A Dynamic Approach for Scheduling Dependent Tasks on the Xavantes Grid Middleware

Luiz Fernando Bittencourt, Edmundo Roberto Mauro Madeira {bit,edmundo}@ic.unicamp.br

Institute of Computing State University of Campinas (UNICAMP) Brazil

November, 27th, 2006

SQA

Summary and Tasks Representation

Scheduling in Grids

Difficulties

- Resources are heterogeneous.
 - \rightarrow scheduling algorithms must select resources by performance.
- Grid has no control over entries and exits of resources.
 → resources may not finish tasks' execution.
- Resources have varying performance.
 - \rightarrow foreseen execution times may not be real.
- Grids are potentially big.
 - \rightarrow scheduling algorithms must have low time complexity.

200

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Path Clustering Heuristic

Objectives - Dynamic Path Clustering Heuristic (PCH)

- Schedule dependent tasks on Xavantes (NP-Hard).
- Create groups of dependent tasks (clusters of tasks) to avoid communication overhead generated by controllers.
- Schedule dependent tasks on nearby resources, allowing fast recovery and low communication times.
- Minimize the impact of a possible performance loss on resources.

SQA

Related Works

- Heterogeneous Earliest Finish Time HEFT
- Critical Path on a Processor CPOP

 \rightarrow Static task schedulers that does not consider performance variations.

 \rightarrow The spreading of tasks is not compatible with the use of controllers.

Condor DAGMan

 \rightarrow Meta-scheduler that does not consider the DAG dependencies when chosing resources.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

-Xavantes Middlewre

Programming Model

Programming Model

- Applications are specified as structured processes.
- Tasks are subordinated to controllers.
- Provides the necessary information about tasks and its dependencies.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

SQC

Controllers

- Control structures that organize the execution of tasks.
- All communication between two tasks must be via its controllers.
- Sequential controllers: tasks are executed in sequence.

• Parallel controllers: tasks can be executed in parallel.

SQA

7 / 53

-Xavantes Middlewre

Programming Model

Controllers - Pros and Cons

• Pros:

 \rightarrow Scalability: controllers distribute the processes' execution management.

 \rightarrow Recovery: controllers know the execution state of the portion of the process subordinated to it.

 \rightarrow They can provide communication between parallel tasks via shared variables.

• Cons:

 \rightarrow They can generate communication overhead.

-Xavantes Middlewre

Programming Model

Process and controllers representation

-Xavantes Middlewre

Programming Model

Infrastructure

Figura: Resources organization in Xavantes.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Definitions - 1/3

• Weight (Computation Cost)

$$w_i = rac{instructions_i}{power_r}$$

Represents the computation cost (execution time) of node i in resource r, where *prower*_r is the processing power of resource r, in instructions per second.

Communication Cost

 $c_{i,j} = rac{data_{i,j}}{bandwidth_{r,t}}$

Represents the communication cost (time for transmitting data) between nodes *i* and *j*, using the link between resources *r* and *t*. If r = t, $c_{i,j} = 0$.

・ロト ・ 『 ・ ・ ヨ ・ ・ 日 ・

SQC

Definitions - 1/3

• Weight (Computation Cost)

$$w_i = rac{instructions_i}{power_r}$$

Represents the computation cost (execution time) of node i in resource r, where *prower*_r is the processing power of resource r, in instructions per second.

• Communication Cost

$$c_{i,j} = rac{data_{i,j}}{bandwidth_{r,t}}$$

Represents the communication cost (time for transmitting data) between nodes *i* and *j*, using the link between resources *r* and *t*. If r = t, $c_{i,j} = 0$.

Definitions - 2/3

• Priority

$$P_i = w_i + \max_{n_j \in suc(n_i)} (c_{i,j} + P_j)$$

Represents the priority level of node n_i . The priority of the exit node is $P_{\text{exit}} = w_{\text{exit}}$.

• Earliest Start Time

 $EST(n_i, r_k) = \max\{time(r_k), \max_{n_h \in pred(n_i)} (EST_h + w_h + c_{h,i})\}$

Represents the lowest possible initial time for node n_i in resource r_k . In this definition, $time(r_k)$ represents the time when resource r_k will be ready to execute task n_i .

Bittencourt and Madeira (IC-UNICAMP) Dynamic Scheduling on Xavantes MGC'06, Nov. 27th 2006 12 / 53

Definitions - 2/3

• Priority

$$P_i = w_i + \max_{n_j \in suc(n_i)} (c_{i,j} + P_j)$$

Represents the priority level of node n_i . The priority of the exit node is $P_{\text{exit}} = w_{\text{exit}}$.

• Earliest Start Time

$$EST(n_i, r_k) = \max\{time(r_k), \max_{n_h \in pred(n_i)}(EST_h + w_h + c_{h,i})\}$$

Represents the lowest possible initial time for node n_i in resource r_k . In this definition, $time(r_k)$ represents the time when resource r_k will be ready to execute task n_i .

Definitions - 3/3

• Estimated Finish Time

$$EFT(n_i, r_k) = EST(n_i, r_k) + \frac{instructions_{n_i}}{power_{r_k}}$$

Represents the estimated finish time for the execution of node n_i in resource r_k .

• We call **cluster** a group of tasks of a process. Tasks on the same cluster will be executed on the same resource.

• **Makespan** is the estimated execution time of a scheduled process (the "size" of the schedule).

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

SQR

Definitions - 3/3

• Estimated Finish Time

$$EFT(n_i, r_k) = EST(n_i, r_k) + \frac{instructions_{n_i}}{power_{r_k}}$$

Represents the estimated finish time for the execution of node n_i in resource r_k .

- We call **cluster** a group of tasks of a process. Tasks on the same cluster will be executed on the same resource.
- **Makespan** is the estimated execution time of a scheduled process (the "size" of the schedule).

The Static PCH

Path Clustering Heuristic

PCH - Overview

- 1: while There are unscheduled nodes do
- 2: $cluster \leftarrow get_next_cluster()$
- 3: *resource* \leftarrow select_best_resource(*cluster*)
- 4: Schedule *cluster* on *resource*
- 5: schedule_controllers()

The Static PCH

Task Selection and Clustering

Task selection and clustering algorithm

$cluster \leftarrow get_next_cluster()$

- Like a depth-first search looking on each level for the node *i* with the highest $P_i + EST_i$, and adding every *i* to the cluster.
- $P_i + EST_i$ represents the cost of the longest path from the entry node to the exit node, via node *i*.

SQR

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 2: cluster \leftarrow cluster \cup n
- 3: while (*n* has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

SQA

 $n \Leftarrow n_1$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (n has not scheduled successors) do
- 4: $n_{suc} \leftarrow successor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

SQA

cluster \cup $n_1 = \{n_1\}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (*n* has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

 $n_{suc} \leftarrow n_2$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (n has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

SQA

cluster \cup $n_2 = \{n_1, n_2\}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (*n* has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

 $n_{suc} \leftarrow n_5$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 2: cluster \leftarrow cluster \cup n
- 3: while (n has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}

6:
$$n \leftarrow n_{suc}$$

7: return cluster

cluster
$$\cup$$
 $n_5 = \{n_1, n_2, n_5\}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (*n* has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

 $n_{suc} \leftarrow n_7$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 2: cluster \leftarrow cluster \cup n
- 3: while (n has not scheduled successors) do
- 4: $n_{suc} \leftarrow successor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}

6:
$$n \leftarrow n_{suc}$$

7: return cluster

cluster
$$\cup$$
 $n_7 = \{n_1, n_2, n_5, n_7\}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (*n* has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

 $n_{suc} \leftarrow n_{10}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 2: cluster \leftarrow cluster \cup n
- 3: while (n has not scheduled successors) do
- 4: $n_{suc} \leftarrow successor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}

6:
$$n \leftarrow n_{suc}$$

7: return cluster

SQA

cluster \cup $n_{10} = \{n_1, n_2, n_5, n_7, n_{10}\}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 1: $n \leftarrow$ not scheduled node with the highest Priority.
- 2: cluster \leftarrow cluster \cup n
- 3: while (*n* has not scheduled successors) do
- 4: $n_{suc} \leftarrow sucessor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

 $n_{suc} \leftarrow n_{11}$

The Static PCH

- Task Selection and Clustering

Task selection and clustering algorithm

- 2: cluster \leftarrow cluster \cup n
- 3: while (n has not scheduled successors) do
- 4: $n_{suc} \leftarrow successor_i$ of *n* with the highest $P_i + EST_i$
- 5: cluster \leftarrow cluster \cup n_{suc}
- 6: *n* ⇐ *n*_{suc}
- 7: return cluster

SQR

cluster \cup $n_{11} = \{n_1, n_2, n_5, n_7, n_{10}, n_{11}\}$

The Static PCH

Resource Selection

Resource Selection Algorithm

resource \leftarrow select_best_resource(*cluster*)

• The selected resource for a cluster *c* is the one that gives the smallest *EST* for the node that succeeds *c* in the graph.

SQR

- The Static PCH

Resource Selection

Resource Selection Algorithm

L Rec.	Power		Band	width	
0	133	<u>133</u> ∞ 10			5
1	130	10	∞	5	5
2	118	5	5	∞	10
3	90	5	5	10	∞
Resource 0: n_1 , n_2 , n_5 , n_7 , n_{10} , $n_{11} \rightarrow 103.0$ Resource 1: n_1 , n_2 , n_5 , n_7 , n_{10} , $n_{11} \rightarrow 105.4$ Resource 2: n_1 , n_2 , n_5 , n_7 , n_{10} , $n_{11} \rightarrow 116.1$ Resource 3: n_1 , n_2 , n_5 , n_7 , n_{10} , $n_{11} \rightarrow 152.2$					

< □ > < 同 >

DQC 29 / 53

- The Static PCH

Resource Selection

Resource Selection Algorithm

Resources						
	Rec.	Power		Band	width	
	0	133	∞	10	5	5
	1	130	10	∞	5	5
	2	118	5	5	∞	10
	3	90	5	5	10	∞
Resource 0: $n_1, n_2, n_4, n_5, n_7, n_6, n_{10}, n_9, n_{11} \rightarrow 145.9$ Resource 1: $n_4, n_6, n_9 \rightarrow 100.5$ Resource 2: $n_4, n_6, n_9 \rightarrow 121.6$ Resource 3: $n_4, n_6, n_9 \rightarrow 141.9$						

< □ > < 同 >

DQC 30 / 53

The Static PCH

Resource Selection

Resource Selection Algorithm

Resources						
	Rec.	Rec. Power Bandwidth				
	0	133	∞	10	5	5
	1	130	10	∞	5	5
	2	118	5	5	∞	10
	3	90	5	5	10	∞
Resource 0: $n_1, n_2, n_4, n_5, n_7, n_6, n_{10}, n_9, n_{11} \rightarrow 145.9$ Resource 1: $n_4, n_6, n_9 \rightarrow 140.5$ Resource 2: $n_4, n_6, n_9 \rightarrow 201.6$ Resource 3: $n_4, n_6, n_9 \rightarrow 221.9$						

• = • • = •

Image: Image:

ッへで 31 / 53

- The Static PCH

Resource Selection

Resource Selection Algorithm

Resources							
	Rec.	Power	Bandwidth				
j	0	133	∞ 10 5 5				
	1	130	10	∞	5	5	
	2	118	5	5	∞	10	
	3	90	5	5	10	∞	
Resource 0: $n_1, n_2, n_5, n_7, n_8, n_{10}, n_{11} \rightarrow 155.5$ Resource 1: $n_4, n_6, n_9 \rightarrow 100.5$ Resource 2: $n_3 \rightarrow 98.8$							

Resource 3:

Image: Image:

DQC

32 / 53

The Static PCH

Path Clustering Heuristic Overview

Path Clustering Heuristic

- 1: while there are unscheduled nodes do
- 2: $cluster \leftarrow get_next_cluster()$
- 3: *resource* \Leftarrow select_best_resource(*cluster*)
- 4: Schedule *cluster* on *resource*
- 5: Recompute Weights, ESTs e EFTs
- 6: schedule_controllers()

SQR

* E + * E + _ E

- The Static PCH

Path Clustering Heuristic Overview

Resulting Schedule

Figura: Resulting static schedule.

< ∃ →

4

1

900

34 / 53

Dynamic Approach

• But what if the owner of resource zero starts executing other jobs independent of the grid jobs?

 \rightarrow If all tasks are sent to execution with this schedule, a performance loss could delay the execution.

• A dynamic approach could be used to send tasks to execution as other tasks finishes.

 \rightarrow At each group of tasks finished, the scheduler has a new view of the resources, with knowledge about the current performances.

 \rightarrow It avoids reallocation of tasks, what consumes bandwidth and time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

Dynamic Approach

Dynamic Approach Overview

Dynamic Approach Overview

- 1: Schedule DAG G using the static PCH Algorithm
- 2: while not(all nodes of G have finished) do
- 3: Select tasks to execute according to a policy.
- 4: Send tasks of this round to execution.
- 5: Evaluate the resources performance.
- 6: Reschedule tasks if necessary.

Dyna	mic	Sch	eduling	on	Xavantes	
Dynamic Approach						
L	- Roi	unde				

Rounds and Dynamic Reschedule

- With all nodes scheduled, the algorithm decides which nodes will be sent to execution.
- As the tasks are being executed, the algorithm can compare the real execution times with that estimated by the calculated attributes (EST, EFT, Weight).

 \rightarrow If the performance of a resource is below a threshold, the tasks scheduled on that resource are rescheduled using the static PCH.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

SQA

37 / 53

Rounds and Dynamic Reschedule

- A node *n* is sent to execution in the round *k* (of a total of R rounds) if *n* has not started its execution and if $EFT_n \leq \frac{makespan}{R/k}$, with $1 \leq k \leq R$, or if there is no task on the resource where *n* is scheduled.
- It is like cutting the graph into small pieces, then sending these pieces to execution one after another.

・ロト ・同ト ・ヨト ・ヨト ・ヨ

Dynamic Approach

Rounds

Dynamic Approach Example

Node	EFT
1	26.3
2	33.8
3	98.8
4	63.6
5	46.6
6	85.1
7	65.4
8	84.2
9	100.5
10	106.8
11	155.5

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

. -MGC'06, Nov. 27th 2006

. 1

< □ > < 同 >

SQC 39 / 53

- Experimental Results

Performance Metrics

Performance Metrics - 1/2

• Schedule Length Ratio

$$SLR = \frac{makespan}{\sum_{n_i \in CP} \frac{instructions_{n_i}}{power_{best}}}$$

where, *CP* is the set of nodes that compose the critical path of the initial graph, and *power*_{best} is the processing power of the best resource available. \rightarrow SLR tells how many times the given makespan is bigger than the execution of the critical path on the best resource.

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

- Experimental Results

Performance Metrics

Performance Metrics - 2/2

• Speedup

 \rightarrow Speedup tells how many times faster the execution with the current schedule is when compared to the execution of all tasks in sequence on the best resource.

• The number of times an algorithm gives the best schedule (lowest makespan among all compared) is also a comparison metric.

Performance Metrics

Experiments

- 15 DAGs randomly taken, with random topology.
- Each DAG was scheduled 1000 times, with random computation and communication costs.
- Medium and high Communication scenarios.
 Medium: → communication and computation costs randomly taken on the same interval.

High: \rightarrow each communication more costly than each computation.

• 2 to 25 groups in Xavantes topology, each group with a random number of resources between 1 and 5.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のQ@

Static PCH

SLR with Medium Communication

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

< □ > < Ξ > < Ξ > < Ξ > Ξ
 MGC'06, Nov. 27th 2006
 43 / 53

Static PCH

Speedup with Medium Communication

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

MGC'06, Nov. 27th 2006 4

ッへへ 44 / 53

=

Dynamic Scheduling on Xavantes Experimental Results Dynamic PCH

Dynamic PCH vs. Static PCH

Number of best schedules with medium communication.

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

MGC'06, Nov. 27th 2006 45 / 53

< ∃ >

SQC

Dynamic PCH vs. Static PCH

Number of best schedules with high communication.

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

MGC'06, Nov. 27th 2006

1

1

ッへへ 46 / 53 **Dynamic Scheduling on Xavantes Experimental Results** Dynamic PCH

Dynamic PCH vs. Static PCH

SLR with medium communication.

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

< ∃ → MGC'06, Nov. 27th 2006 47 / 53

SQC

Dynamic PCH vs. Static PCH

SLR with high communication.

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

MGC'06, Nov. 27th 2006 48 / 53

Э

1

SQC

Dynamic PCH vs. Static PCH

Speedup with medium communication

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

MGC'06, Nov. 27th 2006

1

1

ッへへ 49 / 53

Dynamic PCH vs. Static PCH

Speedup with high communication.

Bittencourt and Madeira (IC-UNICAMP)

Dynamic Scheduling on Xavantes

MGC'06, Nov. 27th 2006

1

1

SQC

50 / 53

- Dynamic task scheduling is very important for dynamic systems like grids.
- The proposed dynamic approach can deal with performance losses in resources.
- As the number of rounds increases, better are the results.
 → but too much rounds = too much computation.
- The rounds concept can be applied to other DAG scheduling systems.

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ●

51 / 53

Future Work

- Improve the round task selection criteria (how/where to cut the DAG on each round).
- Development of an adaptive number of rounds for each graph.
- History-based performance prediction.
- Reallocation policy for big tasks in poor performance resources.
- Implementation and evaluation of the round concept with other DAG scheduling heuristics.

Thanks

Thank you. Questions?

Acknowledgements:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ッへで 53 / 53