paths (see

Section 5.5.2 on page 100 for details). Chord has Θ(log n) links per node. The longest

greedy route has length Θ(log n). The average length of greedy routes is also Θ(log n).

A question that arises is:

Given Θ(log n) links per node, does greedy routing with distance function δabsolute (or

for that matter, δclockwise) entail Ω(log n) hops in the worst case?

We answer this question in the negative by constructing Papillon, a family of graphs

in which each node has degree d, and greedy routes have length O(log n/ log d) in the

worst-case. When d = Θ(log n), greedy routes have length O(log n/ log log n). Papillon

is a variant of butterfly networks, and is asymptotically optimal in terms of the tradeoff

between degree per node and worst-case greedy route length.

Summary of Results

In §6.1, we define Chordclockwise and Chordabsolute. Both are directed variants of Chord

that permit efficient greedy routing with distance functions δclockwise and δabsolute respec-

tively. The motivation for defining the variants is to develop intuition for the butterfly-style

constructions that we describe in subsequent Sections.

In §6.2, we construct two families of networks, the Papillon†, having n = dO(∆) ·∆ nodes.

The two families correspond to distance functions δclockwise and δabsolute, respectively. The

longest greedy route has length ∆ = O(log n/ log d) hops — this is asymptotically optimal,

given n and d. Papillon is the first construction that achieves optimality for distance

functions δclockwise and δabsolute.

In §6.3, further investigation of Papillon reveals the following interesting result: Papillon

admits routing strategies that have shorter paths (in the constants) than greedy routing.

This shows that greedy, though asymptotically optimal, does not route along shortest

†The constructions are variants of the well-known butterfly family, hence the name Papillon.

6.1. VARIANTS OF CHORD 111

paths. We identify routing strategies that are superior to greedy. The improved strategies

also guarantee uniform edge-congestion.

In §6.4, we present related work.

In §6.5, we summarize and outline future research directions.

6.1 Variants of Chord

Chord is an undirected graph that was defined at the beginning of Chapter 5. We now

define two variants of Chord, each of which is a directed graph. Towards the end of this

Section, we will show how these variants can be morphed into Papillon, which is discussed

in §6.2.

Definition (Chordclockwise). Consider a graph on n = κm nodes labeled from

0 to n − 1, for any pair of integers κ,m ≥ 1. Node u has κm edges with nodes

(u+ iκj) mod n, for all values of i ∈ [1, κ] and j ∈ [0,m− 1].

Theorem 6.1. greedy routing with distance function δclockwise in Chordclockwise is along

shortest paths. The longest route has m hops. Average route length is (κ− 1)m/κ hops.

Proof. Write the clockwise distance remaining to the destination in base κ by using digits

belonging to the set [0, κ). Such a representation is unique for any integer. Forwarding a

message according to greedy routing with distance function δclockwise amounts to replacing

the most-significant non-zero digit in the representation by zero. Thus the longest greedy

route has m hops. Since (κ − 1)m/κ digits are non-zero on average, we require as many

hops on average.

We define another variant of Chord that supports efficient greedy routing with distance

function δabsolute.

Definition (Chordabsolute). Consider a graph on n = (2k+ 1)m nodes labeled from

0 to n − 1, for any pair of integers k,m ≥ 1. Node u has 2km edges with nodes

(u+ i(2k + 1)j) mod n, for all values of i ∈ [−k,+k], i 6= 0 and j ∈ [0,m− 1].

In Chord, with n = 2b nodes, each node has 2b − 1 out-going links with nodes lying at

clockwise distances 〈±n/2,±n/4,±n/8, . . . ± 1〉 away from itself. Chordabsolute with k = 1

has n = 3b nodes, where each node has 2b out-going links with nodes lying at clockwise

distances 〈±n/3,±n/9,±n/27, . . . ,±1〉 away from itself. greedy routing with δabsolute in

112 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

Chordabsolute corresponds to writing the clockwise distance to the destination in ternary

using the digits {−1, 0,+1}, and “fixing” the digits from left to right in succession to

zeros. Only two-thirds of all digits are ±1 on average. Thus average latency is (2 log3 n)/3.

Generalizing this argument to higher values of k, we obtain the following theorem:

Theorem 6.2. greedy routing with distance function δabsolute in Chordabsolute is along

shortest paths. The longest route has m hops. Average route length is 2km/(2k + 1) hops.

Proof. Write the clockwise distance remaining to the destination in base 2k + 1 by using

digits belonging to the set [−k, k]. Such a representation is unique for any integer. For-

warding a message according to greedy routing with distance function δabsolute amounts to

replacing the most-significant non-zero digit in the representation by zero. Thus the longest

greedy route has m hops. Since 2km/(2k + 1) digits are non-zero on average, we require

as many hops on average.

A Chordabsolute network with n = (2k+1)m nodes and out-degree 2km per node, can be

morphed into a butterfly-style network with n = m(2k + 1)m nodes and out-degree 2k + 1

per node. We replace each Chordabsolute node by a group of m nodes on the circle. These

nodes are assigned levels 0 through m− 1, in the anti-clockwise direction. Any node in the

new graph can be uniquely identified by its group (the label of the original Chordabsolute

node) and its level within the group. A node at level ` in group g makes 2k+1 connections

with other nodes at level (` + 1) mod m in groups i(2k + 1)g, where i ∈ [−k,+k]. When

i = 0, the connection is with the immediate successor. In the new network, we can route in

at most 3m hops as follows: (a) route to a node at level m− 1 by following successor links,

(b) route to the closest predecessor of the target at level m − 1, (c) follow successor links

to reach the target. Curiously, greedy routing with distance function δabsolute sometimes

gets caught in infinite loops. For example, with m ≥ 5, a message can never be sent from

some node x at level 0 to its predecessor. With greedy routing, the message will get

forwarded all the way to node y at level 0 in the next group. Node y will then forward the

message back to x, resulting in an infinite loop. This problem can successfully be “fixed”

by incorporating an additional edge that connects a node to another node lying distance m

away in the anti-clockwise direction (see the definition of Babsolute in §6.2 and Theorem 6.4).

A Chordclockwise network can be morphed into a butterfly network along the same lines

as above.

6.2. PAPILLON 113

6.2 Papillon

We construct two variants of butterfly networks, one each for distance-functions δclockwise

and δabsolute. For convenience, x mod n always represents an element lying in the range

[0, n− 1] (even when x is negative, or greater than n− 1).

Definition (Papillon for δclockwise). Bclockwise(κ,m) is a directed graph, defined for

any pair of integers κ,m ≥ 1

1. The network has n = κmm nodes labeled from 0 to n− 1.

2. Let `(u) ≡ (m − 1) − (u mod m). Each node has κ links. For node u, these

directed links are to nodes (u+ x) mod n, where

x ∈ {1 + imκ`(u) | i ∈ [0, κ − 1]}

We denote the link with node (u + 1) mod n as u’s “short link”. The other

κ− 1 links are called u’s “long links”.

Definition (Papillon for δabsolute). Babsolute(k,m) is a directed graph, defined for

any pair of integers k,m ≥ 1,

1. The network has n = (2k + 1)mm nodes labeled from 0 to n− 1.

2. Let `(u) ≡ (m− 1)− (u mod m). Each node has 2k + 2 out-going links. Node

u makes 2k + 1 links with nodes (u+ x) mod n, where

x ∈ {1 + im(2k + 1)`(u) | i ∈ [−k,+k]}

Node u also makes an out-going link with node (u + x) mod n, where x =

−m+1. We denote the link with node (u+1) mod n as u’s “short link”. The

other 2k + 1 links are called u’s “long links”.

In both Bclockwise and Babsolute, all out-going links of node u are incident upon nodes with

level (`(u)− 1) mod m. In Bclockwise, greedy routing is guaranteed to take a finite number

of hops – the existence of the short links ensures that each hop diminishes the remaining

clockwise distance by at least one. In Babsolute, not every greedy hop diminishes the

remaining absolute distance, as will be clear in the proof of Theorem 6.4.

114 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

Theorem 6.3. greedy routing in Bclockwise takes 3m − 2 hops in the worst-case. The

average is less than 2m− 1 hops.

Proof. For any node u, we define

SPAN(u) ≡ {v | 0 ≤ δclockwise(u, v) < mκ`(u)+1}.

When `(u) = m− 1, then SPAN(u) includes all the nodes. With t as the target node and

u a current node, routing proceeds in three phases:

1. All out-going links of a node u are incident upon nodes at level (`(u) − 1) mod m.

Phase 1 terminates if the target is reached, or we reach a node at level m−1, whichever

event happens first. This phase of routing takes at most m − 1 hops (at most m−1
2

hops on average).

2. The following invariant is true: “t ∈ SPAN(u) and δclockwise(u, t) ≥ m”. greedy

will forward the message to a node v such that t ∈ SPAN(v) and `(v) = `(u) − 1.

Eventually, a node u with `(u) = 0 will be reached. This node will forward the message

to a node v with `(v) = m− 1 such that δclockwise(v, t) < m, thereby terminating this

phase of routing. There are at most m hops in this phase.

3. The following invariant is true: “t ∈ SPAN(u) and δclockwise(u, t) < m”. greedy will

decrease the distance by exactly one, following the short-links. This phase takes at

most m− 1 hops (at most m−1
2 hops on average).

The worst-case route length is 3m− 2.

On average, routes are at most 2m− 1 hops long.

Theorem 6.4. greedy routing in Babsolute takes 3m − 2 hops in the worst-case. The

average is less than 2m− 1 hops.

Proof. For any node u, we define

SPAN(u) ≡ {v | δabsolute(u, v) = |c+m

`(u)
∑

i=0

(2k + 1)idi|, c ∈ [0,m− 1], di ∈ [−k,+k] }.

If `(u) = m− 1, then SPAN(u) includes all n nodes. Routing proceeds in three phases:

6.3. IMPROVED ROUTING ALGORITHMS FOR PAPILLON 115

1. All out-going links of a node u are incident upon nodes at level (`(u) − 1) mod m.

Phase 1 terminates if the target is reached, or we reach a node at level m−1, whichever

event happens first. This phase of routing takes at most m − 1 hops (at most m−1
2

hops on average).

2. The following invariant is true in this phase: “t ∈ SPAN(u) and δabsolute(u, t) ≥ m”,

where u denotes the current node. At every step in this phase, if node u forwards the

message to a node v using the rules for greedy routing, then it is guaranteed that

t ∈ SPAN(v), and that `(v) = `(u) − 1. Phase 2 terminates if the target is reached,

or if δabsolute(u, t) < m, or if the message is forwarded by a node u with `(u) = 0,

whichever event happens first. When a node at level 0 forwards a message to some

node v, then `(v) = m − 1 and it is guaranteed that δabsolute(v, t) < m, thereby

terminating this phase of routing. There are at most m hops in this phase.

3. The following invariant is true in this phase: “t ∈ SPAN(u) and δabsolute(u, t) < m”,

where u denotes the current node. greedy is guaranteed to reach the destination in

at most m − 1 hops (the existence of the “back edge” that connects node u to node

(u + 1 −m) mod n guarantees this). This phase takes at most m− 1 hops (at most
m−1

2 hops on average).

Routes are at most 3m− 2 hops in the worst-case.

The average length is at most 2m− 1 hops.

Routes in Bclockwise and Babsolute are at most 3m− 2 hops, which is O(log(κmm)/ log κ)

and O(log((2k+1)mm)/ log(2k+2)), respectively. Given degree d and diameter ∆, the size

of Papillon is n = 2O(∆)∆ nodes. Given degree d and network size n, the longest route has

length ∆ = O(log n/ log d).

6.3 Improved Routing Algorithms for Papillon

greedy routing does not route along shortest-paths in Bclockwise and Babsolute. We demon-

strate this constructively below, where we study a routing strategy called hypercubic-

routing which achieves shorter path lengths than greedy.

116 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

Hypercubic Routing

Theorem 6.5. There exists a routing strategy for Bclockwise in which routes take 2m − 1

hops in the worst-case. The average is at most 1.5m hops.

Proof. Consider the following hypercubic-routing algorithm on Bclockwise. Let s be the

source node, t the target, and let dist = δclockwise(s, t) = c + m + m
∑i=m−1

i=0 κidi with

0 ≤ c < m and 0 ≤ di < κ (dist has exactly one such representation, unless dist ≤ m in

which case routing takes < m hops).

Phase I: Follow the short-links to “fix” the c-value to zero. This takes at most m − 1

hops (at most 0.5m hops on average).

Phase II: In exactly m hops, “fix” the di’s in succession to make them all zeros: When

the current node is u, we fix d`(u) to zero by following the appropriate long-link, i.e., by

shrinking the clockwise distance by d`(u)κ
`(u)m+1. The new node v satisfies `(v) = (`(u)+

m− 1)(mod m). When each di is zero, we have reached the target.

Overall, the worst-case route length is 2m−1. Average route length is at most 1.5m.

Theorem 6.6. There exists a routing strategy for Babsolute in which routes take 2m − 1

hops in the worst-case. The average is at most 1.5m hops.

Proof. Consider the following hypercubic-routing algorithm on Babsolute. Let s be the

source node, t the target, and let dist = c +m +m
∑i=m−1

i=0 (2k + 1)idi, where 0 ≤ c < m

and −k ≤ di ≤ k (dist has exactly one such representation, unless dist < m in which case

routing takes fewer than m hops). Note that |dist| = δabsolute(s, t).

Phase I: Follow the short-links in the clockwise direction, to reach a node s ′ such that

`(s′) = `(t). This takes at most m−1 hops (at most 0.5m hops on average). The remaining

distance can be expressed as m+m
∑i=m−1

i=0 (2k + 1)idi with −k ≤ di ≤ k.
Phase II: In exactly m hops, “fix” the di’s in succession to make them all zeros: When

the current node is u, we fix d`(u) to zero by following the appropriate long-link, i.e., by

traveling distance 1+d`(u)(2k+1)`(u)m along the circle (this distance is positive or negative,

depending upon the sign of d`(u)). The new node v satisfies `(v) = (`(u) − 1)(mod m).

When each di is zero, we have reached the target.

Overall, the worst-case route length is 2m−1. Average route length is at most 1.5m.

Note that the edges that connect node u to node (u+ 1−m) mod n are redundant for

6.3. IMPROVED ROUTING ALGORITHMS FOR PAPILLON 117

hypercubic-routing since they are never used. However, these edges play a crucial role

in greedy routing in Babsolute (to guide the message to the target in Phase 3).

Congestion-Free Routing

Theorems 6.5 and 6.6 prove that greedy routing is sub-optimal in the constants. Still,

hypercubic-routing, as described above, causes edge-congestion because short-links are

used more often than long-links. Let π denote the ratio of maximum and minimum loads

on edges caused by all
(n
2

)

pairwise routes. hypercubic-routing for Bclockwise consists of

two phases (see Proof of Theorem 6.5). The load due to Phase II is uniform – all edges

(both short-links and long-links) are used equally. However, Phase I uses only short-links,

due to which π 6= 1. We now modify the routing scheme slightly to obtain π = 1 for both

Bclockwise and Babsolute.

Theorem 6.7. There exists a congestion-free routing strategy in Bclockwise that takes 2m−1

hops in the worst-case and at most 1.5m hops on average, in which π = 1.

Proof. The theorem is proved constructively, by building a new routing strategy called

congestion-free. This routing strategy is exactly the same as hypercubic-routing,

with a small change.

Let s be the source node, t the target. Let c = (t + m − s) mod m, the difference in

levels between `(s) and `(t).

Phase I: For c steps, follow any out-going link, chosen uniformly at random. We thus

reach a node s′ such that `(s′) = `(t).

Phase II: The remaining distance is dist = δclockwise(s
′, t) = m + m

∑i=m−1
i=0 κidi with

0 ≤ di < κ. Continue with Phase II of the hypercubic-routing algorithm for Bclockwise

(see Theorem 6.5).

It is easy to see that in this case, all outgoing links (short- and long-) are used with

equal probability along the route. Hence, π = 1.

Theorem 6.8. There exists a congestion-free routing strategy in Babsolute that takes 2m−1

hops in the worst-case and at most 1.5m hops on average, in which π = 1.

Proof. We will ignore the edges that connect node u to node (u + 1 − m) mod n (recall

that these edges are not used in hypercubic-routing described in Theorem 6.6). We will

ensure π = 1 for the remainder of the edges.

118 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

congestion-free routing follows the same idea as that for Bclockwise (Theorem 6.7):

Let s be the source node, t the target. Let c = (t+m− s) mod m, the difference in levels

between `(s) and `(t). In Phase I, for c steps, we follow any out-going link, chosen uniformly

at random. We thus reach a node s′ such that `(s′) = `(t). In Phase II, we continue as per

Phase II of the hypercubic-routing algorithm for Babsolute (Theorem 6.6).

An alternate congestion-free routing algorithm for Babsolute that routes determinis-

tically is based upon the following idea: We express any integer a ∈ [−k,+k] as the sum of

two integers: a′ = b(k + a)/2c and a′′ = −b(k − a)/2c. It is easy to verify that a = a′ + a′′.

Now if we list all pairs 〈a′, a′′〉 for a ∈ [−k,+k], then each integer in the range [−k,+k]
appears exactly twice as a member of some pair.

Let s be the source node, t the target. Let c = (t + m − s) mod m, the difference in

levels between `(s) and `(t). The remaining distance is dist = c+m+m
∑i=m−1

i=0 (2k+1)idi

with −k ≤ di ≤ k (there is a unique way to represent dist in this fashion).

Phase I: For c steps, if the current node is u, then we follow the edge corresponding

to d′`(u), i.e., the edge that covers distance 1 + md′`(u)(2k + 1)`(u) (in the clockwise or the

anti-clockwise direction, depending upon the sign of d′`(u)). At the end of this phase, we

reach a node s′ such that `(s′) = `(t).

Phase II: Continue with Phase II of the hypercubic-routing algorithm for Babsolute

(Theorem 6.6), for exactly m steps.

Due to the decomposition of integers in [−k,+k] into pairs, as defined above, all outgoing

links (short- and long-) are used equally. Hence, π = 1.

Notes: In the context of the current Internet, out-going links correspond to full-duplex

TCP connections. Therefore, the undirected graph corresponding to Babsolute is of interest.

In this undirected graph, it is possible to devise congestion-free routing with π = 1, maxi-

mum path length m+ bm/2c and average route-length at most 1.25m. This is achieved by

making at most bm/2c initial random steps either in the down or the up direction, whichever

gets to a node with level `(t) faster.

6.4 Related Problems

The problem of Greedy Routing on a Circle has relationships with the following problems:

6.4. RELATED PROBLEMS 119

1. Efficient graph constructions are known that support greedy routing with distance

function other than δclockwise and δabsolute. For example, in hypercubes, shortest paths

between node-pairs correspond to greedy routing with distance function δ(u, v) ≡
u ⊕ v, the number of bit-positions where u and v differ. For de Bruijn networks,

the traditional routing algorithm (which routes almost always along shortest paths)

corresponds to greedy routing with δ(u, v) defined as the longest suffix of u that

is also the prefix of v. For a 2D grid, shortest paths correspond to greedy routing

with δ(u, v) defined as the Manhattan distance between nodes u and v. However,

the problem of greedy routing with distance functions δclockwise and δabsolute has not

been studied before.

2. greedy routing with distance function δabsolute has been studied for Chord (see Sec-

tion 5.5.2 on page 100). Chord has 2b nodes, with out-degree 2b − 1 per node. The

longest greedy route takes bb/2c hops. In terms of d and ∆, the largest-sized Chord

network has n = 22∆+1 nodes. Moreover, d and ∆ cannot be chosen independently –

they are functionally related. Both d and ∆ are Θ(log n).

greedy routing with distance function δclockwise for Chordclockwise was studied in §6.1.
In the same Section, greedy routing with distance function δabsolute was studied for

Chordabsolute.

3. Xu et al [XKY03] have studied greedy routing with distance function δclockwise over

uniform graph topologies. A graph over n nodes placed in a circle is said to be uniform

if the set of clockwise offsets of out-going links is identical for all nodes. Chord is an

example of a uniform graph. Xu et al show that for any uniform graph with O(log n)

links per node, greedy routing with distance function δclockwise necessitates Ω(log n)

hops in the worst-case.

Cordasco et al [CGH+04] have shown that greedy routing with distance function

δclockwise in a uniform graph over n nodes satisfies the inequality n ≤ F (d + ∆ + 1),

where d denotes the out-degree of each node, ∆ is the length of the longest greedy

path, and F (k) denotes the kth Fibonacci number. It is well-known that F (k) =

[φk/
√

5], where φ = 1.618 . . . is the Golden ratio and [x] denotes the integer closest

to real number x. It follows that 1.44 log2 n ≤ d + ∆ + 1. Cordasco et al show that

the inequality is strict if |d−∆| > 1. For |d−∆| ≤ 1, they construct uniform graphs

based upon Fibonacci numbers which achieve an optimal tradeoff between d and ∆.

120 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

Papillon is a non-uniform graph since the set of clockwise offsets of out-going links is

different for different nodes.

4. The Degree-Diameter Problem, studied in extremal graph theory, seeks to identify

the largest graph with diameter ∆, with each node having out-degree at most d

(see Delorme [D04] for a survey). The best constructions for large ∆ tend to be

sophisticated [BDQ92,CG92,E01b]. A well-known upper bound is N(d,∆) = 1 + d+

d2 + · · · + d∆ = d∆+1−1
d−1 , also known as the Moore bound. A general lower bound is

d∆ + d∆−1, achieved by Kautz digraphs [K68,K69], which are slightly superior to de

Bruijn graphs [dB46] whose size is only d∆. A consequence of these results is that it

is indeed possible to route in O(log n/ log d) hops in the worst-case with d out-going

links per node. Whether greedy routes with distance functions δclockwise or δabsolute

can achieve the same bound, is the question we addressed in this Chapter.

5. greedy routing with distance function δclockwise has recently been studied for certain

classes of random graphs (see Chapters 7 and 8 for more details).

A brief summary of results pertaining to greedy routing in random graphs is as

follows: Kleinberg [K00] showed that if each node chooses one out-going link from

a certain probability distribution function, the length of greedy routes is O(log2 n)

in the worst case. Barrière et al [BFKK01] established a matching lower bound of

Ω(log2 n) hops. With d out-going links per node, greedy routing results in routes of

length O(1
d log2 n) hops (see reference [MBR03] or Chapter 7 for details). Aspnes et al

[ADS02] proved that any symmetric, randomized degree-d network has Ω(log2 n
d log log n)

greedy routing complexity.

A variant of greedy routing is “greedy with 1-lookahead” – the idea is to take

the neighbor’s neighbors of a node into account and to optimize for two hops at

once. In reference [MNW04], greedy routing with/without 1-lookahead was an-

alyzed for a variety of graphs: randomized-Chord [GGG+03, ZGG03], randomized-

hypercubes [GGG+03], Symphony [MBR03], skip-graphs [AS03] and SkipNet [HJS+03].

Each of these networks has O(log n) out-going links per node. It was established that

greedy routing requires Ω(log n) hops on average. However, aided by 1-lookahead,

the length of routes shrinks to Θ(log n/ log log n) hops, which is optimal.

The above results motivate the following question: Is it possible to construct a graph

in which each node has degree d and in which greedy without 1-lookahead has

6.5. SUMMARY AND FUTURE DIRECTIONS 121

routes of length Θ(log n/ log d) in the worst case? Papillon provides an answer in the

affirmative.

Butterfly networks have been used in the context of routing networks for DHTs as follows:

1. Deterministic butterflies have been proposed for DHT routing by Xu et al [XKY03],

who subsequently developed their ideas into Ulysses [KMXY03]. Papillon for distance

function δclockwise has structural similarities with Ulysses – both are butterfly-based

networks. The key differences are as follows: (a) Ulysses does not use δabsolute as

its distance function, (b) Ulysses does not use greedy routing, and (c) Ulysses uses

more links than Papillon for distance function δclockwise – additional links have been

introduced to ameliorate non-uniform edge congestion caused by Ulysses’ routing al-

gorithm. In contrast, the congestion-free routing algorithm developed in §6.3
obviates the need for any additional links in Papillon (see Theorem 6.7).

2. Viceroy [MNR02] is a randomized butterfly network which routes in O(log n) hops in

expectation with Θ(1) links per node. Mariposa (see reference [M03] or Chapter 9)

improves upon Viceroy by providing routes of length O(log n/ log d) in the worst-

case, with d out-going links per node. Viceroy and Mariposa are different from other

randomized networks in terms of their design philosophy (see Chapter 9 for details).

6.5 Summary and Future Directions

Papillon is a variant of multi-butterfly networks which supports asymptotically optimal

greedy routes of length O(log n/ log d) with distance functions δclockwise and δabsolute, when

each node makes d out-going links, in an n-node network. Papillon is the first construction

with this property.

Some questions that remain unanswered:

1. Is it possible to devise graphs in which greedy routes with distance function δclockwise

and δabsolute are along shortest-paths? As Theorems 6.5 and 6.6 illustrate, greedy

routing on Papillon do not route along shortest-paths. Is this property inherent in

greedy routes?

2. What is the upper-bound for the Problem of Greedy Routing on the Circle? Papillon

furnishes a lower-bound, which is asymptotically optimal. However, constructing the

122 CHAPTER 6. PAPILLON: GREEDY ROUTING ON A CIRCLE

largest-possible graph with degree d and diameter ∆, is still an interesting combina-

torial problem.

Chapter 7

Symphony: Routing in a

Small-World

It’s a small world, but I wouldn’t want to have to

paint it.

Steven Wright (1955 –)

In this Chapter, we present the design of Symphony, a randomized family of routing

networks for the module “Choice of Long-Distance Links” in Dipsea (see Figure 1.1 on page 2

for a block-diagram of its architecture).

7.1 Introduction

The small world phenomenon was discovered by Milgram [M67] in a celebrated experiment

that demonstrated that pairs of people in a society were connected by short chains of

acquaintances. Milgram also discovered that people were actually able to route letters to

unknown persons in a few hops by forwarding them through acquaintances. To model the

small world phenomenon, Kleinberg [K00] recently constructed a 2D grid where every node

maintains four links to each of its closest neighbors and one long-distance link to a node

chosen from a harmonic probability distribution. In the resulting network, a message can

be routed from any node to another by greedy routing in O(log2 n) hops on average.

In this Chapter, we present Symphony, an adaptation of Kleinberg’s construction for

maintaining a randomized routing network over a dynamic set of nodes lying on a circle.

123

124 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

Each node makes a short-distance link with its successor along the circle, and multiple long-

distance links with other nodes. In contrast, Kleinberg’s construction was over a static set of

n2 nodes arranged in a 2D grid. The issues we address are: How is the network maintained

in the face of arrivals and departures of nodes? How good is greedy routing with k > 1

long-distance links per node? How does the construction compare with other deterministic

and randomized routing networks?

The emphasis in this Chapter is on engineering a practical design – we provide extensive

experimental results to justify our design decisions. Further theoretical results pertaining

to Symphony and other randomized routing networks are available in Chapter 8.

Summary of Results

In §7.2, we describe three distributions of node IDs: Regular, Balanced and Random.

In §7.3, we study Symphony over a Regular distributions of IDs.

In §7.4, we study Symphony over a Balanced distributions of IDs.

In §7.5, we study Symphony over a Random distributions of IDs.

In §7.6, we provide experimental results.

In §7.7, we compare Symphony with other routing networks.

In §7.8, we summarize and present future work.

7.2 ID Distributions

We will describe Symphony over three different distributions of nodes lying on the circum-

ference of a circle. It is convenient to imagine the perimeter of the circle as the unit interval

I = [0, 1), “wrapped around”. Each node is assigned an ID which is a fraction in I.

✫ Regular Distribution: The n nodes occupy positions corresponding to the corners of a

regular n-gon circumscribed by the circle.

✫ Random Distribution: Each node has chosen its position independently and uniformly

at random on the circumference of the circle.

✫ Balanced Distribution: Node IDs correspond to leaf nodes of a binary tree whose leaves

belong to at most three different levels: [log2 n] and [log2 n]±1, where n is the number

of leaves, and [x] denotes the integer closest to real number x. The ID of a leaf is

simply the sequence of zeros and ones encountered along the path from the root to

that leaf, treated as a fraction in I.

7.3. SYMPHONY OVER REGULAR DISTRIBUTION OF IDS 125

1

0 1

C
um

ul
at

iv
e

P
(x

)

x

n=10^2
n=10^3
n=10^4
n=10^5

Figure 7.1: Cumulative probability distribution function Pn(x) ≡
∫ x

1/n pn(x)dx for different n.

Balanced distribution of IDs results from ID management algorithms that we discussed in

Chapters 2 and 3.

7.3 Symphony over Regular Distribution of IDs

We define pn(x), a probability distribution function, as pn(x) = 1/(x lnn) for x ∈ [1/n, 1]. It

is easy to see that
∫ 1
1/n pn(x)dx = 1. See Figure 7.1 for a plot of pn(x) for different values of n.

Drawing from pn corresponds to a simple C expression: exp (log(n) * (drand48() - 1.0)),

where drand48() produces a random number between 0 and 1.

A node in Symphony maintains two short links with its immediate neighbors along

the circle. In addition, a node maintains k ≥ 1 long distance links. For each such link,

a node first draws a random number x ∈ I from pn(x) and makes a link with the node

lying clockwise distance dxe away from itself. The resulting randomized network supports

efficient clockwise-greedy routing, defined as follows:

Definition (Clockwise-Greedy Routing with Uni-directional Links). A node forwards

a message for x ∈ I along that out-going link (short or long) that minimizes the

clockwise distance to x.

Kleinberg [K00] analyzed the case k = 1. He showed that the expected route length for

clockwise-greedy routing is O(log2 n) hops. We now show that in general, for k ≤ log2 n,

126 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

the expected route length is O(1
k log2 n) hops.

Theorem 7.1. With Regular distribution of IDs, the expected path length with Clockwise-

Greedy Routing using Uni-directional Links is O(1
k log2 n) hops, with k ≤ log2 n long-distance

links per node in an n-node network.

Proof. Recall that pn(x) = 1/(x log n) for x ∈ [1/n, 1]. Let phalf denote the probability of

drawing a value from [z/2, z]. For any z ∈ [2/n, 1], phalf =
∫ z
z/2 pn(x)dx = 1/ log2 n, which

is independent of z. The significance of phalf : regardless of the current clockwise-distance to

the destination, it is the probability that any single long-distance link will cut the distance

by at least half. The number of links to consider before the current distance diminishes

by at least half follows a geometric distribution with mean 1/phalf = log2 n. With k links

per node, the expected number of nodes to consider before the current distance is at least

halved is d(log2 n)/ke, which is less than (2 log2 n)/k for k ≤ log2 n. The maximum number

of times the original distance could possibly be halved before it is less than 2/n is log2(n/2).

Thus the expected length of route is at most 2(log2 n)(log2(n/2))/k = O(1
k log2 n) hops.

An alternative proof for the O(1
k log2 n) bound is as follows. Consider the following

process: A particle starts at position p where p > 1 is an integer. At successive time-steps,

the particle moves to position p−X, where X is a random variable ranging over the integers

1, . . . , p− 1. The process terminates if the particle reaches position p = 1. Let T (p) denote

the number of steps required for the process to terminate. Theorem 1.3 in Motwani and

Raghavan [MR95] establishes that if EX ≥ g(p), where g(p) is a monotone non-decreasing

function, then ET (p) ≤
∫ p
1 dp/g(p). The probability that the remaining distance is at least

halved is given by phalf =
∫ z
z/2 pn(x)dx = 1/ log2 n. With k long-distance links per node,

the probability that at least one of these links diminishes the remaining distance by at least

half is 1 − (1 − 1/ log2 n)k ≥ k/(2 log2 n). Therefore, EX ≥ X
2

k
2 log2 n . Using Theorem 1.3

in reference [MR95], we obtain that ET (n) ≤
∫ n
1

2
X

2 log2 n
k dX = O(1

k log2 n).

Notes:

1. Barrière et al [BFKK01] established that for k = 1, clockwise-greedy routing requires

Ω(log2 n) hops on average, thereby furnishing a lower-bound for Kleinberg’s O(log2 n)

bound. In Chapter 8, we establish that with k ≤ log2 n links per node, clockwise-

greedy routing requires Ω(1
k log2 n) hops on average.

2. The proof of Theorem 7.1 is simpler than Kleinberg’s original proof [K00].

7.4. SYMPHONY OVER BALANCED DISTRIBUTION OF IDS 127

3. See Martel and Nguyen [MN04] for an alternative proof of the Θ(log2 n) bound for

k = 1.

4. It is important that links be chosen following a harmonic distribution. If each of the k

long-distance links is made with a node whose clockwise distance is chosen uniformly

at random from the interval [0, 1), then using the proof technique in [K00], it can be

shown that the average latency is Ω(
√

n/k) hops. Figure 7.12 on page 139 presents a

graphical illustration of this observation.

When each node makes k links with other nodes, the expected number of incoming links

per node is also k. In practice, links are TCP connections which are full duplex, i.e., traffic

can be sent along both directions. One way to leverage incoming links is to treat them

as additional long distance links and continue to use clockwise-greedy routing. However,

this helps reduce average latency only marginally. Much more benefit can be obtained

by exploiting the following insight: The distribution of the source ID of an incoming link

corresponds roughly to pn but in the anti-clockwise direction. The observation that a

node has exactly k clockwise and roughly k anticlockwise long distance links motivates the

following routing protocol:

Definition (Absolute-Greedy Routing with Bi-directional Links). A node forwards

a message for x ∈ I along that link (incoming or out-going) that minimizes the

absolute distance to x along the circle.

7.4 Symphony over Balanced Distribution of IDs

In Chapter 4, we showed how emulation of families of networks defined on successive powers

of two could be carried out for Balanced distribution of IDs. To use that emulation scheme,

all we are required to do is to define Symphony over successive powers of two, assuming

a Regular distribution of IDs for each power. The number of long-distance links can be a

fixed number, say k = 20, or be made a function of the number of nodes e.g., k = log2 n,

where n is the power of two under consideration.

Using the emulation scheme in Section 4.1, a node with an `-bit ID makes three sets of

long-distance links: using its top (` − 2)-bits, its top (` − 3) bits and its top (` − 4)-bits

respectively. In the case of Symphony, these correspond to setting up long-distance links

with three different probability distributions: One set of links with pn(x), another with

128 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

p2n(x) and a third with p4n(x), where n = 2`−2. An interesting observation is that the

set of links with p4n(x) can be “re-used” when establishing the set of links with p2n(x),

which in turn can be “re-used” when establishing the set of links with pn(x). Consider

the distribution p2n(x) defined over [1/2n, 1]. The probability that p2n(x) lies between

1/2n and 1/n is α = 1/ log2 n. Let p′2n(x) denote the probability distribution obtained

by restricting p2n(x) to the range [1/n, 1] and scaling it by 1
1−α . Then

∫ (k+1)/n
k/n pn(x)dx =

∫ (k+1)/n
k/n p′2n(x)dx, for any 1 ≤ k < n. If k links are being established when the network

size is 2n, the expected number of links that cannot be “re-used” is kα. For example, if

k = log2 2n, then only one link cannot be “re-used” – the rest are common.

Theorem 7.2. With Balanced distribution of IDs, the expected path length with Clockwise-

Greedy Routing using Uni-directional Links is O(1
k log2 n) hops, with k ≤ log2 n long-distance

links per node in an n-node network.

Proof. Follows from Theorem 7.1 and the emulation scheme described in Section 4.1.

7.5 Symphony over Random Distribution of IDs

In Chapter 4 (see §4.3), we described a general scheme for emulating families of routing

networks defined over successive powers of two, assuming Random distribution of IDs. In this

Section, we describe an alternative emulation scheme, tailored specifically for Symphony.

The motivation for doing so is that the scheme described in this Section is much simpler

than the scheme in Section 4.3.

7.5.1 Estimation Protocol

When the distribution of IDs is Random, each node has to first estimate the current number

of nodes in the system. In a peer-to-peer system, it is difficult for all nodes to agree on the

exact value of current number of participants n, especially in the face of frequent arrivals

and departures of nodes. However, we can design an Estimation Protocol based on the

following insight: Let Xs denote the sum of arc lengths managed by any set of s distinct

nodes. Then s
Xs

is an unbiased estimator for n. The estimate improves as s increases. Our

experiments show that s = 3 is good enough in practice. A node estimates n by using the

length of the arc it partitions and its two neighboring arcs. These three arc-lengths are

readily available at no extra cost from the two nodes between which x inserts itself in the

7.5. SYMPHONY OVER RANDOM DISTRIBUTION OF IDS 129

ring. In Section 7.6.1, we show that the impact of increasing s on average route lengths is

insignificant.

The idea of estimating n by using s = 1 was first proposed in Viceroy [MNR02] where

it was shown that 1
2 log n < blog ñc < 3 log n w.h.p. Since then, stronger results have been

derived: Naor and Wieder [NW03] showed that the longest arc-length is Θ(log n
n) w.h.p.

King and Saia [KS04] established that the smallest arc-length is Θ(1
n2) w.h.p. Using these

results, we can assert that log n− log log n+ Θ(1) < log ñ < 2 log n+ Θ(1), w.h.p.

7.5.2 Link Establishment

Let ñ denote the estimate of n maintained by a node. Let pñ(x) denote the probability

distribution function pñ(x) = 1/(x log ñ) for x ∈ [1/ñ, 1]. A node maintains two short links

with its immediate neighbors. In addition, a node maintains k ≥ 1 long-distance links as

follows. For any link, a node first draws a random number x ∈ I from pñ(x). It then

contacts the manager of the point x away from itself in the clockwise direction by following

a Routing Protocol which we describe in Section 7.5.3. Finally, it attempts to establish a

link with the manager it just identified.

We ensure that the number of incoming links per node is bounded by placing an upper

limit of 2k incoming links per node. Once the limit is reached, all subsequent requests

to establish a link with this node are rejected. The requesting node then makes another

attempt by re-sampling from its probability distribution function. As a practical matter,

an upper bound is placed on the number of such attempts, before a node gives up. We also

ensure that a node does not establish multiple links with another node.

Choice of k: The number of out-going links established by each node is a design param-

eter. We could set k to a fixed value, say 20, or make it a function of ñ, the estimate of n

maintained by a node. A reasonable design choice is k = dlog2 ñe. We experimentally show

that as few as four long distance links are sufficient for small average route lengths.

7.5.3 Greedy Routing Protocols

We will use the same two routing protocols that we defined in 7.3, namely Clockwise-Greedy

Routing with Uni-directional Links and Absolute-Greedy Routing with Bi-Directional Links.

Theorem 7.3. With Random distribution of IDs, the expected path length with Clockwise-

Greedy Routing using Uni-directional Links is O(1
k log2 n) hops, with k ≤ log2 n long-distance

130 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

links per node in an n-node network.

Proof. We sketch the proof assuming every attempted long-distance link is successful. As

noted above in Section 7.5.2, some of these connections in fact are rejected because the

intended target of the link is “saturated” with 2k incoming links.

A node with estimate ñ uses the probability distribution function pñ(x) = 1/(x log ñ)

for x ∈ [1/ñ, 1]. Let phalf denote the probability of drawing a value from [z/2, z]. For any

z ∈ [2/ñ, 1], phalf =
∫ z
z/2 pñ(x)dx = 1/ log2 ñ, which is independent of z. Now, 1/ log2 ñ >

1/(3 log2 n). The significance of phalf : regardless of the current clockwise-distance to the

destination, it is the probability that any single long-distance link will cut the distance by at

least half. The number of links to consider before the current distance diminishes by at least

half is at most 3 log2 n. With k links per node, the expected number of nodes to consider

before the current distance is at least halved is at most d(3 log2 n)/ke, which is less than

(6 log2 n)/k for k ≤ log2 n. Since the smallest arc-length is Θ(1
n2), the maximum number

of times the original distance could possibly be halved is log2(cn
2), for some constant c.

Therefore, the expected length of route is at most 6(log2 n)(log2(cn
2))/k = O(1

k log2 n)

hops.

7.5.4 Join and Leave Protocols

Join: To join the network, a new node must know at least one existing member. It then

chooses its own id x from [0, 1) uniformly at random. Using the Routing Protocol, it

identifies node y, the current manager of x. It then runs the Estimation Protocol using

s = 3, updating the estimates of three other nodes as well. Let ñx denote the estimate

of n thus produced. Node x then uses pdf pñx to establish its long distance links. Since

each link establishment requires a lookup that costs O(1
k log2 n) messages, the total cost of

k link establishments is (log2 n) messages. The constant hidden behind the big-O notation

is actually less than 1. See Section 7.6.6 for costs determined experimentally.

Leave: The departure of a node x is handled as follows. All outgoing and incoming links to

its long-distance neighbors are snapped. Other nodes whose outgoing links to x were just

broken, re-instate those links with other nodes. The immediate neighbors of x establish

short links between themselves to maintain the ring. Also, the successor of x initiates the

Estimation Protocol over s = 3 neighbors, each of whom also updates its own estimate of n.

The departure of a node requires an average of k incoming links to be re-established. The

7.5. SYMPHONY OVER RANDOM DISTRIBUTION OF IDS 131

expected cost is O(log2 n) messages. Again, the constant hidden behind the big-O notation

is less than 1. See Section 7.6.6 for costs determined experimentally.

7.5.5 Re-linking Protocol

Each node x in the network maintains two values: ñx, its current estimate of n and ñlink
x ,

the estimate at which its long distance links were last established. Over its lifetime, ñx

gets updated due to the Estimation Protocol being initiated by other nodes. Whenever

ñx 6= ñlink
x , it is true that the current long distance links of x correspond to a stale estimate

of n. One solution is to establish all links afresh. However, if a node were to re-link on every

update of ñx, traffic for re-linking would be excessive. This is because re-establishment of

all k long distance links requires O(log2 n) messages.

Re-linking Criterion: A compromise re-linking criterion that works very well is to re-

link only when the ratio ñx/ñ
link
x 6∈ [12 , 2]. The advantage of this scheme is that as n

steadily grows or shrinks, traffic for re-linking is smooth over the lifetime of the network. In

particular, if nodes arrive sequentially and each node knows n precisely at all times, then

the number of nodes re-linking at any time would be at most one. We experimentally show

that even in the presence of imprecise knowledge of n, the re-linking cost is smooth over the

lifetime of a network. However, we also show that the benefits of re-linking are marginal.

7.5.6 Greedy Routing with 1-Lookahead

Two nodes connected by a long link could periodically exchange some information piggy-

backed on keep-alives. In particular, they could inform each other about the positions of

their respective long distance neighbors on the circle. Thus a node can learn and maintain a

list of all its neighbor’s neighbors. We call this the lookahead list. The lookahead list helps

to improve the choice of neighbor for routing queries. Let u denote the node in the list that

takes a query closest to its final destination. Then the query is routed to that neighbor

that contains u in its neighbor set. Note that we do not route directly to u. Upon receiving

a forwarded lookup request, a neighbor makes a fresh choice for its own best neighbor to

route to. We experimentally show that 1-Lookahead effectively reduces average latency by

roughly 40%.

What is the cost of 1-Lookahead? The size of the lookahead list is O(k2). The number

of long links remains unchanged because a node does not directly link to its neighbors’

132 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

5
7
9

11
13
15
17
19

5 8 11 14 17 14 11 8 5

lo
g2

 (
n_

es
tim

at
ed

)

log2 (n) over time

ESTIMATION WITH s = 3 SEGMENTS

Growing Network Shrinking Network

5
7
9

11
13
15
17
19

5 8 11 14 17 14 11 8 5

5
7
9
11
13
15
17
19

lo
g2

 (
n_

es
tim

at
ed

)

log2 (n) over time

ESTIMATION WITH s = log(n) SEGMENTS

Growing Network Shrinking Network

Figure 7.2: Quality of estimated value of n as the network first expands and then shrinks. Each
vertical line segment plots the average along with an interval that captures 99% of the distribution.

neighbors; it just remembers their IDs. However, arrival and departure of any node re-

quires an average of k(2k + 2) messages to update lookahead lists at k(2k + 2) nodes in

the immediate neighborhood. These messages need not be sent immediately upon node

arrival/departure. They are sent lazily, piggy-backed on normal routing packets or keep-

alives exchanged between pairs of nodes. Lazy update of lookahead lists might introduce

temporary inconsistencies. This is acceptable because routing does not crucially depend on

these lists. Lookaheads just provide a better hint.

We could employ `-Lookahead in general, for ` > 1. However, the cost of even 2-

Lookahead becomes significant since each update to a link would now require O(k3) ad-

ditional messages for updating lookahead lists. If ` were as large as O(log2 n), each node

could effectively compute the shortest path to any destination.

7.6 Experiments

In this Section, we present results from our simulation of Symphony on networks ranging

from 25 to 215 nodes. We systematically show the interplay of various variables (n, k and

s), justifying our choices. We study four kinds of networks: A Static network with n

nodes is constructed by placing n nodes on a circle, splitting it evenly into n segments.

Knowledge of n is global and accurate. An Expanding network is one that is constructed

by adding nodes to the network sequentially. An estimate of n is used to establish long

distance links. An Expanding-Relink network is simply an Expanding network in which

nodes re-establish links using the re-linking criterion mentioned in Section 7.5.5. Finally, a

Dynamic network is one in which nodes not only arrive but also depart. We describe the

7.6. EXPERIMENTS 133

 0

 0.1

 0.2

 5 10 15 20

F
ra

ct
io

n

Latency

k = 7 LINKS

Expanding (uni)
Expanding (bi)

 0

 0.1

 0.2

 5 10 15 20

F
ra

ct
io

n

Latency

k = LOG2 (n) LINKS

Expanding (uni)
Expanding (bi)

Figure 7.3: Latency distributions for a network with 214 nodes. “Uni” denotes Clockwise-Greedy

Routing with Uni-directional Links. “Bi” denotes Absolute-Greedy Routing with Bi-directional Links.

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

STATIC UNIDIRECTIONAL

1 link
2 links
3 links
4 links
5 links
6 links
7 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

EXPANDING UNIDIRECTIONAL

1 link
2 links
3 links
4 links
5 links
6 links
7 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

EXPANDING RELINK UNIDIRECTIONAL

1 link
2 links
3 links
4 links
5 links
6 links
7 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

STATIC BIDIRECTIONAL

1 link
2 links
3 links
4 links
5 links
6 links
7 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

EXPANDING BIDIRECTIONAL

1 link
2 links
3 links
4 links
5 links
6 links
7 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

EXPANDING RELINK BIDIRECTIONAL

1 links
2 links
3 links
4 links
5 links
6 links
7 links

Figure 7.4: Average latency for various numbers of long distance links and n ranging from 25 and
214.

exact arrival and departure distributions in Section 7.6.4.

7.6.1 Estimation Protocol

Figure 7.2 shows performance of the Estimation Protocol when a network grew from zero to

217 nodes and then shrank. Each vertical segment in the figure captures 99% of the nodes.

The Estimation Protocol tracks n fairly well. The estimate is significantly improved if we

use s = log ñ neighbors, where ñ itself is obtained from any existing node. However, the

impact on average latency is not significant, as we show in Section 7.6.3. All experiments

described hereafter were conducted with s = 3.

134 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

5 6 7 8 9 10 11 12 13 14 15

2

4

6

8

10

12

14

16

La
te

nc
y

log2 (n) 5 6 7 8 9 10 11 12 13 14 15

2

4

6

8

10

12

14

16

La
te

nc
y

log2 (n)

EXPANDING (UNI)
EXPANDING_RELINK (UNI)
STATIC (UNI)
EXPANDING (BI)
EXPANDING_RELINK (BI)
STATIC (BI)

Figure 7.5: Latency for various networks with log2 ñ links per node. Each vertical segment plots the
average along with an interval that captures 99% of the distribution. “Uni” denotes Clockwise-Greedy

Routing with Uni-directional Links. “Bi” denotes Absolute-Greedy Routing with Bi-directional Links.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

s (Number of neighbours for Estimation Protocol)

EXPANDING (UNI)
EXPANDING-RELINK (UNI)
EXPANDING (BI)
EXPANDING-RELINK (BI)

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

La
te

nc
y

s (Number of neighbours for Estimation Protocol)

EXPANDING (UNI)
EXPANDING-RELINK (UNI)
EXPANDING (BI)
EXPANDING-RELINK (BI)

0

200

400

0 200 400

C
um

ul
at

iv
e

#R
el

in
ks

Time step

Growing
Network

Shrinking
Network

Figure 7.6: Left: Latency for expanding networks using Estimation Protocol with various values
of s, the number of neighbors contacted for estimating n. Right:Cumulative number of re links for
a network that first expands from 0 to 256 nodes and then shrinks back to 0. At every time step,
exactly one node joins or leaves.

7.6. EXPERIMENTS 135

7.6.2 Routing Protocol

Figure 7.4 on page 133 plots the average latency for three networks: Static, Expanding

and Expanding-Relink. The number of links per node is varied from 1 to 7. Increasing

the number of links from 1 to 2 reduces latency significantly. However, successive additions

have diminishing returns. This is one reason that re-linking has marginal benefits. However,

Absolute-Greedy Routing with Bi-directional Links is a good idea as it improves latency by

roughly 25% to 30%. Figure 7.3 on page 133 shows the latency distribution for various

networks with either 7 or log2 ñ links each. The variance of latency distribution is not high.

Having log2 ñ links per node not only diminishes average latency but also the variance

significantly. Figure 7.5 on the preceding page plots latency for a network in which each

node maintains log2 ñ links. The vertical segments capture 99% of node-pairs. For a given

type of network, average latency grows linearly with log n, as expected.

7.6.3 Re-linking Protocol

In Figure 7.6 on the facing page, we plot average latency as s, the number of neighbors in

the estimation protocol, varies. We observe that average latency is relatively insensitive to

the value of s used. This justifies our choice of s = 3. Figure 7.6 on the preceding page

also shows the cost of re-linking over the lifetime of a network that first expands to 256

nodes and then shrinks back to zero. Exactly one node arrives or leaves at any time step.

We chose a network with small n for Figure 7.6 on the facing page to highlight the kinks in

the curve. For large n, the graph looks like a straight line. The cost of re-linking is fairly

smooth.

7.6.4 Dynamic Network

A Dynamic network is one in which nodes arrive and depart. We studied a network

with n = 100K nodes having log ñ neighbors each. Each node alternates between two

states: alive and asleep. Lifetime and sleep-time are drawn from two different exponential

distributions with means 0.5 hours and 23.5 hours respectively. We grow the node pool

linearly over a period of one day so that all 100K nodes are members of the pool at the

end of the first day. During the second day, the pool remains constant. The third day sees

the demise of random nodes at regular intervals so that the pool shrinks to zero by the

end of 72 hours. The average number of nodes that participate in the ring at any time is

136 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

0

2

4

6

8

10

12

14

16

12 24 36 48 60 72

E
st

im
at

ed
 lo

g2
 (

n)

Hour of simulation

Expanding
Network

Steady
Network

Shrinking
Network

DYNAMIC NO-RELINK BIDIRECTIONAL

1

3

5

7

9

11

13

0 12 24 36 48 60 72

La
te

nc
y

P
ro

fil
e

Hour of Simulation

Expanding
Network

Steady
Network

Shrinking
Network

DYNAMIC NO-RELINK BIDIRECTIONAL

Figure 7.7: Performance of a Dynamic network of 100K nodes with log ñ-links using the Estimation
Protocol but no re-linking. Each node is alive and asleep on average for 0.5 hours and 23.5 hours
respectively. The node pool linearly increases to 100K over the first day. The pool is steady on the
second day. A random node departs at regular intervals on the third day until the network shrinks
to zero. Each vertical segment plots the average along with the range of values that covers 99% of
the distribution.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

La
te

nc
y

Number of long distance links

NETWORK SIZE = 2^15 NODES Static (Bi)
Expanding (Bi)
Expandng Relink (Bi)
1-Lookahead Static (Bi)
1-Lookahead Expanding (Bi)
1-Lookahead Expanding Relink (Bi)

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

Number of long distance links
log2 (n)

1-LOOKAHEAD DYNAMIC BIDIRECTIONAL

1 link
2 links
3 links
4 links
5 links
6 links
7 links

Figure 7.8: Impact of using 1-Lookahead in routing in a typical network with 215 nodes.

0.5
0.5+23.5 × 100K ≈ 2K. From Figure 7.7, we see that the Estimation Protocol is able to

track n sufficiently accurately and that the average latency was always less than 5 hops.

We wish to point out that the network we simulated is very dynamic. The set of nodes

at any point of time is quite different from the set of nodes one hour earlier. This is because

the average lifetime of any node is only 0.5 hour. Hosts in real-life P2P network have average

lifetimes of this order. However, a few hosts have much longer lifetimes (for measurements of

Gnutella and Kazaa users, see Ripeanu et al [RFI02], Saroiu et al [SGG02] and Gummadi

et al [GDS+03]). Our current model is simple but sufficient to highlight the stability of

Symphony in the presence of high activity.

7.6. EXPERIMENTS 137

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

50

#M
es

sa
ge

s
to

 jo
in

/le
av

e

log2 (n)

UNIDIRECTIONAL

6 links
5 links
4 links
3 links
2 links
1 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

50

#M
es

sa
ge

s
to

 jo
in

/le
av

e

log2 (n)

BIDIRECTIONAL

6 links
5 links
4 links
3 links
2 links
1 links

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

50

#M
es

sa
ge

s
to

 jo
in

/le
av

e

log2 (n)

BIDIRECTIONAL + 1-LOOKAHEAD

6 links
5 links
4 links
3 links
2 links
1 links

Figure 7.9: Cost of joining and leaving in a network with n = 215 nodes.

7.6.5 Lookahead

Figure 7.8 on the facing page shows the efficacy of employing 1-Lookahead when k is small.

Average latency diminishes by around 40% with 1-Lookahead. Moreover, the spread of

latency distribution (captured by vertical line segments in the graph) shrinks. For a network

with 215 nodes, average latency is 7.6 with k = 4. We also simulated 1-Lookahead with

k = log ñ links per node and saw average latency drop to 4.4.

Note that 1-Lookahead does not entail an increase in the number of long links per node.

Only neighbor-lists are exchanged between pairs of nodes periodically. This does not incur

extra cost because increments to neighbor-lists are piggy-backed on normal routing traffic

or keep-alives.

7.6.6 Cost of Joining and Leaving

Figure 7.9 plots the cost of joining and leaving the network. Whenever a node joins/leaves,

k long distance links have to be created apart from updates to short links. Join/leave cost

is proportional to the number of links to be established. The cost diminishes as average

lookup latency drops. When using 1-Lookahead, there are an additional k(2k+2) messages

to update lookahead lists. However, these are exchanged lazily between pairs of nodes,

piggy-backed on keep-alives. The cost of join/leave is O(log2 n). Figure 7.9 clearly shows

that the constant in the big-O notation is less than 1. For example, in a network of size

214, we need only 20 messages to establish k = 4 long links.

7.6.7 Load Balance

Figure 7.10 plots the number of messages processed per node in a network of size 215

corresponding to 215 lookups. Each lookup starts at a node chosen uniformly at random.

138 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

0.001

0.002

0.003

0.004

0.005

0 5 10 15 20 25 30 35 40

F
ra

ct
io

n
of

 n
od

es

#Messages processed

2^15 nodes with BIDIRECTIONAL routing

No Lookahead
With 1-Lookahead

Figure 7.10: Bandwidth profile in a network with n = 215 nodes with k = 4 links per node. Each
node looks up one random hash key.

The hash key being looked up is also drawn uniformly from [0, 1]. The routing load on

various nodes is relatively well balanced. Both the average and the variance drop when we

employ 1-Lookahead. Curiously, the distribution is bi-modal when 1-Lookahead is employed.

7.6.8 Resilience to Link Failures

Figure 7.11 explores the fault tolerance of our network. The top graph plots the fraction

of queries answerable when a random subset of links (short as well as long) is deleted

from the network. The bottom graph studies the impact of removing just long links. The

slow increase in average latency is explained by Figure 7.4 which demonstrated diminishing

returns of additional links. Figure 7.11 clearly shows that deletion of short links is much

more detrimental to performance than deletion of long links. This is because removal of

short links makes some nodes isolated. Removal of long links only makes some routes longer.

Figure 7.11 suggests that for fault tolerance, we need to fortify only the short links that

constitute the ring structure. We need not have backups for the long-distance links. In

fact, this justifies the original design decision made for Dipsea (see Figure 1.1 for its overall

architecture).

7.6.9 Comparison with k Random Links

Figure 7.12 compares average latency for Symphony with a network where nodes form

outgoing links with other nodes uniformly at random. The figure clearly shows that the

7.6. EXPERIMENTS 139

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

F
ra

ct
io

n
of

 s
uc

ce
ss

fu
l l

oo
ku

ps

Fraction of links dead (both long and short)

Unidirectional lookup
Bidirectional lookup

0

20

40

60

80

100

120

20% 40% 60% 80% 100%

La
te

nc
y

Fraction of links dead (only long)

Unidirectional
Bidirectional

Figure 7.11: Studying fault tolerance in a network of 16K nodes with log ñ long distance links per
node. The top graph shows percentage of successful lookups when a fraction of links (short and long)
are randomly deleted. The bottom graph shows increase in latency when only long links are randomly
deleted.

5 6 7 8 9 10 11 12 13 14 15

10

20

30

40

A
ve

ra
ge

 L
at

en
cy

log2 (n)

EXPANDING BIDIRECTIONAL

4 Random links
4 Symphony links

Figure 7.12: Comparison of Symphony with a network where each node links to k other nodes
chosen uniformly at random. Network size n = 215 nodes.

140 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

TCP Lookup Routing TCP Route Notes
Conn. Latency Network Conn. Length

2d (d/2)n
1

d CAN 20 14.14 Fixed #dimensions
2 log2 n (log2 n)/2 Chord 30 7.50 Fixed #links

10 log2 n Viceroy 10 15.00 Fixed #links
2

b
−1

b log2 n (log2 n)/b Tapestry 56 3.75 with b=4 digits
2

b
−1

b log2 n (log2 n)/b Pastry 22 7.50 with b=2 digits
56 3.75 with b=4 digits

2k + 2 c(log2 n)/k Symphony 10 7.56 k=4, bidirectional with 1-lookahead
56 3.75 k=27, bidirectional with 1-lookahead

Table 7.1: Comparison of various routing networks over 215 nodes. Latencies are measured in terms
of hops.

obvious idea of choosing k uniformly random long distance neighbors does not scale since

the path length grows as O(
√

n/k).

7.7 Comparison and Analysis

Symphony is a simple randomized routing network that scales well and offers low lookup

latency with only a handful of TCP connections per node. The cost of joining and leaving

the network is small. We now highlight features unique to Symphony.

7.7.1 Low State Maintenance

Table 7.1 lists lookup latency vs. degree for various DHT routing networks. Low-degree

networks are desirable for several reasons. First, fewer links in the network reduce the

average number of open connections at servers and reduce ambient traffic corresponding

to pings/keep-alives and control information. Second, arrivals and departures engender

changes in DHT topology. Such changes are concomitant with the state update of a set

of nodes whose size is typically proportional to the average degree of the network. Fewer

links per node translates to smaller sets of nodes that hold locks and participate in some

coordination protocol for distributed state update. Third, small out-degree translates to

smaller boot-strapping time when a node joins and smaller recovery time when a node leaves

without notice. Finally, it should be easier to isolate faults in low degree networks, making

debugging faster.

7.7. COMPARISON AND ANALYSIS 141

7.7.2 Fault Tolerance

Symphony does not create any redundant long distance links for fault tolerance. There are

no backup long links. It is only the short links that are fortified by maintaining connections

with f successors per node, where f is a design parameter. The long links contribute to the

efficiency of the network; they are not critical for correctness (see Section 7.6.8). Protocols

like Pastry, Tapestry and CAN maintain two to four backup links for every link a node

has. A glance at Table 7.1 reveals that the overhead of redundant links for fault tolerance

is significantly less for Symphony than other protocols. Having fewer links per node has

several other benefits that we described in the preceding Section.

7.7.3 Smooth Tradeoff between Degree and Latency

Symphony provides a smooth tradeoff between the number of links per node and average

lookup latency. It appears to be the only protocol that provides this tuning knob even at

run-time. Symphony does not dictate that the number of links be identical for all nodes.

Neither is the number stipulated to be a function of current network size nor is it fixed at the

outset, unlike CAN [RFHK01], Chord [SMK+01], Pastry [RD01a] or Tapestry [ZHS+04].

We believe that these features of Symphony provides three benefits:

Support for Heterogeneous Nodes: Each node is merely required to have a bare minimum

of two short-distance links. The number of long-distance links can be chosen for each indi-

vidual node according to its available bandwidth, average lifetime, or processing capability.

All the other DHT protocols specify the exact number and identity of neighbors for each

node in the network. It is not clear how they would accommodate nodes with variable

degrees. Symphony’s randomized construction makes it adapt naturally to heterogeneous

nodes.

Incremental Scalability: Symphony scales gracefully with network size. The Estimation

Protocol provides each participant with a reasonably accurate estimate of network size. It

is possible for nodes to adapt the number of long distance links in response to changes in

network size to guarantee small average lookup latency. This obviates the need to estimate

in advance the maximum size of the network over its lifetime.

Flexibility: An application designer who uses a distributed hash table (DHT) would want

to make its implementation more efficient by leveraging knowledge unique to the problem

scenario. For example, the specifics of the network topology at hand, or the behavior of

142 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

participating hosts, or a priori knowledge about the load on the DHT might be known.

If the DHT itself has a rigid structure, the application designer is severely constrained.

Symphony allows the number of links to be variable. All outgoing links are identical in

the sense that they are drawn from the same probability distribution function. We believe

that the randomized nature of Symphony poses few constraints as compared with other

protocols.

7.7.4 Comparison with Other Protocols

We compare Symphony with other DHT routing networks over n = 215 nodes.

(a) CAN [RFHK01] can route among n nodes with an average latency of (d/2)n
1
d . The

optimal value of d for n = 215 nodes is 10 resulting in an average latency of 14.14. The

average number of TCP connections is 2d = 20. Dimensionality in CAN is fixed at the

outset. It is not clear how dimensionality can be dynamically changed as the network

expands or shrinks. Thus, CAN nodes would have 20 TCP connections each even if the

network size is small.

(b) Chord [SMK+01] stipulates that every node in a network with 215 must have log2 n =

15 outgoing links each, with the result that average latency is 7.5. In terms of TCP con-

nections, nodes have 2 log2 n = 30 connections each. Among existing DHT protocols, Sym-

phony is closest in spirit to Chord. Chord could borrow ideas from Symphony for better

performance. For example, Chord currently uses clockwise routing using unidirectional

links. It can be modified to employ Symphony-style greedy routing over bidirectional links

that minimizes absolute distance to the target at each hop.

(c) Pastry [RD01a], with a digit size of 2 bits, would need an average of 22 TCP

connections per node for average latency 7.5. Pastry can improve the latency to 3.75, but

only with as many as 56 TCP connections per node. The digit size is a parameter that is

fixed at the outset. For fault tolerance, Pastry maintains backup links for every link in its

routing table.

(d) Tapestry [ZHS+04] uses 4-bit digits resulting in average lookup latency of 3.75 with

56 links per node. Tapestry is very similar to Pastry. The digit size is a parameter that is

fixed at the outset. For fault tolerance, Pastry maintains backup links for every link in its

routing table.

(e) Viceroy [MNR02] maintains seven links per node, irrespective of n, the size of the

network. Each node has two neighbors along two rings, one up-link and two down-links.

7.8. SUMMARY AND FUTURE DIRECTIONS 143

Four of these links are bidirectional, three are unidirectional. Thus, a Viceroy node would

actually have an average of t = 10 TCP connections per node. For n = 215, the average

latency in Viceroy would be at least log(n) = 15. This corresponds to an average 7.5 levels

to reach up to the highest ring and another 7.5 levels to come down to the ring at the right

level. Viceroy and Mariposa (see Chapter 9) are much more complex than Symphony.

(f) Symphony offers a wide variety of choices for the number of TCP connections for

a fixed value of n = 215 nodes. Figure 7.8 shows that the average latency with k = 4

long links with 1-Lookahead and bidirectional routing is 7.6. Such a topology results in 10

TCP connections per node on average. As k increases, Symphony’s average latency reduces.

Symphony does not use backup links for long distance links.

7.7.5 The Role of Lookahead

Lookahead is of little value to deterministic routing networks like tori (used in CAN),

hypercubes (used in Pastry and Tapestry) or Chord. This is because the structure of the

graph is global information and routes follow shortest paths. However, in a randomized

topology like Symphony, 1-Lookahead is valuable, as exemplified by our experiments. In

a randomized network, each node makes links based on random-bits generated locally –

these random bits are not global information. In Chapter 8, we investigate formally the

role of 1-Lookahead in Symphony and randomized variants of Chord and the hypercube.

We will establish that with O(log n) links per node, the average length of routes without

1-Lookahead is Ω(log n) hops. However, with 1-Lookahead, the average route length drops

to O(log n/ log log n), which is asymptotically optimal.

7.8 Summary and Future Directions

We presented Symphony, a simple randomized routing network for DHTs. With k out-

going links per node, greedy routing in Symphony results in routes of length O(1
k log2 n) on

average. Through a series of systematic experiments, we have shown that Symphony scales

well, has low lookup latency and maintenance cost with only a few neighbors per node. In

particular, s = 3 neighbors suffice for the Estimation Protocol and k = 4 long-distance links

with Absolute-Greedy Routing and 1-Lookahead are sufficient for low latencies in networks

as big as 215 nodes. We formally analyze 1-Lookahead in Chapter 8.

144 CHAPTER 7. SYMPHONY: ROUTING IN A SMALL-WORLD

Future directions: It would be interesting to formally establish other properties of Sym-

phony: What is its bisection width? What is the edge-congestion caused by greedy routing

with/without 1-lookahead? What are the relationships between Symphony and well-known

deterministic routing networks? Symphony has non-uniform in-degrees of nodes. Can this

be fixed in a practical system? Which probability distribution function results in the least

average path length with greedy routing?

Chapter 8

Greedy Routing with Lookahead

In this Chapter, we study randomized routing networks. These networks can be used in

the module named “Choice of Long-distance Links” of Dipsea (see Figure 1.1 on page 2

for a block-diagram of its architecture). All of the networks that we discuss are node-

symmetric, quite easy to describe and use simple but efficient routing strategies. In terms

of the tradeoff between the number of out-going links per node and the average length of

routes, the randomized routing networks described in this Chapter are competitive with the

best-known deterministic routing networks.

8.1 Introduction

Randomized routing networks arise in two different contexts: as graph models to explain

the small-world phenomenon, and as routing networks for peer-to-peer systems. We briefly

outline recent developments in these two areas.

Small World Phenomenon

A widely-held belief pertaining to social networks is that any two people in the world

are connected via a chain of six acquaintances†. A quantitative study of the phe-

nomenon was started in 1960s by Milgram [M67] who asked people to send letters

to unfamiliar targets only through social acquaintances. Milgram’s experiments, and

later work by Pool and Kochen [PK78] confirmed that random pairs of individuals are

†According to Barabási [B02], the idea of six-degrees of separation may have its origins in a short
story “Chains” by the Hungarian writer Frigyes Karinthy from 1929; this idea has since been retold
and recast many times in literature, popular press as well as scientific studies.

145

146 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

indeed connected by short chains of acquaintances. In fact, Milgram’s experiments

also demonstrated that individuals are able to route messages to unknown targets.

Such routing properties were also observed by Dodds et al [DMW03] who asked peo-

ple to forward e-mails to their acquaintances so that the e-mail eventually reaches a

target unknown to the source.

To model the routing aspects of the small-world phenomenon, Kleinberg [K00] con-

structed a family of random graphs. The graphs not only have small diameter (to

model the “six degrees of separation”) but also allow short routes to be discovered on

the basis of local information alone (to model Milgram’s observation that “messages

can be routed to unknown individuals efficiently”). Specifically, Kleinberg considered

a 2D n × n grid with n2 nodes. Each node is equipped with a small set of “local”

contacts and one “long-range” contact drawn from a harmonic distribution. With

greedy routing, the path-length between any pair of nodes is O(log2 n) hops, with

high probability†. Local knowledge available to a node suffices for greedy routing

since a message is forwarded along that out-going link which takes it closest to the

destination.

Randomized Peer-to-Peer Networks

Symphony [MBR03] is a successful adaptation of Kleinberg’s construction [K00] to

arrive at a randomized P2P routing network. The idea is to place nodes in a ring

(instead of a 2D grid) and to equip each node with multiple “long-distance” links

(instead of just one). An adaptation of Kleinberg’s construction is apt for P2P routing

because individual nodes have low degree and yet are able to route messages efficiently

using only local information.

An important distinction between deterministic and randomized networks pertains to

information available to different nodes about the global network. In deterministic

networks, each node has knowledge of the entire network. However, in the randomized

networks we study in this Chapter, each node possesses knowledge of only its own set

of long-distance links. Therefore, there is interest in devising efficient decentralized

routing protocols for randomized routing networks that use only local information.

Clockwise greedy routing is one such protocol, where the idea is to forward a message

†By “with high probability” (w.h.p.), we mean “with probability at least 1 − O(n−λ) for an arbitrary
constant λ > 1”.

8.1. INTRODUCTION 147

along that out-going link that minimizes the remaining clockwise distance to the

destination.

Recently, three more randomized routing networks have been devised: Randomized-

Hypercube, Randomized-Chord and skip-graphs. All of these have Θ(log n) out-going

links per node, and use some form of greedy routing, which is known to take O(log n)

hops on average. Randomized-Hypercube [GGG+03,CDHR03], as the name suggests,

is a randomized variant of hypercubes. Randomized-Chord [GGG+03, ZGG03] is a

variation on a recently-devised deterministic graph topology called Chord [SMK+01,

GM04]. Skip-graphs [AS03], also known as SkipNet [HJS+03], build upon the intuition

inherent in skip-lists [P90].

Remark: Viceroy [MNR02] and Mariposa (see reference [M03] or Chapter 9) are two

randomized networks that we do not discuss in this Chapter. The design philosophy

underlying these two networks is quite different — see the beginning of Chapter 9 for

details.

Characterization of the tradeoff between the number of links per node and the average

number of routing hops is of great interest to designers of DHT routing networks [RSS02].

The Degree-Diameter Problem, studied in extremal graph theory, seeks to identify the largest

graph with diameter ∆, with each node having out-degree at most d (see [D04] for a

survey). A well-known upper bound for the problem is 1 + d + d2 + · · · + d∆ = d∆+1−1
d−1 ,

also known as the Moore bound. A general lower bound is d∆ + d∆−1, achieved by Kautz

digraphs [K68,K69], which are slightly superior to de Bruijn graphs [dB46] whose size is only

d∆. Two consequences of these results are: (a) with out-degree d per node, the diameter

of any graph on n nodes is Ω(log n/ log d), and (b) there exist constructions (high-degree

butterfly networks and de Bruijn graphs, for example) whose diameter is O(log n/ log d).

These graphs have been studied extensively in the context of routing in parallel machine

architectures (see the book by Leighton [L92]). Our focus in this Chapter is on randomized

routing networks. The Ω(log n/ log d) bound applies to these networks as well. This means

that when d = Θ(log n), it might be possible to route in Θ(log n/ log log n) hops on average.

Our Contributions

In this Chapter, we address two questions pertaining to various randomized routing networks

(Symphony, Randomized-Hypercubes, Randomized-Chord and skip-graphs):

148 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

a) Is greedy routing optimal?

We show that greedy routing, which is known to take O(log n) hops on average,

is asymptotically sub-optimal. We do so by furnishing a matching lower bound of

Ω(log n) for Randomized-Hypercube and Randomized-Chord. For Symphony with k

links per node, we show that greedy routing requires Ω(1
k log2 n) hops on average. This

matches the upper-bound of O(1
k log2 n) proved earlier in Chapter 7. For skip-graphs,

a lower bound of Ω(log n) is shown in reference [MNW04].

b) What is the role of lookahead upon greedy routing?

“Greedy with lookahead” was first proposed as a heuristic in Symphony [MBR03]. The

idea is to allow a node to gain knowledge of its neighbor’s neighbors for making better

routing decisions. Such knowledge reduces the average route lengths significantly (see

Chapter 7 for graphs). These observations motivated a theoretical investigation into

whether look-ahead reduces the asymptotic routing complexity, or just diminishes the

average by some constant-factor. Greedy routing, as we noted above, takes Θ(log n)

hops on average. Does look-ahead reduce the average to O(log n/ log log n)?

We show that greedy with lookahead routing, requires O(log n/ log log n) hops in

Randomized-Hypercubes and Randomized-Chord. For Symphony with k links per

node, average route length is only O((log2 n)/(k log k)). Similar results for skip-graphs

are proved in reference [MNW04].

Additional results proved in this Chapter are the following:

a) Using the Bit-Collection protocol (see reference [M03] or Section 8.5 for more details),

R(n) = O(log n) hops for both Sparse-Chord and Sparse-Hypercube (which we define

in §8.5).

b) With k links per node, R(n) = O(log2 n/(k log k)) hops for greedy with 1-lookahead

routing in Symphony/Symphony*.

Summary of Results

In §8.2, we formally define greedy routing and various randomized routing networks.

In §8.3, we analyze greedy routing in various randomized networks.

In §8.4, we analyze greedy with 1-lookahead routing.

8.2. DEFINITIONS 149

In §8.5, we study the “Bit Collection protocol” for sparse-Chord and sparse-hypercube.

In §8.6, we discuss related work.

In §8.7, we discuss system issues pertaining to the randomized networks we analyze.

In §8.8, we summarize our results and present directions for future work.

8.2 Definitions

We will study directed graphs over n nodes placed in a circle, labeled 0 through n− 1. We

will also assume that n is a power of two. In a peer-to-peer (P2P) system, the set of nodes

is dynamic and not necessarily a power of two. However, as outlined in the architecture of

Dipsea (see Figure 1.1 on page 2 for a block-diagram), the Emulation Engine (described in

Chapter 4) absorbs the design complexity associated with scale and dynamism, allowing us

to focus on families of routing networks defined over power-of-two nodes.

Distance Functions

We will study graphs consisting of n nodes placed in a circle. Two natural distance metrics

on such graphs are the clockwise-distance and the absolute-distance between pairs of nodes.

The Hamming distance between node pairs is also a popular distance metric.

Definition (Distance Function δ).

δclockwise(u, v) =







v − u v ≥ u

n+ v − u otherwise

δabsolute(u, v) =







min{v − u, n+ u− v} v ≥ u

min{u− v, n+ v − u} otherwise

δxor(u, v) = |u⊕v|

Deterministic Routing Networks

Both of the networks defined below are directed graphs with n = 2` nodes labeled 0 through

n− 1, arranged in a circle.

✫ Hypercube

An edge from x to y exists iff the labels of x and y differ at exactly one bit-position.

150 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

✫ Chord [SMK+01]

An edge from x to y exists iff the clockwise distance from x to y is some power of two.

Randomized Routing Networks

All networks defined below are directed graphs with n = 2` nodes labeled 0 through n− 1,

arranged in a circle. Each node is connected to its successor by a short-distance link. The

rest of the links are said to be long-distance and involve random choices.

✫ Randomized-Hypercube [CDHR03,GGG+03]

The out-degree of each node is `. For each 1 ≤ i ≤ `, node x makes a connection with

node y defined as follows: The top i− 1 bits of y are identical to those of x. The ith

bit is flipped. Each of the remaining ` − i bits is chosen uniformly at random. The

distance-function for routing is δxor.

✫ Randomized-Chord [ZGG03,GGG+03]

Node x makes ` connections as follows: Let r(i) denote an integer chosen uniformly

at random from the interval [0, 2i). Then for each 0 ≤ i < `, node x creates an edge

with node (x + 2i + r(i)) mod n. Each node has out-degree `. The distance-function

for routing is δclockwise.

✫ Symphony [MBR03]

Node x establishes k ≥ 1 long-distance edges as follows: For each edge, node x first

draws a random number r from the probability distribution p(x) = 1/(x lnn) where

x ∈ [1, n] and then establishes a link with node dx + re mod n. The resulting graph is

thus a multi-graph since two x could be connected to y by more than one edge. The

distance-function for routing is δclockwise.

✫ Symphony* [MNW04]

Node x establishes a short-distance edge with node (x+1) mod n. Let δ denote a real

number satisfying ln δ = (lnn)/k. Let I1 = [1, δ]. For 1 < i ≤ k, let Ii = (δi−1, δi].

For interval Ii, let φi denote a probability distribution over integers in Ii such that

the probability at integer d is proportional to 1/d. For each 1 ≤ i ≤ k, an edge is

established with a node lying clockwise distance d away, where d is an integer drawn

from φi. Edges are directed. The out-degree of each node is k.

8.2. DEFINITIONS 151

Symphony* with k = 1 is identical to Kleinberg’s construction [K00] in one dimension.

For larger k, it is akin to chopping the probability distribution into k equal pieces

and carrying out stratified sampling. Simulations indicate that Symphony* is slightly

superior to Symphony in terms of average route lengths.

Greedy Routing with/without 1-Lookahead

There is an important distinction between deterministic and randomized routing networks.

In deterministic networks, we assume that the structure of the network is global information.

Therefore, messages can be sent along shortest paths. In a randomized routing network,

each node makes links as a function of some random bits. We assume that these random

bits are not global information. Therefore, it is not possible to send messages along shortest

paths, in general. This motivates the need for decentralized routing strategies which allow

a node to forward messages on the basis of as little knowledge of other nodes’ random bits

as possible. greedy routing is a natural decentralized routing strategy: a node forwards a

message along that out-going edge that minimizes the distance remaining to the destination:

Definition (Greedy Routing). In graph (V,E) with distance function δ : V ×
V → R+, greedy routing entails the following decision: Given a target node t, a

node u with neighbors N(u) forwards a message to its neighbor v ∈ N(u) such that

δ(v, t) = minx∈N(u) δ(x, t).

A variant of greedy routing is greedy with 1-lookahead. The idea is to take a neighbors’

neighbors into account to make better routing decisions.

Definition (Greedy with 1-Lookahead Routing). In graph (V,E) with distance

function δ : V ×V →R+, greedy with 1-lookahead routing entails the following

decision: A node takes its neighbor’s neighbors also into account when making routing

decisions. Let N(x) denote the neighbors of node x. Given target node t, node u

first identifies node z such that δ(z, t) = minx∈N(u){δ(x, t),miny∈N(x) δ(y, t)}. If

edge (u, z) exists, then node u forwards the message to node z. Otherwise, node v

exists such that both (u, v) and (v, z) exist; u forwards the message to v, which then

forwards the message to z.

Notes: We use the prefix “1-” in 1-lookahead to distinguish it from L-lookahead

in general, where long-range contacts of all nodes reachable within L hops are taken into

account for making routing decisions. greedy with 1-lookahead is slightly different

152 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

from the lookahead-based routing scheme proposed in the Symphony paper [MBR03]. The

difference is as follows: In greedy with 1-lookahead, node x forwards the message to

u and u forwards the message to z. However, in the scheme proposed in [MBR03], node

x forwards the message to u, which then re-evaluates the best-possible neighbor based on

lookahead. As a result, u may or may not forward the message to z.

Average Route Length R(n)

Let r(x,y) denotes the length of the route from node x to node y.

For deterministic topologies like Chord and hypercube,

R(n) ≡ n−2
∑

x,y∈[0,n−1]

r(x,y)

For randomized topologies, where r(x,y) is a random variable,

R(n) ≡ n−2
∑

x,y∈[0,n−1]

Er(x,y)

Summary of Results

The following picture emerges in this Chapter:

A) Deterministic topologies – the hypercube and Chord – have diameter Θ(log n).

In fact, greedy routing with distance function δxor is optimal for the hypercube,

and greedy routing with distance function δabsolute is optimal for Chord. Both route

along shortest paths, with R(n) = Θ(log n). 1-lookahead offers no improvement.

B) Randomization reduces the diameter to Θ(log n/ log log n) in expectation.

Each of the following networks has diameter Θ(log n/ log log n): Randomized-Chord,

Randomized-Hypercube, and Symphony/Symphony* with k = Θ(log n) links per

node. In comparison, the deterministic topologies (Hypercube and Chord) have di-

ameter Θ(log n).

A small diameter does not necessarily mean that there exist efficient decentralized

routing algorithms. The following results study greedy with/without 1-lookahead:

C) greedy routing is unable to discover optimal routes in randomized networks.

8.3. ANALYSIS OF GREEDY ROUTING 153

greedy routing, with the appropriate distance function, requires R(n) = Θ(log n)

hops on average for each of the following randomized networks: Randomized-Chord,

Randomized-Hypercube, and Symphony/Symphony* with k = Θ(log n) links per

node.

D) greedy with 1-lookahead is asymptotically optimal for the randomized networks.

Each of the following randomized networks requires R(n) = Θ(log n/ log log n) hops on

average with greedy with 1-lookahead routing: Randomized-Chord, Randomized-

Hypercube, and Symphony/Symphony* with k = Θ(log n) links per node.

E) Empirically, the average route length of greedy with 1-lookahead in Randomized-

Chord, Randomized-Hypercube and Symphony is within 10% of average route lengths

in de Bruijn networks with as many links per node.

Results B), C) and D) above hold for three more randomized networks: SkipNet [HJS+03],

skip-graphs [AS03], and the Small-World Percolation Network (see reference [MNW04] or

Section 8.5 for its definition).

8.3 Analysis of greedy Routing

In deterministic networks – hypercube and Chord – R(n) = Θ(log n) for greedy routing.

In a hypercube, R(n) = Θ(log n) hops because routing from x to y amounts to setting

the 1-bits of x ⊕ y to 0 in succession. In Chord, greedy routing from x to y amounts to

setting the 1-bits in the binary representation of (y−x+n) mod n to 0 in succession. Chord

with each edge treated as undirected was analyzed in reference [GM04]. greedy routing is

optimal (see Section 5.5.2 in Chapter 5) For both topologies, R(n) = `/2 = Θ(log n). We

now analyze greedy routing in randomized routing networks.

Theorem 8.1. R(n) = Θ(log n) for greedy routing in randomized hypercube.

Proof. Consider the route from node x to node y. Successive hops correspond to fixing the

top bit of z ⊕ y, where z is the current node. The probability that a specific bit requires

fixing is half. It follows that the expected number of hops is `/2 = Θ(log n).

For randomized Chord, we first prove a lemma related to the the following process:

A particle starts at position m where m > 0 is an integer. At successive time-steps, the

154 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

particle moves to a new position. When the current position is p, then the new position

is a random variable Xp that ranges over the integers 0, . . . , p. We assume that for all

i ∈ [0, p− 1], Pr[Xp = i] > 0. The process terminates when the particle reaches position 0.

Let T (m) denote the number of steps required for the process to terminate.

Lemma 8.3.1. If for all p ≥ 2, Pr[Xp = i] ≥ 2i−1Pr[Xp = 0] for i ∈ [0, p − 2], then

ET (m) = Ω(m).

Proof. Consider the same process but with each probability distribution X p replaced by Y p

where Pr[Y p = i] = 2i−1Pr[Y p = 0] for 1 ≤ i ≤ p−2 and Pr[Y p = p−1] = Pr[Y p = p] = 0.

If U(m) represents the number of steps required for the new process to terminate, then

ET (m) ≥ EU(m). For each p, Pr[Y p = 0] = 1/2p−2 and Pr[Y p = i] = 2i−1/2p−2 for

1 ≤ i ≤ p − 2. Using induction, it can be shown that for m > 0, EU(m) ≥ cm for some

constant c < 1:

Base case: EU(1) = 1. Induction step:

EU(m) = 1 +
∑

0≤i≤m

EU(i)Pr[X(m) = i]

≥ 1 +
∑

1≤i≤m

ciPr[X(m) = i]

= 1 +
∑

1≤i≤m−2

ci2i−m

≥ cm

for a suitable constant c.

Theorem 8.2. R(n) = Θ(log n) for greedy routing in randomized Chord.

Proof. For a greedy route in randomized Chord, we define phases as follows: Phase 0

consists of one integer, namely 0. For p ≥ 1, phase p consists of all integers in the interval

[2p−1, 2p− 1). Consider a message in phase p ≥ 2, i.e., its remaining distance is d such that

d belongs to phase p. For 0 ≤ p′ ≤ p− 2, let φ(p→ p′) denote the probability that the next

phase is p′. By the definition of R-Chord, only two links at the current node decide the

next hop for forwarding the message. For d′ ∈ [0, d−2p], the probability that the remaining

distance is d′ is exactly 1/2p−1. For d′ ∈ [d−2p +1, d−2p +2p−1], the probability is exactly

(2p − d − 1)/(2p−12p−2). The latter probability is larger iff d ≤ 3 · 2p−2 − 1. In any case,

φ(p → p′) ≥ 2p′−1φ(p → 0) for 0 ≤ p′ ≤ p − 2. In fact, the equality holds if d > 3 · 2p−2.

8.4. ANALYSIS OF GREEDY WITH 1-LOOKAHEAD ROUTING 155

There are log2 d different phases if the initial distance is d. By applying Lemma 8.3.1, we

deduce that the expected number of routing steps for distance d is Ω(log d). Averaged over

all possible values of d, we get that the average length of greedy routes is Ω(log n).

Theorem 8.3. R(n) = Θ(log n) for greedy routing in Symphony.

Theorem 8.4. R(n) = Θ(log n) for greedy routing in Symphony*.

8.4 Analysis of greedy with 1-lookahead Routing

For the deterministic topologies – Chord and Hypercube – R(n) = Θ(log n) hops since

greedy with 1-lookahead is no better/worse than greedy. We now analyze randomized

routing networks.

Theorem 8.5. R(n) = Θ(log n/ log log n) hops for greedy with 1-lookahead routing

in randomized hypercube.

Proof. Upper Bound: greedy with 1-lookahead considers all nodes reachable in two

hops and forwards the message (in at most two hops) to the node with the longest matching

prefix with the destination. At least one bit gets fixed per hop. For n = 2` nodes, with

` > 2, let ` = `1+`2, where `2 = d`/ log2 `e. The last `2 bits require no more than O(`/ log `)

hops even if they get fixed sequentially, one bit per hop. We will now show that fixing the

top `1 bits require at most 2`1/blog `2c hops in expectation.

Let b < `1 denote the number of top bits that the current node shares with the destina-

tion y. Thus, the current node differs from y in bit-position b+ 1. Consider the neighbors

of node x corresponding to the last ` − b − 1 bits. Each of these neighbors has the top b

bits in common with x. Further, each of these neighbors establishes a link with some node

which shares the top b bits, flips the next bit and chooses the trailing bits uniformly at

random. Since b < `1, there are at least `2 such neighbors. Therefore, the expected number

of bits that get fixed is at least blog2 `2c.
The top `1 bits require no more than 2`1/blog2 `2c hops in expectation. Substituting

`1 < `, `2 = Ω(`/ log `) and ` = log n, we get R(n) = O(log n/ log log n).

Lower bound: R-Hypercube has Θ(log n) links per node. For any topology (deterministic

or randomized) with O(log n) links per node, R(n) = Ω(log n/ log log n) hops.

156 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

Theorem 8.6. R(n) = Θ(log n/ log log n) hops for greedy with 1-lookahead routing

in randomized Chord.

Proof. Upper bound: Consider node x holding a message destined for a node clockwise

distance d away. Let I denote the interval [d − d′ + 1, d], where d′ = dd log log n/ log ne.
Let 2p ≤ d < 2p+1 such that p > log n/ log log n. The probability that x has an out-going

edge with a node in interval I equals φ = a
2p + b

2p+1 − ab
2p2p+1 where a = 2p − (d − d′ + 1)

and b = d − 2p + 1. Simplifying, we get φ = a+b
2p + a

2p+1 (1 − b
2p) ≥ a+b

2p since 1 ≤ b ≤ 2p.

Since a + b = d′, we obtain φ ≥ d′/2p. Substituting d′ = dd log log n/ log ne and d/2p ≥ 1,

we get φ ≥ log log n/ log n. Let u denote a neighbor of x lying between x and x + d.

The probability of u having an edge into interval I is also at least φ. There are at least

p > log n/ log log n such neighbors of x. Therefore, with probability at least 1− e−1, x can

reach some node in I in at most two hops. In other words, the expected number of hops to

diminish the distance from d to at most d log log n/ log n is O(1). Thus in O(log d/ log log n)

hops, distance d can be diminished to a value less than 2p where p < log n/ log log n. The

remaining distance requires no more than O(p) hops (since the distance diminishes by a

ratio of at least 3/4 at each hop). Combining the two, expected route length for distance d

is O(log n/ log log n). Averaged over all values of d, we get R(n) = O(log n/ log log n).

Lower bound: R-Chord has Θ(log n) links per node. For any topology (deterministic or

randomized) with O(log n) links per node, R(n) = Ω(log n/ log log n) hops.

Lemma 8.4.1. The expected length of a greedy route for covering clockwise distance d in

Symphony is O(1
k log d log n) hops.

Proof. We proceed as in the proof of Theorem 7.1. Let phalf denote the probability of

drawing a value from [z/2, z]. For any z ∈ [2, n], phalf =
∫ z
z/2 pn(x)dx = 1/ log2 n, which is

independent of z. The significance of phalf : regardless of the current clockwise-distance to

the destination, it is the probability that any single long-distance link will cut the distance

by at least half. The number of links to consider before the current distance diminishes

by at least half follows a geometric distribution with mean 1/phalf = log2 n. With k links

per node, the expected number of nodes to consider before the current distance is at least

halved is d(log2 n)/ke, which is less than (2 log2 n)/k for k ≤ log2 n. The maximum number

of times the original distance could possibly be halved before it is less than 2 is log2 d.

Therefore, the expected length of route is at most 2(log2 n)(log2 d)/k = O(1
k log n log d)

hops.

8.4. ANALYSIS OF GREEDY WITH 1-LOOKAHEAD ROUTING 157

Theorem 8.7. R(n) = O
(

log2 n
k log k

)

, when 1 ≤ k ≤ log n, for greedy with 1-lookahead

routing in Symphony.

Proof. If the remaining distance d satisfies log d ≤ log n/ log k, then Lemma 8.4.1 assures

us that we need no more than O(1
k log d log n) = O(log2 n/(k log k)) hops using greedy.

Let x denote the node currently holding a message to be shipped to node y, which is

clockwise distance d away such that log d > log n/ log k. Let ratio r = k/ log k. We compute

the probability that x is able to forward the message to some node z in at most two hops

such that the clockwise distance from z to y is at most d/r. There are three possible ways

of reaching such a node z:

(a) Long-distance link (x, z) exists.

(b) There exists node u such that both (x,u) and (u, z) exist but the clockwise distance

from x to u exceeds d.

(c) There exists node u such that both (x,u) and (u, z) exist, and the clockwise distance

from x to u is at most d.

We will ignore events (a) and (b) above and bound the probability that event (c) occurs

from below:

i) Let p1 denote the probability that a specific long-distance link established by node x

is within distance d. Then p1 =
∫ d
1 1/(x lnn)dx = ln d/ lnn.

ii) Let u denote one of the neighbors of x. Let p2 denote the probability that a specific

link of u connects it to some node z such that destination y is at most d/r hops away.

If d′ denote the distance from u to y, then p2 =
∫ d′

d′−bd/rc p(x)dx ≥
∫ d′

d′−d/r p(x)dx ≥
∫ d
d−d/r p(x)dx = ln(1/(1 − 1/r))/ lnn > 1/(r lnn).

The probability that event (c) occurs is at least

1− [(1− p1) + p1(1− p2)
k]k ≥ k2p1/(2r log n). (8.1)

The above inequality can be derived as follows: We know that (1−p2)
k < (1−1/(r log n))k <

1− k/(2r log n). Now, 1− [1− kp1/(2r log n)]k ≥ k2p1/(2r log n).

Plugging in p1 = log d/ log n into Eq (8.1), we deduce that the probability of event (c)

is at least k2 log d/(r log n). We had assumed ln d > log n/ log k and we had set the ratio

r = k/ log k. This implies that the probability of event (c) is at least ck/ log n for some

158 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

constant c. The expected number of hops required to diminish the current distance by factor

r or more is d(log n)/cke, which is O((log n)/k) as long as k = O(log n). For any initial

distance, the number of times the remaining distance can be diminished by factor r or more

is at most log n/ log r. Thus total path length is O(log2 n/(k log r)) hops on average. Since

r = k/ log k, total path length is O(log2 n
k log k) hops on average.

Theorem 8.8. R(n) = O
(

log2 n
k log k

)

, when 1 ≤ k ≤ log n, for greedy with 1-lookahead

routing in Symphony*.

Proof. Consider node x that holds a message destined for node y lying clockwise distance

d away. Using a lemma similar to Lemma 8.4.1, we can show that that greedy routing

takes O((log n log d)/k) hops. Therefore, if log d ≤ log n/ log k, then the remaining distance

can be covered by greedy with 1-lookahead (which is faster than plain greedy) in

O(log2 n/(k log k)) hops.

We now consider large d satisfying log n/ log k < log d ≤ log n. Let r(d) = (ck log d)/ log n

where d is the clockwise distance currently remaining and c is a constant that we will shortly

fix. Since log n/ log k < d ≤ log n, we deduce that ck/ log k < r ≤ ck. Let E denote the

event that the current node is able to diminish the remaining distance from d to at most

d/r(d) in (at most) two hops. Let φ(E) denote the probability that event E occurs. We will

shortly prove that φ(E) = Ω(k/ log n), independent of d. Thus the expected number of nodes

encountered before a successful event E occurs is O((log n)/k). Since ck/ log k < r, there

can be at most O(log n/ log k) such events for a total of O(log2 n/(k log k)) hops. When d

becomes small enough to satisfy log d < log n/ log k, plain greedy routing will take at most

O(log2 n/(k log k)) hops. Summing the two, the total number of hops is O(log2 n/(k log k)).

Proof of φ(E) = Ω(k/ log n): Recall that E is the event that the current node is able

to diminish the remaining distance d to at most d/r(d) in (at most) two hops. Let d ′ =

dd(1 − 1/r(d))e. Let ψ denote the probability that node x has a link in [d′, d]. There are at

least k log d/ log n nodes (including x itself) reachable from x in zero or one hop, such that

the node is at most clockwise distance d away. Let ψ denote the probability that such a node

has a link in [d′, d]. Overall, the probability that one or more of these nodes has a link in

[d′, d] is φ(E) ≥ 1−(1−ψ)(k log d/ log n). We will shortly show that ψ ≥ c′k/(r(d) log n) where

c′ is some constant. We had defined r(d) = (ck log d)/ log n. We set c = c′. This ensures

that (c′k/(r(d) log n))(k log d/ log n) = k/ log n ≤ 1. Using the fact that 1− (1− x)t ≥ xt/2

8.5. THE BIT-COLLECTION PROTOCOL 159

if x ∈ (0, 1) and xt ≤ 1, we deduce that φ(E) ≥ (c′k2 log d)/(2r(d) log2 n). Substituting

r(d) = (c′k log d)/ log n, we get φ(E) ≥ k/(2 log n).

Proof of ψ = Ω(k/(r(d) log n)): Recall that ψ denotes the probability that node x

has a link in [d′, d] where d′ = dd(1− 1/r(d))e. From the definition of δ for Symphony*,

ln δ = (lnn)/k. If [d′, d] is completely contained in some interval Ii (for definition of Ii, see

the definition of Symphony*), then ψ = s−1
i

∑

i∈[d′,d] 1/i. Now
∑

i∈[d′,d] 1/i = Ω(ln 1/(1 −
1/r(d)) = Ω(1/r(d)). Substituting s−1

i = Ω(k/ log n), we get ψ = Ω(k/(r(d) log n)). If [d′, d]

spans two intervals Ii and Ii+1, then ψ = ψ1 + ψ2 − ψ1ψ2, where ψ1 = s−1
i

∑

i∈[d′,δi] 1/i

and ψ2 = s−1
i+1

∑

i∈(δi ,d] 1/i. Using the fact that a + b − ab ≥ 3
4 (a + b) if a + b ≤ 1,

we deduce that ψ ≥ 3
4(ψ1 + ψ2). Since both s−1

i and s−1
i+1 are Ω(k/ log n), we get ψ ≥

3
4(ck/ log n)

∑

i∈[d′,d] 1/i, where c is some constant. It follows that ψ = Ω((k/ log n) ln 1/(1−
1/r(d))) = Ω(k/(r(d) log n)).

When k = Θ(log n), R(n) = Θ(log n/ log log n), which is optimal.

We believe that Chord with log n short-distance links (with other nodes in the immediate

neighborhood of a node along the circle) could also route in Θ(log n/ log log n) hops on

average, if we restrict the usage of 1-lookahead to long-range contacts of only the set of

log n short-distance neighbors.

8.5 The Bit-Collection Protocol

In this Section, we will study the following two randomized networks, each defined over

n = 2` nodes lying on a circle, labeled 0 through n− 1. Each node makes a short-distance

connection with its successor, and a few long-distance connections randomly:

✫ Sparse-Chord [M03]

In Chord, a node makes ` − 1 long-distance connections with other nodes at the

following clockwise-distances: 〈n2 , n
4 ,

n
8 , . . . , 4, 2〉. In Sparse-Chord, each node chooses

k ≥ 1 out of these out-going links at random.

✫ Sparse-Hypercube [M03]

In a hypercube, a node makes ` long-distance connections with other nodes corre-

sponding to bit-flips in each of ` positions of its label written in binary. In Sparse-

Hypercube, each node chooses k ≥ 1 out of these out-going links at random.

160 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

Theorem 8.9. It is possible to route in O(log n log log n) hops on average in Sparse-Chord

and Sparse-Hypercube with k = 1.

Proof. Let b = dlog2 ne bits. In Sparse-Chord with k = 1, we use a non-greedy routing

strategy: Let the distance remaining to the destination be d. Let b′ = dlog2(4b ln b)e bits. If

the long link of the current node corresponds to one of the top (most significant) b− b ′ bit

positions where d represented in binary has a 1, then forward the message along the long

link. Otherwise, forward the message clockwise along the short link. Forwarding along a

long link removes some 1 among the top b− b′ bits. The lower order b′ bits act as a counter

that diminishes by 1 whenever a short link is followed.

The protocol is reminiscent of the classic Coupon Collection problem (see, for example,

the book by Motwani and Raghavan [MR95]). Essentially, we have to collect at most b− b ′

coupons where the probability of collecting a coupon in one step is 1/b. The expected

number of steps required to collect b− b′ bits is at most b ln b+ Θ(b) steps. Building upon

this intuition, it can be shown that on average, routing requires O(b log b) hops. Since

b = O(log n), average route length is O(log n log log n).

Theorem 8.10. It is possible to route in O(log n) hops on average in Sparse-Chord and

Sparse-Hypercube with k = Θ(log log n).

Proof. Let b = dlog2 ne bits. With k = O(log b) links chosen uniformly out of the b possible,

average route length diminishes to O(1
k log n log log n). When k = Θ(log log n), average

route length is only O(log n).

8.6 Related Work

The results in this Chapter have connections with several research areas.

8.6.1 Random Graphs

Random graphs have been studied since 1950s by mathematicians (see books by Bol-

lobás [B01] and Spencer [S01] for theoretical foundations of this area). Traditionally, random

graphs have been studied for properties like diameter, connectivity and chromatic number.

For example, Bollobás and Chung [BC88] prove that the diameter of a cycle graph aug-

mented with a random matching is small. Decentralized routing strategies in random graphs

have received attention only recently, beginning with Kleinberg’s paper [K00].

8.6. RELATED WORK 161

8.6.2 Long-range Percolation

In a classical percolation model called “long range percolation”, nodes lie on an infinite

lattice and an edge exists between a pair of nodes with some positive probability. The

question of existence of infinite components was considered by Schulman [S83], Aizenman

and Newman [AN86] and Newman and Schulman [NS86], where the one dimensional lattice

Z is studied and edges (i, j) are selected with probability β/‖i − j‖s for some values β, s.

Benjamini and Berger [BB01] proposed and studied a finite percolation model: a cycle

graph over n nodes where an edge between nodes i and j exists with probability 1 if

‖i − j‖ = 1, otherwise, it exists with probability exp(−β/‖i − j‖s), for some constants β,

s. The norm ‖i − j‖ denotes the clockwise distance from node i to j (arithmetic is being

done modulo n). Coppersmith et al [CGS02] extended the model to multiple dimensions.

Their model has a d−dimensional mesh instead of a one-dimensional ring. Coppersmith et

al established that the diameter of the resulting graph is Θ(log n/ log log n) w.h.p. Their

proof used the neighbor-of-neighbor approach for part of the way, and a non-constructive

argument for the rest of the way. Thus their proof leaves open the question of whether

there exists some efficient decentralized routing algorithm whose performance can match

the bound on the diameter asymptotically.

The randomized routing networks that we analyzed in this Chapter share structural

similarities with a network in which nodes are associated with a d−dimensional torus, and

an edge (i, j) is established with probability 1
||i−j||d . In reference [MNW04], we call this

network a Small-World Percolation Network.

Definition (Small-World Percolation Network [MNW04]). The probability that an

edge (u, v) exists is 1/δabsolute(u, v), where δabsolute denotes the absolute distance

between u and v along the circle. The out-degree of a node is not fixed; it is a

random variable. The distance-function for routing is δabsolute.

In reference [MNW04], it is shown that greedy routing in the Small-World Percola-

tion Networks requires Θ(log n) hops in expectation, whereas greedy with 1-lookahead

requires only Θ(log n/ log log n) hops on average. In fact, the paper establishes high prob-

ability bounds for both results.

The relationship between Symphony and the Small-World Percolation Network is as

follows. Symphony is a directed graph. It does not choose each edge independently. Instead,

each node chooses k edges independently, with replacement. For each edge, the clockwise

162 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

distance to the destination is drawn from a probability distribution p(x) = 1/(x log n) for

x ∈ [1, n]. Intuitively, p(x) is similar in behavior to setting s = 2 and using the function

β/|i− j|2 instead of exp(−β/|i − j|2).

8.6.3 Small-World Models

Random graphs find applications in devising models that possess statistical properties of

associations occurring in nature, e.g., social acquaintanceship networks, electric power grids,

telephone call graphs, neural wiring of worms and influence networks (see the book by

Barabási [B02] for many more examples). The so-called “Small World Models” such as

those by Watts and Strogatz [WS98] are characterized by a successful mixture of regularity

and randomness to faithfully reproduce three statistical properties: the “characteristic path

length”, the “average vertex degree” and the “clustering coefficient” (see Newman et al

[NWS02]). An important property ignored by these models is the existence of short routes,

i.e., the small-world phenomenon. In this regard, Kleinberg’s work [K00] is the first to study

decentralized routing properties of random graphs.

8.6.4 Kleinberg’s Small-World Networks

Decentralized routing algorithms for random graphs have been developed only recently, be-

ginning with Kleinberg’s work [K00]. Several results pertaining to Kleinberg’s construction

with only one long-distance link per node have been obtained: The original paper showed

that greedy routing requires only O(log2 n) hops. Barrière et al [BFKK01] showed that

greedy routing takes Ω(log2 n) steps in 1D, thereby providing a matching lower bound.

Martel and Nguyen [MN04] establish the same result using a different proof technique.

They also show that the diameter of Kleinberg’s construction is Θ(log n) in any dimension.

They also develop new decentralized routing algorithms which require O(log3/2 n) hops in

expectation in 2D and O(log1+1/d n) hops in d-dimensions for d ≥ 1. Lebhar and Scha-

banel [LS04] have developed a different decentralized routing algorithm that requires only

O(log n log2 log n) hops on average. Fraigniaud et al [FGP04] study an interesting variant

of greedy routing in multiple dimensions. Their routing scheme requires O(log1+1/d n)

hops on average in d-dimensions if each node is equipped with O(log2 n) bits of “topological

awareness”. Aspnes et al [ADS02] studied a generalization of Kleinberg’s construction.

They show that if each node makes k long-distance links, each using a common probability

8.6. RELATED WORK 163

distribution function, then average route length is Ω(log2 n/(k log log n)), no matter which

distribution is used.

Symphony [MBR03] is an adaptation of Kleinberg’s static routing [K00] network could

be adapted to arrive at a randomized P2P topology. Symphony establishes k links per node

and routes in O((log2 n)/k) hops on average as long as k ≤ log2 n.

Aspnes et al [ADS02] studied greedy routing in Kleinberg-style networks where each

node establishes long-distance links by drawing random numbers drawn from some fixed but

unknown probability distribution. They showed that greedy requires Ω(log2 n/(k log log n))

hops on average if each node has k links and each link is used along only one direction. The

randomized topologies we study in this paper do not fall into the general class studied by

Aspnes et al because the long-distance links are drawn from different distributions.

8.6.5 Greedy without Lookahead in Deterministic Networks

Xu et al [XKY03] have studied greedy routing with distance function δclockwise over

uniform graph topologies. A graph over n nodes placed in a circle is said to be uniform if

the set of clockwise offsets of out-going links is identical for all nodes. Chord is an example

of a uniform graph. Xu et al show that for any uniform graph with O(log n) links per

node, greedy routing with distance function δclockwise necessitates Ω(log n) hops in the

worst-case.

Cordasco et al [CGH+04] have shown that greedy routing with distance function

δclockwise in a uniform graph over n nodes satisfies the inequality n ≤ F (d+ ∆ + 1), where

d denotes the out-degree of each node, ∆ is the length of the longest greedy path, and

F (k) denotes the kth Fibonacci number. It is well-known that F (k) = [φk/
√

5], where

φ = 1.618 . . . is the Golden ratio and [x] denotes the integer closest to real number x. It

follows that 1.44 log2 n ≤ d + ∆ + 1. Cordasco et al show that the inequality is strict if

|d−∆| > 1. For the case |d−∆| ≤ 1, they construct uniform graphs based upon Fibonacci

numbers which achieve an optimal tradeoff between d and ∆.

Papillon (see reference [AMM04] or Chapter 6) is a non-uniform graph topology that

offers greedy routes of length O(log n/ log d) hops when each node makes d out-going links

per node.

164 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

8.6.6 Viceroy- and Mariposa-style Randomized Networks

The randomized networks that we studied in this Chapter are constructed with the fol-

lowing sequence of operations: (a) Generation of local random bits, (b) Establishment of

long-distance links, and (c) Inspection of non-local random bits for routing (e.g., greedy

with 1-lookahead). Viceroy [MNR02] and Mariposa [M03] (see also Chapter 9) are two

randomized routing networks that follow a different sequence of operations: (a) Gener-

ation of local random bits, (b) Inspection of non-local random bits for establishment of

long-distance links, and (c) Routing. Both Viceroy and Mariposa are adaptations of but-

terfly networks. Viceroy routes in Θ(log n) hops with only Θ(1) out-going links per node.

Mariposa has 3`+ 3 out-going links per node, and can route in O(log n/ log `) hops in the

worst-case, which is asymptotically optimal.

8.7 Discussion

Effect of Randomization upon Route Lengths: Randomization of edges actually

reduces the average length of shortest paths in Chord and hypercubes. The reason is that

the randomization enables a routing algorithm to use an ‘exceptionally’ long edge once in

a while. The density of these long edges is just large enough so that the 1-lookahead

finds them. In a ‘perfect’ skip graph, Chord, and in the hypercube - these long edges do

not exist. Our results show that safety has a price: while these network topologies have

guaranteed worst-case route-lengths, they enlarge the expected length of routes.

System Issues with 1-lookahead: An implementation of greedy with 1-lookahead

routing strategy necessitates that each node acquire knowledge of its neighbor’s neighbors.

At first glance, it might appear that maintenance of such knowledge is problematic since

it is tantamount to squaring the degree of the graph and therefore, squaring the size of

the routing table at each node. However, it is important to note that the bottleneck in the

system is actually the run-time cost of keep-alives exchanged between nodes for maintaining

the TCP links between them. This cost remains unchanged, irrespective of which routing

protocol we use: greedy with/without 1-lookahead. Updates to neighborhood sets can

easily be piggy-backed on top of the “keep-alive” messages. Also note that the neighbor-

of-neighbor information at a node does not have to be perfectly up-to-date at all times to

derive the benefits of 1-lookahead.

8.8. SUMMARY AND FUTURE WORK 165

8.8 Summary and Future Work

We studied greedy routing with/without 1-lookahead in a variety of randomized routing

networks: Randomized-Chord, Randomized-Hypercube and Symphony.

Future research directions:

1. It is well-known that de Bruijn graphs and butterfly networks (see the book by

Leighton [L92]) can route in Θ(log n/ log log n) hops with Θ(log n) links per node.

The results of this paper have revealed another family of networks with the same

tradeoff – these networks are randomized. In Chapter 9, we will describe yet another

family of randomized networks with the same tradeoff – the new family has a different

philosophy underlying its construction. We hope that our results inspire further in-

vestigations into the general properties of these randomized/deterministic networks,

and the relationships among them.

2. We suspect that when greedy with 1-lookahead routing is employed in Sym-

phony/Symphony*, the average route length is Ω(log2 n/(k log k)) hops.

3. Aberer [A02] has proved an interesting result in the context of P-Grid [ACMD+03].

He considers the scenario where nodes choose their IDs from [0, 1) in an adversarial

fashion. Now if we construct a randomized hypercube (see [A02] for the precise

definition used by Aberer since it is different from our definition of Randomized-

Hypercube), then the average route length is O(log n) hops. It might be interesting

to extend results pertaining to greedy routing to adversarial choices of IDs.

4. What is the diameter of Symphony for general values of k, the number of long-distance

links established by every node? When k = Θ(log n), we showed that the diameter is

Θ(log n/ log log n). For general k, tight bounds on the diameter are not known.

166 CHAPTER 8. GREEDY ROUTING WITH LOOKAHEAD

Chapter 9

Mariposa: A Randomized

Butterfly

In this Chapter, we describe Mariposa, a randomized routing network whose design philos-

ophy differs from the randomized networks we studied in Chapters 7 and 8. The difference

lies in whether a node learns about the random choices made by other nodes before or after

link-establishment. We explain the point in more detail below.

In Randomized-Chord [ZGG03,GGG+03], Randomized-Hypercube [CDHR03,GGG+03],

Symphony (see reference [MBR03] or Chapter 7), SkipNet [HJS+03], skip-graphs [AS03] and

Small-World Percolation Networks [MNW04], the routing network is constructed as follows.

Each node generates some random bits locally, and establishes links with other nodes on

the basis of the bits it generates. After link-establishment, a node can inspect the random

bits of other nodes (typically, its neighbors with whom it has established links) for making

good routing decisions. For example, “greedy with 1-lookahead routing” (studied in

Chapter 8) follows this paradigm. In Mariposa, each node first generates some random

bits locally. It then inspects the random bits of a few other nodes before it establishes its

long-distance links. The knowledge gained by inspecting other nodes’ random bits is used

for making good decision for link-establishment itself.

In a nutshell, all routing networks in Chapter 8 used the following sequence of operations:

➢ Generation of local random bits.

➢ Establishment of long-distance links.

➢ Inspection of non-local random bits for routing.

167

168 CHAPTER 9. MARIPOSA: A RANDOMIZED BUTTERFLY

Mariposa uses the following sequence of operations:

➢ Generation of local random bits.

➢ Inspection of non-local random bits for establishment of long-distance

links.

➢ Routing.

Mariposa is an interesting combination of butterfly networks and Kleinberg’s small world

construction [K00]. With 3` + 3 out-going links per node, worst-case route lengths are

O(log n/ log `) hops with high probability†, which is asymptotically optimal. Mariposa

improves upon Viceroy [MNR02], an earlier butterfly-based construction that routes in

O(log n) hops in expectation with Θ(1) links per node.

From a systems standpoint, Mariposa and Viceroy are complex constructions. However,

understanding them yields insights into the design space of randomized routing networks,

and sheds light on the algorithmic relationships between various randomized and determin-

istic routing networks.

Summary of Results

In §9.1, we describe the construction of Mariposa.

In §9.2, we prove the O(log n/ log `) bound for the worst-case routes in Mariposa.

In §9.4, we summarize and present directions for further research.

9.1 Mariposa: the Construction

Mariposa‡ is constructed over n nodes lying on the circumference of a circle. We will deal

with two distributions:

✫ Random Distribution: Each node has chosen its position independently and uniformly

at random on the circumference of the circle.

✫ Regular Distribution: The n nodes occupy positions corresponding to the corners of a

regular n-gon circumscribed by the circle.

Each node in Mariposa maintains three real numbers:

†By “with high probability” (w.h.p.), we mean “with probability at least 1 − O(n−λ) for some constant
λ > 1, for a system with n participants”.

‡Mariposa means butterfly in Spanish.

9.1. MARIPOSA: THE CONSTRUCTION 169

✧ Position p

Each node will be assigned a position lying in the unit interval I = [0, 1). It is convenient

to imagine I as a circle with unit perimeter. The binary operators + and − wrap around

the interval I. In other words, x + y denotes the point that lies clockwise distance y

away from x along the circle. Similarly, x− y denotes the point that lies anti-clockwise

distance y away from x.

For a random distribution of nodes, position p is chosen uniformly at random from I.
For a regular distribution of nodes, position p is a real number in I, corresponding to

one of the vertices of a regular n-gone circumscribed by the circle.

✧ Estimate ñ

For random distribution of nodes, in Chapter 4, we had described a distributed Network

Size Estimation procedure by which a node can estimate the number of nodes as ñ,

with the guarantee that ñ ∈ [1
4n, 4n]. Such an estimate can be made by inspecting the

positions of a few adjacent nodes along the circle. We re-state this result as Lemma 9.2.1

in Section 9.2.

For regular distribution of nodes, ñ = n.

✧ Range r

A node chooses as its range r, a real number drawn from a range probability distribution

Pñ = 1/(x ln ñ) for x ∈ [1/ñ, 1]

Distribution Pñ is simply the continuous version of the discrete distribution in Klein-

berg’s paper [K00]. A node at position p with range r is said to span the interval

[p − r, p] ∪ [p, p + r]. Note that [p − r, p] and [p, p + r] could have more than one point

in common if r ≥ 0.5.

Hereafter, we will not make a distinction between random and regular distribution of

nodes. We will assume that each node maintains ñ, an estimate of the total number of

nodes. By setting ñ = n, we obtain the construction over a regular distribution of nodes.

Each node maintains 3` + 3 outgoing links where ` ≥ 1. We will assume that ` =

O(polylog(n)). For ` ≥ 2, a node establishes 1 short link, 2 intermediate links, 2` long links

and at most ` global links. When ` = 1, a node maintains 1 short link, 1 intermediate link,

2 long links and at most 2 global links. In any case, the total number of links is 3`+ 3 for

170 CHAPTER 9. MARIPOSA: A RANDOMIZED BUTTERFLY

` ≥ 1.

Short and Intermediate Links

A short link is established with the clockwise successors of a node. For ` ≥ 2, intermediate

links are established with two nodes that are dlog ñe and dlog ñ/ log `e hops away in the

clockwise direction along the circle. When ` = 1, only one intermediate link is established

with the node that is dlog ñe hops away in the clockwise direction.

Short and intermediate links are used to route when the target is known to be nearby.

Lemma 9.2.3 will show that a node that is O(log2 n/ log `) hops away is reachable in only

O(log n/ log `) steps.

Long Links

Long links lie at the heart of our protocol. A node at position p with range r partitions the

interval [p − r, p] into ` non-overlapping equi-sized sub-intervals and establishes one long

link per sub-interval. It establishes ` additional links by partitioning the interval [p, p+ r]

into ` non-overlapping equi-sized sub-intervals. Note that [p− r, p] and [p, p+ r] would have

more than one point in common if r ≥ 0.5.

Let Isub denote one of the sub-intervals of [p − r, p] or [p, p + r]. By definition, its size

is |Isub| = r/`. Let psub denote the mid-point of Isub. We now define an interval Isearch

with |Isearch| = 64 ln2 ñ/(ñ ln `), centered at psub. Note that |Isearch| is independent of r.

If |Isearch| ≥ |Isub|/2, we say that Isub is a small sub-interval. Otherwise Isub is said to

be a large sub-interval. If Isub is small, we establish a link with the manager of the point

psub− r/(2`). If Isub is large, we invoke a routine called Search. The goal of Search is to

discover some node whose position is within Isearch and whose range lies within the interval

[3r/(4`), 7r/(8
√
`)]. It is easy to see with |Isearch| < |Isub|/2, it is guaranteed that the span

of such a node would include every point of Isub. As Lemma 9.2.5, we will prove that w.h.p.,

all invocations of Search succeed. This is because the interval Isearch is sufficiently large

in size.

For a node at position p with range r, we claim that all points within [p−r, p]∪[p, p+r] are

reachable by short paths. To reach the manager of some point, we identify the sub-interval

to which the point belongs and forward the lookup along that long link that corresponds to

this sub-interval. If the sub-interval is small, we arrive at a node such that the destination

is no more than 64 ln2 ñ/(ñ ln `) away. At this point, intermediate and short links can carry

9.2. ANALYSIS 171

out further routing. Lemmas 9.2.2 and 9.2.3 will show that this requires no more than

O(lnn/ ln `) steps. If the sub-interval is large, we arrive at a node whose range is at most

7r/(8
√
`). The idea is that shrinking by a factor of 7/(8

√
`) limits the number of long links

along any path to O(lnn/ ln `). We will prove our claims formally in Section 9.2.

One aspect of our construction remains. A lookup request can originate at a node that

does not include the destination in its span. This might happen if r < 0.5. In such a case,

how do we reach a node with range large enough to include the destination? Global links

solve this problem.

Global Links

Global links are established by a node with range r < 0.5. Consider I− [p−r, p+r] where I

denotes the full circle. For ` ≥ 2, we partition the interval I − [p− r, p+ r] into ` equi-sized

sub-intervals having size (1 − 2r)/` each. For each sub-interval Isub, we invoke Search

with the size and location of Isearch being similar to our earlier description for long link

establishment. The only change is that Search looks for a node with range lying in the

interval [3(1 − 2r)/(4`), 1]. When ` = 1, we partition I − [p − r, p + r] into two equi-sized

sub-intervals with size (1−2r)/2 each. Search is invoked twice to look for a pair of nodes,

one in each sub-interval, with ranges lying in [3(1 − 2r)/8, 1].

When a node initiates a lookup request, it forwards it along that global (or local) link

whose span includes the destination point. Thereafter, the request is forwarded along a

series of long links until we reach a sub-interval that is small. Hereafter, intermediate and

short links are used for routing.

9.2 Analysis

Lemma 9.2.1. With probability at least 1 − 2/n, all nodes in a network of size n have

ñ ∈ [14n, 4n], assuming a random distribution of nodes.

Proof. From Theorem 4.2 (for sufficiently small δ).

We will establish that w.h.p., the worst case route length is O(lnn/ ln `) for ` =

O(polylog(n)). The overall proof idea is as follows. First, we show that small sub-intervals

do not have high densities (A sub-interval is small if its size is less than 64 ln2 ñ/(ñ ln `).

In particular, we will show that w.h.p., no small sub-interval has more than O(ln2 n/ ln `)

172 CHAPTER 9. MARIPOSA: A RANDOMIZED BUTTERFLY

nodes. Next, we will establish that with probability at least 1 − 3`/n, all invocations of

Search succeed. The resulting topology enjoys the property that path lengths of lookups

are guaranteed to be as small as O(lnn/ ln `). Overall, we would have proved that w.h.p.,

the worst case route length for a lookup is O(lnn/ ln `).

Lemma 9.2.2. With probability at least 1 − 2/n, no small sub-interval has more than

O(ln2 n/ ln `) nodes.

Proof. Using Chernoff Inequality and Lemma 9.2.1, we can show that with probability at

least 1−2/n2, a particular sub-interval cannot be dense. Summing over all nodes, we obtain

the requisite bound.

The role of intermediate links is to route quickly to any node that is O(ln2 n/ ln `) hops

away along the circle.

Lemma 9.2.3. Intermediate and short links can be followed to reach any node that is

O(ln2 n/ ln `) hops away in the clockwise direction in O(lnn/ ln `) steps.

Proof. The longer of the two intermediate links can be followed in succession to reach

a node that is at most O(lnn) hops away. This requires O(lnn/ ln `) steps. Then the

shorter of the intermediate links can be followed to reach a node within O(lnn/ ln `) hops

of the destination. This requires O(ln `) steps. Finally, O(lnn/ ln `) short links can be

followed to reach the destination. Since ` = O(polylog(n)), the total number of steps is

O(lnn/ ln `).

For small sub-intervals, long and global link establishment always succeeds. If the sub-

interval is large, there is a chance that Search fails.

Lemma 9.2.4. An invocation of Search fails with probability at most 1/n2.

Proof. We will prove the lemma for long links. The proof for global links is along the same

lines.

Search is invoked only if |Isub|/2 > |Isearch|. This implies r/2` > 64 ln2 ñ/(ñ ln `),

where ñ is the estimate of the node that invoked Search. Thus, 3r/(4`) > 96 ln2 ñ/(ñ ln `)

> 16/ñ for large n. From Lemma 9.2.1, 16/ñ ≥ 4/n, which is definitely larger than 1/ñ for

any node in Isearch being probed.

When establishing long links, the goal of Search is to discover some node whose range

lies in [3r/(4`), 7r/(8
√
`)]. The probability that the range of a node with estimate ñ lies

9.2. ANALYSIS 173

in this interval is given by p =
∫ 7r/8

√
`

3r/4` 1/(x ln ñ)dx. In the preceding paragraph, we

showed that 3r/4` ≥ 1/ñ for any node in Isearch. Therefore, the value of the integral

is (ln 7
6

√
`)/ ln ñ. From Lemma 9.2.1, this quantity is at least (ln 7

6

√
`)/(2 ln n).

|Isearch| = 64 ln2 ñ/(ñ ln `). Lemma 9.2.1 yields |Isearch| ≥ 8 ln2 n/(n ln `) for large n.

Let us fix the position of the node which invoked Search. Consider the sequence of

n − 1 remaining nodes choosing their positions and ranges one by one. With probabil-

ity 1 − |Isearch|, the position does not lie in Isearch. Otherwise, with probability at least

(ln 7
6

√
`)/(2 lnn), Search succeeds. Thus the probability that no node makes Search

succeed is at most [1 − |Isearch| + |Isearch|(1 −
ln 7

6

√
`

2 ln n)]n−1 ≤ [1 − (8 ln2 n)(ln 7
6

√
`)

(n ln `)(2 lnn)]n−1 ≤
[1− 2 lnn

n]n−1 = o(1/n2).

Lemma 9.2.5. With probability at least 1− 3`/n, all invocations of Search succeed.

Proof. Lemma 9.2.4 shows that the probability that a particular invocation of Search fails

is at most 1/n2. Since there are at most 3`n total invocations, the probability that any of

them fails is at most 3`/n.

The next lemma shows that although we allow Search to probe all nodes in a rather

large sized Isearch, the expected number of nodes it needs to probe is much smaller.

Lemma 9.2.6. Search probes an average of O(lnn/ ln `) nodes before succeeding.

Proof. In the proof of Lemma 9.2.5, we proved that the probability that a node in Isearch

makes Search invoked for long links succeed is at least (ln 7
6

√
`)/(2 ln n). Thus the expected

number of nodes to be probed before we succeed is at most (2 lnn)/(ln 7
6

√
`) = O(lnn/ ln `).

The same bound can be established for Search invoked for global links.

We proved that w.h.p., all global and long links successfully get established. The result-

ing topology enjoys the property that all lookup paths are short.

Theorem 9.1. With probability at least 1 − (6 + 3`)/n, the worst case route length is

O(lnn/ ln `) hops, when ` = O(polylog(n)).

Proof. From Lemmas 9.2.1, 9.2.2 and 9.2.5, we conclude that with probability at least

1− (6 + 3`)/n, all estimates of n are within a factor of four, no small sub-interval is dense

and all long and global links get established. We show that the resulting graph has short

diameter.

174 CHAPTER 9. MARIPOSA: A RANDOMIZED BUTTERFLY

Routing proceeds in two phases. In the first phase, a lookup is forwarded along some

long or global link whose range is guaranteed to contain the destination. The request then

moves along a series of long links such that every node along the path has a range large

enough to contain the destination in its span. The first phase starts at some node with

range at most 1. From 9.2.1, when the first phase finishes, the last node will have range at

least 1/4n. Since each long link along the path shrinks the range by at least 8
7

√
`, the first

phase requires no more than O(lnn/ ln `) hops.

The second phase starts when we encounter a node with tiny range such that all its

sub-intervals are small. At this point, the destination is only O(ln2 n/(n ln `)) hops away

(Lemma 9.2.2). Intermediate and small links can reach the destination in O(lnn/ ln `) steps

(Lemma 9.2.3).

Total route length is thus O(lnn/ ln `) w.h.p.

Reducing the Out-degree

We briefly outline a construction that requires only 4 links per node for O(lnn) average

route length w.h.p. We set ` = 1 and get rid of global links. Note that a fraction ≈ (c/ lnn)

nodes will have their range smaller than c′/n for some constants c and c′. These nodes

will not establish long links since their range is tiny. They will instead establish two global

links each. Routing now requires that a lookup be forwarded to some node with tiny range.

Hereafter, the usual protocol works. We can reduce the number of links to only 3 per node

by removing the intermediate link as well. The resulting topology has an average route

length of O(lnn/ ln `). However, the high probability bound no longer holds.

9.3 Intuition

In this Section, we develop intuition underlying the design of several routing networks:

Chord, Kleinberg’s construction [K00], Symphony [MBR03], sparse-Chord (studied in Chap-

ter 8), Viceroy [MNR02], and Mariposa. We attempt to show that these networks constitute

a continuum of design choices with Chord and Mariposa lying at two extremes.

Consider a cycle graph on n nodes where vertices are labeled 0, 1, 2, . . . , n− 1 and there

is an edge between node i and node (i+1) mod n. A message can be routed clockwise from

a node to any other in at most n − 1 steps. By the introduction of a few more links per

node, routes can be made shorter.

9.3. INTUITION 175

Assume that a message destined for node xdest is currently in possession of node xsrc.

Let d = (n+xdest−xsrc) mod n, the distance between the nodes. Let h denote the number

of 1’s in xdest⊕xsrc, the Hamming distance between the two nodes. With the exception of

de Bruijn graphs, there seem to be two fundamental themes lying at the heart of existing

routing protocols: A route diminishes either the distance d or the Hamming distance h

to the destination. CAN [RFHK01], Chord [SMK+01], Kleinberg’s construction [K00],

Symphony [MBR03], Viceroy [MNR02] and Mariposa [M03] are designed with d in mind.

Hypercubes, Pastry [RD01a] and Tapestry [ZHS+04] are designed with h in mind. Routes

that diminish d do not necessarily diminish h and vice versa. However, the intuition behind

both flavors of routing has commonalities, e.g., a protocol gradually diminishes the number

of 1’s in either d or h. We now present a unified picture of routing networks that diminish

distance d during routing.

Distance Halving

Consider the function Cn(x) = (lnnx)/ lnn for x ∈ [1
n , 1]. This is the cumulative probability

distribution of Pn(x) = 1/(x ln n) for x ∈ [1
n , 1]. For x ∈ [1

n , 1], we will say that its notch

value is y = Cn(x). While routing, let the current distance to the destination be xcurrent

with notch value ycurrent. Let s = 1/ log2 n. If the current node has a link with notch value

between ycurrent − s and ycurrent, then we can forward the lookup along this link such that

xcurrent is at least halved and ycurrent diminishes by at least s. The maximum number of

times xcurrent can be halved (and ycurrent diminished by s) is at most 1/s = log2 n. This

intuition underlies several routing protocols that diminish distances.

1. The Chord routing network corresponds to every node establishing exactly log2 n links

corresponding to notch values 〈1− s, 1− 2s, 1− 3s, . . .〉. When a node wishes to route

to a point xcurrent away (with notch value ycurrent), it can immediately forward the

lookup along a link such that xcurrent is at least halved and ycurrent diminished by at

least s = 1/ log2 n. The worst-case route length is thus O(log n).

2. In Kleinberg’s construction [K00], each node establishes one long link with another

node at a distance drawn from a discrete distribution which is quite similar to Pn.

This is equivalent to choosing a notch value uniformly at random from [0, 1]. Routing

proceeds clockwise greedily. If the long link takes us beyond the destination, the

request is forwarded to a node’s successor. Otherwise, the long link is followed. Let

176 CHAPTER 9. MARIPOSA: A RANDOMIZED BUTTERFLY

us denote the current distance to the destination by xcurrent with notch value ycurrent.

With probability s = 1/ log2 n, the long link of the current node has notch value lying

between ycurrent− s and ycurrent. Thus the expected number of nodes that need to be

visited before we arrive at a node which halves xcurrent is 1/s = log2 n. Effectively, in

comparison with Chord, there is an inflation in average route lengths by a factor of

O(log n). Kleinberg’s routing scheme requires O(log2 n) steps.

3. Symphony extends Kleinberg’s idea in the following way. Instead of one long-distance

per node, there are k long-distance links where k ≤ log2 n. Effectively, a node gets

to choose k notches uniformly from [0, 1]. Loosely speaking, when we are at xcurrent

(with notch value ycurrent), we need to examine roughly (log2 n)/k nodes before we

encounter some link that diminishes xcurrent by at least half. Thus average route

length for Symphony is O(1
k log2 n) hops.

4. Sparse-Chord was studied in §8.5, and is defined as follows: Consider a cycle graph

on n nodes. Let b = dlog2 ne bits. A node with ID x chooses an integer r uniformly at

random from the set {1, 2, . . . , b} and establishes a link with node dx + n/2re mod n.

It is possible to route clockwise in Θ(lnn ln lnn) steps in expectation by using a non-

greedy decentralized routing strategy, as follows. Let the distance remaining to the

destination be d. Let b′ = dlog2(4b ln b)e bits. If the long link of the current node

corresponds to one of the top (most significant) b−b′ bit positions where d represented

in binary has a 1, then forward the message along the long link. Otherwise, forward

the message clockwise along the short link. Forwarding along a long link removes some

1 among the top b− b′ bits. The lower order b′ bits act as a counter that diminishes

by 1 whenever a short link is followed.

The protocol is reminiscent of the classic coupon collection problem [MR95]. Essen-

tially, we have to collect at most b− b′ coupons where the probability of collecting a

coupon in one step is 1/b. It is well known that all b−b′ bits can be collected in 2b ln b

steps in expectation. Building upon this intuition, it can be shown that on average,

routing requires O(b ln b) hops. Since b = O(lnn), average latency is O(lnn ln lnn).

With ` ≤ ln b links chosen uniformly out of the b possible, it can be shown that

average latency diminishes to O((lnn ln lnn)/`). With ln lnn links, average latency is

only O(lnn). For large values of `, a further improvement is possible. The key idea is

9.3. INTUITION 177

that ` links can be used to fix bln2 `c bits in one hop. It can be shown that for large

`, routing requires O((lnn/ ln `) ln(lnn/ ln `)) hops.

5. Viceroy: Before we describe Viceroy, let us investigate the Bit-Collection protocol

further. Bit-Collection is only a factor O(log(log n/ log `)) more expensive than the

best possible protocol. How could we possibly make it faster? By chaining the bits

being collected. We illustrate the idea for a network with n nodes. Consider a node

x with a finger that should point to dx + n/2re mod n for some integer r. This finger

fixes the rth most significant bit. If we could make it point to a node that fixes the

(r + 1)th bit, then we could hope to collect bits rapidly in succession. The key idea

is to search for a pair of nodes, one each in the vicinity of x and x + n/2r that both

fix the (r + 1)th bit. The two searches on average require only b steps each. How

would routing work? If x wishes to send a message to some node, we first search for

a node in the vicinity of x that fixes the top bit. This requires b steps on average.

Then, routing proceeds rapidly by fixing successive top-order bits. A problem that

emerges is that searches associated with the top order bits collectively introduce a

bias of roughly O(b2). If every node maintains an additional pointer that points a

fixed distance b away, the last stretch of length O(b2) can be covered in only O(b)

steps.

The intuition developed in the previous paragraph is exactly how Viceroy [MNR02]

would work if all nodes knew n precisely (that is, for a Regular distribution of IDs).

Using the terminology of notches developed earlier in this Section, Viceroy assigns each

node a notch value drawn uniformly at random from the set {1− s, 1−2s, 1−3s, . . .}.
The size of the set is log2 n. The relationship with Chord is the following. A Chord

node uses the entire set for link establishment resulting in log2 n links per node.

However, a Viceroy node at position p ∈ [0, 1) and notch value y (corresponding to

distance x = C−1
n (y)), searches intervals centered around points p and p+x for a pair

of nodes with notch value y − s.

6. Mariposa goes a step further than Viceroy. Instead of being restricted to a finite

number of discrete values for notch values, Mariposa chooses a notch-value in [0, 1)

uniformly at random. Moreover, Mariposa uses 3`+ 3 links per node as against Θ(1)

links used by Viceroy.

178 CHAPTER 9. MARIPOSA: A RANDOMIZED BUTTERFLY

9.4 Summary and Future Work

We described Mariposa, a combination of butterfly networks and Kleinberg’s small world

construction [K00] that routes in O(log n/ log `) hops with only 3`+ 3 links per node. The

construction is an improvement over Viceroy [MNR02] which routes in O(log n) hops on

average with only Θ(1) links per node. As future work, it would be interesting to understand

further the relationships between randomized and deterministic routing networks.

Chapter 10

Summary

A Distributed Hash Table (DHT) is a giant hash table that is cooperatively maintained by a

large number of machines worldwide. The machines join and leave the system autonomously.

The unprecedented scale and dynamism of the system calls for novel design techniques, with

emphasis on decentralization and automatic re-configuration. Briefly, each machine in a

DHT – a host on the Internet – is assigned an ID in I = [0, 1). The set of IDs divides I into

disjoint partitions, managed by one machine each. As a function of their IDs, the machines

set up connections among themselves. These connections are used for routing messages

between the machines. The challenge lies in devising efficient decentralized algorithms for

ID management and connection maintenance.

10.1 Our Contributions

In this thesis, we presented Dipsea, a modular architecture for building Distributed Hash

Tables (DHTs). A block-diagram for Dipsea is shown in Figure 10.1 on the next page.

The design consists of three layers: ID Management, Overlay Routing Layer and Data

Management – this thesis focuses on the first two layers. The modularity of the design

imbues the overall system with several good properties. A large complex problem is broken

down into smaller sub-problems, each of which can be attacked more or less independently.

This contributes to reduction in complexity — it is possible to explore the design space

of a sub-problem in its entirety without being encumbered by its interactions with other

sub-problems. Furthermore, the best solutions for individual sub-problems can be identified

and put together to arrive at a design that is far more powerful than a design arrived at by

179

180 CHAPTER 10. SUMMARY

DIPSEA

Choice of Long−Distance Links

ID MANAGEMENT

DATA MANAGEMENT

OVERLAY ROUTING

ID Management

EmulationRing
Management Engine

Figure 10.1: Dipsea: A three-layered architecture for building Distributed Hash Tables. Ef-
ficient algorithms for ID Management are described in Chapters 2 and 3. See Section 1.3
for a brief description of Ring Management. See Chapter 4 for the Emulation Engine, and
Chapters 5 through 9 for Choice of Long-Distance Links. Data Management is not discussed
in this dissertation.

a holistic approach.

Dipsea places existing DHT designs and improvements suggested for various DHTs into

a common algorithmic framework. A significant accomplishment is the identification of

layers and modules which are cleanly separated on the basis of functionality. Then for each

module, we devise and analyze efficient algorithms – almost all of the algorithms we propose

are the currently best-known algorithms for the corresponding modules.

A brief summary of our contributions in ID Management and Overlay Routing layers:

1. In Chapter 2, we presented a simple, decentralized ID Management algorithm which

is independent of the Overlay Routing layer. The algorithm requires O(R + log n)

messages and only one re-assignment of existing IDs in response to arrival or departure

of machines. R denotes the average number of messages required by the Overlay

Routing layer, and n denotes the current number of machines in the system. The

algorithm guarantees that the ratio of the largest to the smallest partition is Θ(1).

2. In Chapter 3, a generalization of the above scheme was presented. The analysis of the

generalized algorithm requires the solution to a novel Structured Coupon Collection

Problem over cliques with multiple-choices per trial. Using the generalized algorithm,

it is possible to carry out ID assignment in O(aR + b) messages, for any choice of a

and b satisfying ab ≥ c log n, where c is a suitably large constant.

10.1. OUR CONTRIBUTIONS 181

3. In Chapter 4, we presented the Emulation Engine which can emulate or track arbi-

trary families of deterministic and randomized routing networks. This enables users of

Dipsea to plug-and-play any family of routing networks. This is in sharp contrast with

first-generation DHT designs like CAN [RFHK01], Chord [SMK+01], Pastry [RD01a]

and Tapestry [ZHS+04], which are tied to specific families of routing networks. The

Emulation Engine successfully addresses issues pertaining to dynamism (arrivals and

departures of hosts), scale (variation in the total number of hosts in the system) and

physical network proximity (almost all the links should be low-latency). Crucially,

these issues are addressed independent of the family of routing networks being emu-

lated, in a generic fashion.

4. In Chapters 5 through 9, we designed and analyzed a variety of deterministic and

randomized routing networks. Chapter 5 contains a characterization of shortest paths

in Chord, a deterministic DHT routing network.

5. In Chapter 6, we designed Papillon, a butterfly-based graph defined over n nodes

placed in a circle. Papillon supports efficient greedy routing, in which each node

forwards a message along that out-going edge which reduces the clockwise distance to

the destination by the largest amount. Papillon routes in O(log n/ log d) hops with d

links per node, which is asymptotically optimal. This is the first known construction

that provides this tradeoff.

6. In Chapter 7, we designed Symphony, one of the first randomized routing networks

proposed for DHT routing. With k links per node, clockwise-greedy routing takes

O(1
k log2 n) hops on average.

7. In Chapter 8, we presented a tight analysis of clockwise-greedy routing with/without

lookahead in several randomized routing networks including Symphony, randomized

Chord, and randomized hypercube. The idea underlying “greedy with lookahead”

is to allow a node to use knowledge of its neighbor’s neighbors for better routing

decisions. We showed that greedy routing without lookahead requires Θ(log n) hops

whereas greedy with lookahead entails only Θ(log n/ log log n) hops. Empirically, the

average route length with lookahead is within 10% of the average route length in the

best-known deterministic constructions.

8. In Chapter 9, we presented Mariposa, an interesting combination of butterfly networks

182 CHAPTER 10. SUMMARY

and Kleinberg’s small-world construction. Mariposa also offers routes of O(log n/ log d)

hops in the worst case, with d out-going links per node. The design philosophy under-

lying Mariposa is different from that of randomized networks analyzed in Chapter 8.

The key difference is whether a node inspects the random choices made by other nodes

after or before it establishes its links.

10.2 Directions for Further Research

At the end of each Chapter, we outlined directions for further research related to the problem

we addressed in that Chapter. Below are outlined some high-level issues that merit further

investigation.

1. Heterogeneity : The design of Dipsea assumes that all hosts are homogeneous, i.e.,

identical in terms of resources they possess. Clearly this assumption is not true in the

real world. It would be interesting to extend Dipsea to incorporate heterogeneity of

hosts. See Godfrey and Stoica [GS04] for initial results along this direction.

2. Data Management : As new applications are built atop DHTs, we expect the require-

ments of application-specific Data Management modules to influence the design of the

Overlay Routing layer.

3. Locality : In a hierarchical name-space for distributed objects, real-world computations

exhibit locality of reference. A DHT name-space is flat since object-names are hashed

– locality is lost. One possible technique of introducing locality in a DHT is to limit

name-resolution to internal nodes of the hierarchy which are suitably far away from the

leaves (so that leaves below the name that was resolved are co-located at some server).

Efficient schemes for managing such name-resolution in a dynamically changing set of

distributed objects requires further investigation.

4. Caching : DHTs are useful for caching a large number of objects at a global scale,

where the replication factor of each object is proportional to its demand. One way

to achieve this goal is to cache an object along the route taken by a query to retrieve

the object. See the design of Tapestry [ZHS+04], CUP [RB03] or Beehive [RS04a],

for example. It would be interesting to build mathematical models for replication

strategies and to analyze them formally.

Appendix A

Proof of Lemma 2.3.1

Definitions from Section 2.3:

φ(`) = max{0, `− dlog2 `e − c}

χ(`) = 1 if ` = 0

2`−1 if φ(`) = 0 but ` 6= 0

2dlog2 `e+c−1 otherwise

Y (`) =
∑̀

i=0

Gχ(i),φ(i)

where Gχ(i),φ(i) denote the sum of χ(i) geometric random variables, each with probability

parameter 2−φ(i). Its expectation is EY (`) =
∑`

i=0 χ(i)2−φ(i) = 1 +
∑`

i=1 2i−1 = 2`.

A.1 Proof of Lemma 2.3.1(a)

Lemma A.1.1. For all values of t and p,

[
2pet

1− (1− 2p)et
]2 ≤ pet

1− (1− p)et

Proof. The claim is true iff 4pet(1 − (1 − p)et) ≤ (1 − (1 − 2p)et)2 which simplifies to

0 ≤ (1− et)2.

183

184 APPENDIX A. PROOF OF LEMMA 2.3.1

Lemma A.1.2. If δ ∈ [0, 1) and p ∈ [0, 1), then there exists et < 1/(1 − p) satisfying

pet

[1− (1− p)et]e(1+δ)t/p
≤ e−δ2/2

Proof. Setting e−t = (1 − p)(1 + δ)/(1 + δ − p), the expression above simplifies to (1 +

δ)
[

1− pδ
1+δ−p

]
1+δ−p

p
. Using the fact that (1 − δ

m)m ≤ 1 − δ + δ2/2 for positive m > δ, the

expression is no more than (1 + δ)(1 − δ + δ2/2) = 1− δ2(1 + δ)/2 ≤ e−δ2(1+δ)/2 < e−δ2/2.

It may be verified that et < 1/(1 − p) assuming δ ≥ 0 and p ∈ [0, 1).

Lemma A.1.3. Let N = 2`. Let c be a sufficiently large constant that satisfies

(δ2/2)2dlog2 `e+c−1 ≥ 2 logN

Then

Pr[Y (`) > (1 + δ)EY (`)] < 1/N 2

Proof. We employ the well-known Chernoff technique as outlined in Motwani and Ragha-

van [MR95]. Let (∗) denote Pr[Y (`) > (1 + δ)N]. Then

(∗) = Pr[exp(tY (`)) > exp((1 + δ)tN)]

= Pr[exp(tY (`)) > exp

(

(1 + δ)t
∑̀

i=0

χ(i)

p(i)

)

]

≤ [E exp(tY (`))] / exp

(

(1 + δ)t
∑̀

i=0

χ(i)

p(i)

)

(by Markov′s Inequality)

Now

E exp(tY (`)) = Π`
i=0Π

χ(i)
j=1E exp(tyij)

where yij is a geometric variable with parameter p(i). Now E exp(tyij) = p(i)et

1−(1−p(i))et ,

provided (1− p(i))et < 1. Note that this introduces the constraint et < 1/(1 − p(i)).

Therefore,

E exp(tY (`)) = Π`
i=0

[

p(i)et

1− (1− p(i))et

]χ(i)

A.1. PROOF OF LEMMA 2.3.1(A) 185

which yields

(∗) ≤
(

Π`
i=0

[

p(i)et

1− (1− p(i))et

]χ(i)
)

/ exp

(

(1 + δ)t
∑̀

i=0

χ(i)

p(i)

)

= Π`
i=0





p(i)et

[1− (1− p(i))et] exp (1+δ)t
p(i)





χ(i)

By repeated application of Lemma A.1.1, we transform the above expression into

(∗) ≤ Π`
i=0





p(i)et

[1− (1− p(i))et] exp (1+δ)t
p(i)





η(i)

where η(i) = 0 or η(i) = 1 for 0 ≤ i ≤ `− 1, and η(`) ≥ χ(`).

For i < `, each of the terms in the product above is no more than 1. Ignoring them, we

are left with the expression

(∗) ≤





p(`)et

[1− (1− p(`))et] exp (1+δ)t
p(`)





η(`)

We now use Lemma A.1.2 to claim that

(∗) ≤ e−δ2(1+δ)η(`)/2

Now η(`) ≥ χ(`) where χ(`) = 2dlog2 `e+c−1. Recall that N = 2` and that we chose

constant c such that (δ2/2)(1 + δ)2dlog2 `e+c−1 ≥ 2 logN . Therefore,

(∗) ≤ e−2 log N = 1/N2

Lemma 2.3.1(a) follows directly from Lemma A.1.3.

186 APPENDIX A. PROOF OF LEMMA 2.3.1

A.2 Proof of Lemma 2.3.1(b)

Lemma A.2.1. If δ ∈ [0, 1
2) and p ∈ [0, 1), then there exists et > 1− p satisfying

pe−t

[1− (1− p)e−t]e−(1−δ)t/p
≤ e−5δ2(1−14δ/15)/2

Proof. With et = 1− pδ
1−δ , the expression simplifies to 1−δ

1−2δ

(

1− pδ
1−δ

)
1−δ

p
. Using the inequal-

ity (1− δ
m)m < 1−δ+δ2/2 for m > δ, the expression is no more than 1−5δ2(1−14δ/15)/2 <

e−5δ2(1−14δ/15)/2 . It may be verified that et > (1− p) for δ ∈ [0, 1
2) and p ∈ [0, 1).

Lemma A.2.2. Let N = 2`. Let c be a sufficiently large constant that satisfies

(5δ2/2)(1 − 14δ/15)2dlog2 `e+c−1 ≥ 2 logN

Then Pr[Y (`) < (1− δ)EY (`)] < 1/N 2

Proof. Let (∗∗) denote Pr[Y (`) < (1− δ)N]. Then

(∗∗) = Pr[−Y (`) > −(1− δ)N]

= Pr[exp(−tY (`)) > exp(−(1− δ)tN)]

Continuing in the same manner as Lemma A.1.3, we finally obtain

(∗∗) ≤





p(`)e−t

[1− (1− p(`))e−t] exp −(1−δ)t
p(`)





η(`)

while introducing the constraint e−t(1 − p(`)) < 1, which is equivalent to et > (1 − p(`)).
Using Lemma A.2.1, we obtain

(∗∗) ≤ e−5δ2(1−15δ/14)η(`)/2

Substituting the value of c we chose, we obtain

(∗∗) ≤ e−2 log N = 1/N2

Bibliography

[A01] K Aberer. P-Grid: A self-organizing access structure for P2P informa-

tion systems. Proc. 9th Intl. Conference on Cooperative Information Systems

(CoopIS 2001), p. 179 – 194, 2001.

[A02] K Aberer. Scalable data access in peer-to-peer systems using unbalanced

search trees. Proc. 4th International Workshop on Distributed Data and Struc-

tures (WDAS 2002), p. 107 – 120, 2002.

[A04] N Alon. Problems and results in extremal combinatorics, II. Available as

http://www.math.tau.ac.il/~nogaa/PDFFS/publications.html, 2004.

[AAA+03] I Abraham, B Awerbuch, Y Azar, Y Bartal, D Malkhi, and

E Pavlov. A generic scheme for building overlay networks in adversarial

scenarios. Proc. Intl. Parallel and Distributed Processing Symposium (IPDPS

2003), 2003.

[ABKU99] Y Azar, A Z Broder, A R Karlin, and E Upfal. Balanced allocations.

SIAM Journal of Computing, 29(1):180–200, 1999.

[ACLW02] D Anderson, J Cobb, E K M Lebofsky, and D Werthimer.

SETI@home: An experiment in public-resource computing. Communications

of the ACM, 45(11):56–61, 2002.

[ACMD+03] K Aberer, P Cudré-Mauroux, A Datta, Z Despotovic,

M Hauswirth, M Punceva, and R Schmidt. P-Grid: A self-organizing

structured P2P system. SIGMOD Record, 32(2), 2003.

[ADS02] J Aspnes, Z Diamadi, and G Shah. Fault-tolerant routing in peer-to-peer

systems. Proc. 21st ACM Symposium on Principles of Distributed Computing

(PODC 2002), p. 223–232, 2002.

187

188 BIBLIOGRAPHY

[AHKV03] M Adler, E Halperin, R M Karp, and V V Vazirani. A stochastic

process on the hypercube with applications to peer-to-peer networks. Proc.

35nd ACM Symposium on Theory of Computing (STOC 2003), p. 575–584,

2003.

[AKK04] J Aspnes, J Kirsch, and A Krishnamurthy. Load balancing and locality

in range-queriable data structures. Proc. 23rd ACM Symposium on Principles

of Distributed Computing (PODC 2004), 2004.

[AMD04] I Abraham, D Malkhi, and O Dobzinski. LAND: Stretch (1+ ε) locality-

aware networks for DHTs. Proc. 15th ACM-SIAM Symposium on Discrete

Algorithms (SODA 2004), p. 543–552, 2004.

[AMM04] I Abraham, D Malkhi, and G S Manku. The degree-diameter greedy

routing problem. Manuscript, 2004.

[AN86] M Aizenman and C M Newman. Discontinuity of the percolation den-

sity in one dimensional 1/|x − y|2 percolation models. Communications in

Mathematical Physics, 107:611–647, 1986.

[AS03] J Aspnes and G Shah. Skip graphs. Proc. 14th ACM-SIAM Symposium on

Discrete Algorithms (SODA 2003), p. 384–393, 2003.

[B01] B Bollobás. Random Graphs. Cambridge University Press, 2nd edition,

2001.

[B02] A L Barabási. Linked: The New Science of Networks. Perseus Publishing,

2002.

[BB01] I Benjamini and N Berger. The diameter of a longe-range percolation

clusters on finite cycles. Random Structures and Algorithms, 19(2):102–111,

2001.

[BC88] B Bollobás and F R K Chung. The diameter of a cycle plus a random

matching. SIAM Journal on Discrete Mathematics, 1(3):328–333, 1988.

[BCM04] J W Byers, J Considine, and M Mitzenmacher. Geometric generaliza-

tions of the power of two choices. Proc. 16th ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA 2004), p. 54–63, 2004.

[BDET00] W J Bolosky, J R Douceur, D Ely, and M Theimer. Feasibility of a

serverless distributed file system deployed on an existing set of desktop PCs.

ACM SIGMETRICS 2000, p. 34–43, 2000.

BIBLIOGRAPHY 189

[BDQ92] J C Bermond, C Delorme, and J J Quisquater. Table of large (δ, d)-

graphs. Discrete Applied Mathematics, 37/38:575–577, 1992.

[BFKK01] L Barrière, P Fraigniaud, E Kranakis, and D Krizanc. Efficient

routing in networks with long range contacts. Proc. 15th Intl. Symposium on

Distributed Computing (DISC 2001), p. 270–284, 2001.

[BLNS82] A D Birrell, R Levin, R M Needham, and M D Shroeder.

Grapevine: An exercise in distributed computing. Communications of the

ACM, 25(4):260–274, 1982.

[BM72] R Bayer and E M McCreight. Organization and maintenance of large

ordered indexes. Acta Informatica, 1:173–189, 1972.

[BMR03] M Bawa, G S Manku, and P Raghavan. SETS: Search Enhanced by Topic

Segmentation. Proc. 26th Annual ACM SIGIR Conference (SIGIR 2003), p.

306–313, 2003.

[C52] H Chernoff. A measure of asymptotic efficiency for tests of a hypothe-

sis based on the sum of observations. Annals of Mathmematical Statistics,

23(4):493–509, 1952.

[CCR+03] B Chun, D Culler, T Roscoe, A Bavier, L Peterson, M Wawrzo-

niak, and M Bowman. Planetlab: An overlay testbed for broad-coverage

services. ACM SIGCOMM Computer Communications Review, 33(3):3–12,

2003.

[CDHR03] M Castro, P Druschel, Y C Hu, and A I T Rowstron. Topology-aware

routing in structured peer-to-peer overlay networks. Proc. Intl. Workshop on

Future Directions in Distrib. Computing (FuDiCo 2003), p. 103–107, 2003.

[CG92] F Comellas and J Gómez. New large graphs with given degree and diam-

eter. Graph Theory, Combinatorics and Algorithms, 1:221–233, 1992.

[CGH+04] G Cordasco, L Gargano, M Hammar, A Negro, and V Scarano.

F-Chord: Improved uniform routing on Chord. Proc. 11th Colloquium on

Structural Information and Communication Complexity, 2004.

[CGS02] D Coppersmith, D Gamarnik, and M Sviridenko. The diameter of a

longe-range percolation graph. Random Structures and Algorithms, 21(1):1–

13, 2002.

190 BIBLIOGRAPHY

[CHM+02] I Clarke, T Hong, S Miller, O Sandberg, and B Wiley. Protecting

free expression online with Freenet. IEEE Internet Computing, 6(1):40–49,

2002.

[CRB+03] Y Chawathe, S Ratnasamy, L Breslau, N Lanham, and S Shenker.

Making Gnutella-like P2P systems scalable. Proc. ACM SIGCOMM 2003,

2003.

[D04] C Delorme. The (Degree, Diameter) problem for graphs. Laboratoire de

Recherche en Informatique, Université Paris Sud, France. Available as http:

//maite71.upc.es/grup_de_grafs/table_g.html, 2004.

[dB46] N G d Bruijn. A combinatorial problem. Proc. Koninklijke Nederlandse

Akademie van Wetenschappen, 49:758–764, 1946.

[DCD+04] F Dabek, R Cox, F Dabek, F Kaashoek, and R Morris. Vivaldi: A

decentralized network coordinate system. Proc. ACM SIGCOMM 2004, 2004.

[DKK+01] F Dabek, M F Kaashoek, D Karger, R Morris, and I Stoica. Wide-

area cooperative storage with CFS. Proc. 18th ACM Symposium on Operating

Systems Principles (SOSP 2001), p. 202–215, 2001.

[DLS+04] F Dabek, J Li, E Sit, J Robertson, M F Kaashoek, and R Morris.

Designing a DHT for low latency and high throughput. Proc. 1st Symposium

on Networked Systems Design and Implementation (NSDI 2004), p. 85–98,

2004.

[DMW03] P S Dodds, R Muhamad, and D J Watts. An experimental study of

search in global social networks. Science, 301:827–829, 2003.

[DR98] D P Dubhashi and D Ranjan. Balls and bins: A study in negative depen-

dence. Random Structures and Algorithms, 13(2):99–124, 1998.

[DYN03] J Duato, S Yalamanchili, and L M Ni. Interconnection Networks: An

Engineering Approach. Morgan Kaufmann, 2 edition, 2003.

[E01a] D Eastlake. US Secure Hash Algorithm 1 (sha1). RFC 3174, IETF, 2001.

[E01b] G Exoo. A family of graphs and the degree/diameter problem. J. of Graph

Theory, 37:118–124, 2001.

[FG03] P Fraigniaud and P Gauron. (brief announcement) An overview of the

content-addressable network D2B. Proc 22nd ACM Symposium on Principles

of Distributed Computing (PODC 2003), p. 151–151, 2003.

BIBLIOGRAPHY 191

[FGP04] P Fraigniaud, C Gavoille, and C Paul. Eclecticism shrinks even small

worlds. Proc 23rd ACM Symposium on Principles of Distributed Computing

(PODC 2004), p. 169–178, 2004.

[G81] G H Gonnet. Expected length of the longest probe sequence in hash code

searching. Journal of the ACM, 28(2):289–304, 1981.

[GBGM04] P Ganesan, M Bawa, and H Garcia-Molina. Online balancing of range-

partitioned data with applications to peer-to-peer systems. Proc. 30th Intl.

Conf. on Very Large Data Bases (VLDB 2004), 2004.

[GBHC00] S D Gribble, E A Brewer, J M Hellerstein, and D Culler. Scal-

able, distributed data structures for Internet service construction. Proc. 4th

Symposium on Operating System Design and Implementation (OSDI 2000),

p. 319–332, 2000.

[GDS+03] K P Gummadi, R J Dunn, S Saroiu, S D Gribble, H M Levy, and

J Zahorjan. Measurement, modeling and analysis of a peer-to-peer file-

sharing workload. Proc. 19th ACM Symposium on Operating Systems Princi-

ples (SOSP 2003), 2003.

[GGG+03] K P Gummadi, R Gummadi, S D Gribble, S Ratnasamy, S Shenker,

and I Stoica. The impact of DHT routing geometry on resilience and prox-

imity. Proc. ACM SIGCOMM 2003, p. 381–394, 2003.

[GLS+04] B Godfrey, K Lakshminarayanan, S Surana, R M Karp, and I Sto-

ica. Load balancing in dynamic structured P2P systems. Proc. IEEE INFO-

COM 2004, 2004.

[GM04] P Ganesan and G S Manku. Optimal routing in Chord. Proc. 15th ACM-

SIAM Symposium on Discrete Algorithms (SODA 2004), p. 169–178, 2004.

[GS04] P B Godfrey and I Stoica. Heterogeneity and load balance in distributed

hash tables. Technical report, University of California at Berkeley, 2004.

[H63] W Hoeffding. Probability inequalities for sums of bounded random vari-

ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[HJS+03] N J A Harvey, M Jones, S Saroiu, M Theimer, and A Wolman.

SkipNet: A scalable overlay network with practical locality properties. Proc.

4th USENIX Symposium on Internet Technologies and Systems (USITS 2003),

2003.

192 BIBLIOGRAPHY

[HKMR04] K Hildrum, J Kubiatowicz, S Ma, and S Rao. A note on the nearest

neighbour in growth-restricted metrics. Proc. 15th ACM-SIAM Symposium

on Discrete Algorithms (SODA 2004), p. 553–554, 2004.

[HM03a] N Harvey and J I Munro. (brief announcement) Deterministic SkipNet.

Proc 22nd ACM Symposium on Principles of Distributed Computing (PODC

2003), p. 152–153, 2003.

[HM03b] K Horowitz and D Malkhi. Estimating network size from local informa-

tion. Information Processing Letters, 88(5):237–243, 2003.

[HMU00] J E Hopcroft, R Motwani, and J D Ullman. Introduction to Automata

Theory, Languages and Computation. Pearson Addison Wesley, 2 edition,

2000.

[IRD02] S Iyer, A I T Rowstron, and P Druschel. Squirrel: A decentralized,

peer-to-peer web cache. Proc. 21st ACM Symposium on Principles of Dis-

tributed Computing (PODC 2002), p. 213–222, 2002.

[JK77] N L Johnson and S Kotz. Urn Models and their Applications: An Approach

to Modern Discrete Probability Theory. John Wiley and Sons, 1977.

[K68] W H Kautz. Bounds on directed (d, k) graphs. Theory of Cellular Logic

Networks and Machines (AFCRL-68-0668, SRI Project 7258, Final Report),

p. 20–28, 1968.

[K69] W H Kautz. Design of optimal interconnection networks for multiproces-

sors. Architecture and Design of Digital Computers (Nato Advanced Summer

Institute), p. 249–272, 1969.

[K00] J Kleinberg. The small-world phenomenon: An algorithmic perspective.

Proc. 32nd ACM Symposium on Theory of Computing (STOC 2000), p. 163–

170, 2000.

[KBC+00] J Kubiatowicz, D Bindel, Y Chen, P Eaton, D Geels, R Gummadi,

S Rhea, H Weatherspoon, W Weimer, C Wells, and B Y Zhao.

Oceanstore: An architecture for global-scale persistent storage. Proc. 9th Intl.

conference on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS 2000), p. 190–201, 2000.

BIBLIOGRAPHY 193

[KK03] M F Kaashoek and D R Karger. Koorde: A simple degree-optimal hash

table. Proc. 2nd Intl. Workshop on Peer-to-Peer Systems (IPTPS 2003), p.

98–107, 2003.

[KM04] K Kenthapadi and G S Manku. Structured coupon collection over cliques

for P2P load balancing. Technical Report DB Group TR 2004-38, Computer

Science Department, Stanford University, CA, USA, 2004.

[KMXY03] A Kumar, S Merugu, J J Xu, and X Yu. Ulysses: A robust, low-diameter,

low-latency peer-to-peer network. Proc. 11th IEEE International Conference

on Network Protocols (ICNP 2003), 2003.

[KR02] D R Karger and M Ruhl. Finding nearest neighbors in growth-restricted

metrics. Proc. 34th ACM Symposium on Theory of Computing (STOC 2002),

p. 741–750, 2002.

[KR04] D R Karger and M Ruhl. Simple efficient load balancing algorithms for

peer-to-peer systems. Proc. 16th ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA 2004), p. 36–43, 2004.

[KS04] V King and J Saia. Choosing a random peer. Proc. 23rd ACM Symposium

on Principles of Distributed Computing (PODC 2004), p. 125–130, 2004.

[KSC78] V F Kolchin, B A Sevast’yanov, and V P Chistyakov. Random Allo-

cations. V H Winston & Sons, 1978.

[L83] B W Lampson. Hints for computer system design. ACM Operating Systems

Review, 15(5):33–48, 1983.

[L92] F T Leighton. Introduction to Parallel Algorithms and Architectures: Arrays

- Trees - Hypercubes. Academic Press/Morgan Kaufmann, 1992.

[LKRG03] D Loguinov, A Kumar, V Rai, and S Ganesh. Graph-theoretic analysis

of structured peer-to-peer systems: Routing distance and fault resilience. Proc.

ACM SIGCOMM 2003, p. 395–406, 2003.

[LMP04] X Li, J Misra, and G Plaxton. Active and concurrrent topology main-

tenance. Proc. 18th Intl. Symposium on Distributed Computing (DISC 2004),

2004.

[LNBK02] D Liben-Nowell, H Balakrishnan, and D R Karger. Analysis of the

evolution of peer-to-peer systems. Proc. 22nd ACM Symposium on Principles

of Distriuted Systems (PODC 2002), p. 233–242, 2002.

194 BIBLIOGRAPHY

[LNS96] W Litwin, M A Neimat, and D A Schneider. LH* – A scalable, dis-

tributed data structure. ACM Transactions on Database Systems, 21(4):480–

525, 1996.

[LS04] E Lebhar and N Schabanel. Close to optimal decentralized routing in

long-range contact networks. Proc. 31st Intl. Colloq. on Automata, Languages

and Programming (ICALP 2004), 2004.

[M67] S Milgram. The small world problem. Psychology Today, 67(1):60–67, 1967.

[M96] M Mitzenmacher. The Power of Two Choices in Randomized Load Bal-

ancing. PhD dissertation, University of California at Berkeley, Department of

Computer Science, 1996.

[M03] G S Manku. Routing networks for distributed hash tables. Proc. 22nd ACM

Symposium on Principles of Distributed Computing (PODC 2003), p. 133–142,

2003.

[M04] G S Manku. Balanced binary trees for ID management and load balance in

distributed hash tables. Proc. 23rd ACM Symposium on Principles of Dis-

tributed Computing (PODC 2004), p. 197–205, 2004.

[MBR03] G S Manku, M Bawa, and P Raghavan. Symphony: Distributed hashing

in a small world. Proc. 4th USENIX Symposium on Internet Technologies and

Systems (USITS 2003), p. 127–140, 2003.

[MD88] P V Mockapetris and K J Dunlap. Developnment of the Domain Name

System. Proc. ACM SIGCOMM 1988, p. 123–133, 1988.

[MN04] C Martel and V Nguyen. Analyzing kleinberg’s (and other) small-world

models. Proc 23rd ACM Symposium on Principles of Distributed Computing

(PODC 2004), p. 179–188, 2004.

[MNR02] D Malkhi, M Naor, and D Ratajczak. Viceroy: A scalable and dy-

namic emulation of the butterfly. Proc 21st ACM Symposium on Principles

of Distributed Computing (PODC 2002), p. 183–192, 2002.

[MNW04] G S Manku, M Naor, and U Wieder. Know thy neighbor’s neighbor: The

power of lookahead in randomized P2P networks. Proc. 36th ACM Symposium

on Theory of Computing (STOC 2004), p. 54–63, 2004.

BIBLIOGRAPHY 195

[MR95] R Motwani and P Raghavan. Randomized Algorithms. Cambridge Uni-

versity Press, 1995.

[MRS01] M Mitzenmacher, A W Richa, and R Sitaraman. The power of two

random choices: A survey of techniques and results. Handbook of Randomized

Computing (Vol 1). Kluwer Academic Press, 2001.

[NS86] C M Newman and L S Schulman. One dimensional 1/|j − i|s percola-

tion models: The existence of a transition for s ≤ 2. Communications in

Mathematical Physics, 180:483–504, 1986.

[NW03] M Naor and U Wieder. Novel architectures for P2P applications: The

continuous-discrete approach. Proc. 15th ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA 2003), p. 50–59, 2003.

[NWS02] M E J Newman, D J Watts, and S H Strogatz. Random graph models of

social networks. Proc. National Academy of Science, USA, 99 (suppl 1):2566–

2572, 2002.

[NZ02] T S E Ng and H Zhang. Predicting Internet network distance with

coordinate-based approaches. Proc. IEEE INFOCOM 2002, 2002.

[P90] W Pugh. Skip lists: A probabilistic alternative to balanced trees. Commu-

nications of the ACM, 33(6):668–676, 1990.

[PK78] I Pool and M Kochen. Contacts and influence. Social Networks, 1:1–48,

1978.

[PRR99] C G Plaxton, R Rajaraman, and A W Richa. Accessing nearby copies of

replicated objects in a distributed environment. Theory of Computing Systems,

32(3):241–280, 1999.

[R92] R L Rivest. The MD5 Message-Digest Algorithm. RFC 1321, IETF, 1992.

[RB03] M Roussopoulos and M Baker. CUP: Controlled Update Propagation in

peer-to-peer networks. Proc. 2003 USENIX Annual Technical Conference, p.

167–180, 2003.

[RD01a] A I T Rowstron and P Druschel. Pastry: Scalable, decentralized object

location, and routing for large-scale peer-to-peer systems. IFIP/ACM Inter-

national Conference on Distributed Systems Platforms (Middleware 2001), p.

329–350, 2001.

196 BIBLIOGRAPHY

[RD01b] A I T Rowstron and P Druschel. Storage management and caching in

PAST, a large-scale, persistent peer-to-peer storage utility. Proc 18th ACM

Symposium on Operating Systems Principles (SOSP 2001), p. 188–201, 2001.

[RFHK01] S Ratnasamy, P Francis, M Handley, and R M Karp. A scalable

Content-Addressable Network. Proc. ACM SIGCOMM 2001, p. 161–172,

2001.

[RFI02] M Ripeanu, I Foster, and A Iamnitchi. Mapping the gnutella network:

Properties of large-scale peer-to-peer systems and implications for system de-

sign. Internet Computing Journal, 6(1), 2002.

[RGRK04] S Rhea, D Geels, T Roscoe, and J Kubiatowicz. Handling churn in a

DHT. Proc. 2004 USENIX Annual Technical Conference, 2004.

[RHKS01] S Ratnasamy, M Handley, R M Karp, and S Shenker. Application-

level multicast using content addressable networks. Proc. 3rd Intl. Networked

Group Communication Workshop (NGC 2001), p. 14–29, 2001.

[RKCD01] A I T Rowstron, A M Kermarrec, M Castro, and P Druschel.

SCRIBE: The design of a large-scale event notification infrastructure. Proc.

3rd Intl. Networked Group Communication Workshop (NGC 2001), p. 30–43,

2001.

[RS98] M Raab and A Steger. Balls into bins – a simple and tight analysis. Ran-

domization and Approximation Techniques in Computer Science (RANDOM

1998), Lecture Notes in Computer Science 1518, p. 159–170, 1998.

[RS04a] V Ramasubramanian and E G Sirer. Beehive: O(1) lookup performance

for power-law query distributions in peer-to-peer overlays. Proc. 1st Sym-

posium on Networked Systems Design and Implementation (NSDI 2004), p.

99–112, 2004.

[RS04b] V Ramasubramanian and E G Sirer. The design and implementation of

a next generation name service for the Internet. Proc. ACM SIGCOMM 2004,

2004.

[RSS02] S Ratnasamy, S Shenker, and I Stoica. Routing algorithms for DHTs:

Some open questions. Proc. 1st Intl. Workshop on Peer-to-Peer Systems

(IPTPS 2002), p. 45–52, 2002.

BIBLIOGRAPHY 197

[S83] L S Schulman. Long range percolation in one dimension. Journal of Physics

A, 16(17):L639–L641, 1983.

[S01] J H Spencer. The Strange Logic of Random Graphs. Springer Verlag, 2001.

[SGG02] S Saroiu, P K Gummadi, and S D Gribble. A measurement study of

peer-to-peer file sharing systems. Proceedings of the Multimedia Computing

and Networking (MMCN’02), 2002.

[Ski] The Skitter Project. http://www.caida.org.

[SMK+01] I Stoica, R Morris, D Karger, M F Kaashoek, and H Balakrishnan.

Chord: A scalable peer-to-peer lookup service for Internet applications. Proc.

ACM SIGCOMM 2001, p. 149–160, 2001.

[V97] S Vinoski. CORBA: Integrating diverse applications within distributed het-

erogeneous environments. IEEE Communications Magazine, 14(2), 1997.

[WK02] H Weatherspoon and J D Kubiatowicz. Erasure coding vs replication:

A quantitative comparison. Proc. 1st Intl. Workshop on Peer-to-Peer Systems

(IPTPS 2002), 2002.

[WS98] D Watts and S Strogatz. Collective dynamics of small-world networks.

Nature, p. 440–442, 1998.

[XKY03] J Xu, A Kumar, and X Yu. On the fundamental tradeoff between rout-

ing table size and network diameter in peer-to-peer networks. Proc. IEEE

INFOCOM 2003, 2003.

[YGM01] B Yang and H Garcia-Molina. Comparing hybrid peer-to-peer systems.

Proc. 27th Intl. Conf. on Very Large Data Bases (VLDB 2001), 2001.

[ZCB96] E W Zegura, K L Calvert, and S Bhattacharjee. How to model an

Internetwork. Proc. IEEE INFOCOM 1996, 1996.

[ZGG03] H Zhang, A Goel, and R Govindan. Incrementally improving lookup

latency in distributed hash table systems. ACM SIGMETRICS 2003, p. 114–

125, 2003.

[ZHS+04] B Y Zhao, L Huang, J Stribling, S C Rhea, A D Joseph, and J D Ku-

biatowicz. Tapestry: A resilient global-scale overlay for service deployment.

IEEE Journal on Selected Areas in Communications, 22(1), 2004.

198 BIBLIOGRAPHY

[ZZJ+01] S Zhuang, B Y Zhao, A D Joseph, R H Katz, and J D Kubiatow-

icz. Bayeux: An architecture for wide-area, fault-tolerant data dissemination.

Proc. 11th Intl. Workshop on Network and Operating System Support for Dig-

ital Audio and Video (NOSSDAV 2001), p. 11–20, 2001.

