
Heterogeneous cloud computing

Steve Crago∗, Kyle Dunn, Patrick Eads, Lorin Hochstein†, Dong-In Kang,
Mikyung Kang, Devendra Modium, Karandeep Singh, Jinwoo Suh, John Paul Walters

University of Southern California / Information Sciences Institute
3811 N. Fairfax, Suite 200. Arlington, VA, 22203

{crago∗, lorin†}@isi.edu

Abstract—Current cloud computing infrastructure typically
assumes a homogeneous collection of commodity hardware,
with details about hardware variation intentionally hidden
from users. In this paper, we present our approach for
extending the traditional notions of cloud computing to pro-
vide a cloud-based access model to clusters that contain a
heterogeneous architectures and accelerators. We describe our
ongoing work extending the OpenStack cloud computing stack
to support heterogeneous architectures and accelerators, and
our experiences running OpenStack on our local heterogeneous
cluster testbed.

Keywords-cloud computing; accelerators; high-performance
computing;

I. INTRODUCTION

Cloud computing has become increasingly prevalent, pro-

viding end-users with temporary access to scalable compu-

tational resources. At a conceptual level, cloud computing

should be a good fit for technical computing users, such as

scientists who often need to run computational intensive jobs

as part of their work. Indeed, scientists are already beginning

to take advantage of cloud computing resources to execute

scientific workflows [1], [2], [3].

However, since the current cloud computing market

evolved from the IT community, it is often not a good match

for the needs of technical computing end-users from the

high-performance computing (HPC) community. Providers

such as Amazon and Rackspace provide users with access

to a homogeneous set of commodity hardware, with details

of the hardware obscured through virtualization technology

and little or no control of locality (except sometimes by geo-

graphic region). By contrast, technical computing end-users

may want to obtain access a heterogeneous set of resources,

such as different accelerators, machine architectures, and

network interconnects.

Nevertheless, while most clouds in their current form

are not a great match for traditional HPC users, the cloud

computing model of providing access to computational

resources provides advantages over the traditional batch-

scheduled model typically used at HPC centers. In this paper,

we describe how traditional cloud computing infrastructure

can be extended to support technical computing users by

providing access to a heterogeneous set of computing re-

sources, and discuss our ongoing work in extending the

OpenStack Compute [4] cloud computing framework to

support heterogeneous clouds.

II. WHY A HETEROGENEOUS CLOUD?

Data and computational centers are often limited by power

density and efficiency, as well as compute density. While

general-purpose microprocessor and server manufacturers

are working to improve power efficiency, heterogeneous

processing resources can provide an order of magnitude or

more improvement using these metrics. These improvements

are likely to be persistent, since specialized devices can

be optimized for specific kinds of computations, and this

optimization can be performed for efficiency. There are

numerous examples for problems well suited to specific

architectures. Examples of such architectures include dig-

ital signal processors, network packet processors, graphical

processing units (GPUs, also known as GPGPUs, general-

purpose GPUs, in this context), symmetrical multiprocessors

(SMPs), and conventional CPUs.

Today’s cloud infrastucture, with a few notable exceptions

(e.g. SGI Cyclone, R Systems, Amazon Cluster GPUs), gen-

erally focuses on commodity hardware, with no control over

target architectures aside from choosing from a fixed number

of memory/CPU sizes. If cloud users are to be able to take

advantage of the performance and efficiency advantages of

heterogeneous computing, the cloud infrastructure software

must recognize and handle this heterogeneity.

In the past, grid computing and batch scheduling have

both been commonly used for large scale computation.

Cloud computing presents a different resource allocation

paradigm than either grids or batch schedulers. In particular,

Amazon EC2 [5] is equipped to handle many smaller com-

pute resource allocations, rather than a few, large requests as

is normally the case with grid computing. The introduction

of heterogeneity allows clouds to be competitive with tradi-

tional distributed computing systems, which often consist of

various types of architectures as well. When combined with

economies of scale, dynamic provisioning and comparatively

lower capital expenditures, the benefits of heterogeneous

clouds are numerous.

Cloud computing allows individual users to have admin-

istrative access to a dedicated virtual machine instance. The

capability to separate users is superior compared to a batch

2011 IEEE International Conference on Cluster Computing

978-0-7695-4516-5/11 $26.00 © 2011 IEEE

DOI 10.1109/CLUSTER.2011.49

378

scheduling approach, where it is common for multiple jobs

to share a single operating system. The advantages of this

are apparent from the perspectives of security as well as

flexibility for users, offering a variety of operating systems.

Some batch-scheduling implementations, such as LSF [6],

depend on nearly identical configuration of compute nodes

across a cluster, a potentially daunting task for system

administrators.

III. OPENSTACK

To support heterogeneity in a cloud computing environ-

ment, we chose to extend the OpenStack software stack.

OpenStack refers to a collection of open-source software

packages designed for building public and private clouds. In

this paper, we focus on OpenStack Compute (also referred to

as Nova), which provides an infrastructure-as-a-service [7]

model of cloud computing access1. OpenStack provides sim-

ilar functionality to other open-source cloud projects such

as Eucalyptus [8], OpenNebula [9], and Nimbus [10]. Two

notable OpenStack deployments in scientific organizations

are NASA’s Nebula cloud [11] and the U.S. Department of

Energy’s Magellan cloud [12].

OpenStack is implemented as a set of Python services

that communicate with each other via message queue and

database. Figure 1 shows a conceptual overview of the

OpenStack architecture, with the OpenStack Compute com-

ponents bolded and OpenStack Glance components (which

stores the virtual machine images) shown in a lighter color.

We chose to extend OpenStack because of its modularity

and scalability, as well as its Apache 2.0 based license model

and open governance.

The nova-api service is responsible for fielding resource

requests from users. Currently, OpenStack implements two

APIs: the Amazon Elastic Compute Cloud (EC2) API [5],

as well as its own (OpenStack) API.

The nova-schedule service is responsible for scheduling

compute resource requests on the available compute nodes.

The nova-compute service is responsible for starting and

stopping virtual machine (VM) instances on a compute node.

The nova-network service is responsible for managing IP

addresses and virtual LANs for the VM instances.

The nova-volume service is responsible for managing net-

work drives that can be mounted to running VM instances.

The queue is a message queue implemented on top of

RabbitMQ [13] which is used to implement remote pro-

cedure calls as a communication mechanism among the

services.

The database is a traditional relational database such as

MySQL that is used to store persistent data that is shared

across the components.

The dashboard implements a web-based user interface.

1Subsequently, we will use the term OpenStack to refer to OpenStack
Compute.

Figure 1. OpenStack Architecture. Credit: Ken Pepple [14]

IV. SUPPORTING HETEROGENEITY

In a traditional cloud computing service such as Amazon’s

EC2, the user has a limited range of options when requesting

virtual machine instances, namely:

• Amount of memory

• Number of cores

• Amount of local storage

• 32-bit (x86) or 64-bit (x86 64) platform

Amazon offers a set of instance types with different

amount of resources at different price points. For example,

the user might request a “Standard Large” or m1.large
instance, which has 7.5GB of RAM, 2 virtual cores, 850

GB of RAM, on a 64-bit platform.

To support a wider range of heterogeneity, a user must be

able to request an instance with a configuration of computing

resources that meets the user’s needs. The user can choose

it through the user interface by using predefined instance

types or an extra string appended to an instance type.

The user information is relayed to scheduler that chooses

the computing resources that meets the user’s request. In

our current implementation, if the user’s architectural re-

quirements cannot be satisfied, then no resources will be

provisioned.

A. Choosing architecture and other configurations

A simple way of choosing an instance with a configuration

of computing resources including architecture choice is us-

ing predefined instance types. This is a typical way in other

cloud computing interfaces. For example, as implemented

in our software stack, if cg1.small instance type maps to a

configuration that includes one virtual CPU and one GPU,

then by using cg1.small, a user can choose the predefined

configuration.

Another way of specifying the user’s choice is by ap-

pending an extra string to an instance type. This enables

a user to choose a configuration that cannot easily done

379

through predefined instance types. Note that heterogeneity

exists not only among different processor architectures but

also among the same processor architectures having different

features. For example, the x86 architecture has added new

features as its micro-architecture has evolved. Intel Nehalem

micro-architecture has added SSE4.2 instruction sets. The

recent x86 micro-architecture Westmere has added Carry-

less Multiplication (CLMUL) instruction to improve some

encryption applications. Making use of those features is

critical to some high performance applications.

These features are very diverse, and it is not easy to

capture all combinations of these using predefined instance

types. To express these features in a flexible way, we provide

another way of specifying desired features: using an extra

string in the instance type string. For example, cg1.small;
cpu info=SSE4.2 means that the requested instance type

is cg1.small and CPU has SSE4.2 feature. By using this

approach, we maintain compatibility with the existing EC2

API implemented by OpenStack, which allows us to use the

command-line euca2ools [15] tools unmodified.

A user can specify a CPU architecture that is different

from x86. For example, TILEPro64 architecture can be

chosen using t1.small; cpu arch= TILEPro64.

The syntax of the extended image type string is:

image type[; keyname = keyvalue[, keyvalue]]
A key may have one or more values. If there are multiple

values for a key, all of them must be satisfied. There may

be zero or more keyname = keyvalue pairs. Again all of

those keys must match. Some keys we use are:

• xpus: number of accelerators (e.g., GPU) to use

• xpu arch: architecture of the accelerator (e.g., Fermi)

• cpu arch: architecture of CPU (e.g., X86 64,

TILEPro64)

• cpu features: required features of CPU (e.g., SSE4.2)

• hypervisor type: hypervisor of the VM (e.g., Xen,

KVM, LXC)

We plan to extend the syntax of the instance type

string to express more general heterogeneous architec-

tures and features: expressing OR operations of constraints

(e.g., cpu arch=x86 64 OR TILEPro64) and making the

keyvalue specify a range of values.

B. Implementation

The user choice is conveyed to the API server (nova-

api), which retrieves detailed information from a database

table (instance type) such as cpus, network, memory, and

disk requirements. Additional information such as acceler-

ator and number of accelerator is retrieved from another

table (instance type extra spec). The two tables are sepa-

rated such that the instance type table covers all common

case fields such as the number of CPUs. Another table

(instance type extra spec) is used to store data that may

appear on some instances.

When the scheduler gets the information, the scheduler

compares the requested information to the available resource

information. The available resource information is available

in the zone manager, which stores the latest information

that is periodically sent by compute nodes. Each requested

data element is compared to find a compute node that

has all the features that the user requested. In particular,

the architecture information is compared to find the right

architecture. Additional information, such as the accelerator

type and the number of resources are compared to choose a

compute node that meets the request. When a compute node

is found, the compute node is selected and instantiation of

the virtual machine starts.

On the compute node, the compute service needs to collect

the capability of the node, which is sent to zone manager.

For this, the libvirt library is used on x86 machines. Libvirt

internally keeps the exact feature list of each CPU, but it

returns only the commonly found features as the capabilities.

The underlying philosophy of this design is to maximize the

possibility of migration of virtual machines. However, to

provide high performance computing in the cloud, exposing

the detailed capability of the host machine to the cloud

manager is necessary so that user can choose not only CPU

architecture but also specific features.

To expose the detailed capabilities of the host machine,

we disabled the part of libvirt library that masks the original

capabilities to return common capabilities. This affects only

the capabilities of the host. The capabilities of the guests

are not affected. We patched libvirt such that it adds “-cpu

host” flag to the “qemu-kvm” command such that the virtual

machine spawned by qeum-kvm can use all the features of

the host CPU.

V. SUPPORTING ACCELERATORS

The challenge to using accelerators in the cloud is that

they were never intended to support virtualization. In this

section, we describe our GPU-based accelerator support

and the challenges faced in accessing accelerators within

a virtualized high performance environment.

A. Virtualized Accelerators

Accelerator support in general, and GPU support in partic-

ular, are in their infancy within the virtualization community.

The primary challenge is that current GPUs do not support

virtualization. That is, they cannot be shared by multiple

virtual machines and must instead be dedicated to a specific

virtual machine.

Strategies such as PCI-passthrough are effective for many

low-end GPUs and network cards, but few high performance

GPUs are compatible and support varies widely depending

on the virtualization strategy in use. Xen [16] and Parallels

Desktop [17], for example, support NVIDIA GPUs that

explicitly support hardware SLI Multi-OS. KVM [18], on

the other hand, currently has no GPU support.

380

gVirtuS [19] and vCUDA [20] have been proposed as

alternatives to PCI-passthrough. Rather than passing the

physical hardware through to the virtual machine, both

vCUDA and gVirtuS rely on a split driver model with an

interposing software API used within the virtual machine,

and physical GPU binding occurring on the host system.

The interposing layer intercepts calls into the CUDA envi-

ronment, marshals the data, and then forwards the CUDA

library calls to the host.

Figure 2. Overview of gVirtuS.

B. Overview of gVirtuS

We selected gVirtuS for integration into OpenStack due

to its open source availability and its compatibility with

KVM. gVirtuS implements a split frontend/backend model

where the frontend resides within the virtual machine, and

the backend resides on the host system and executes CUDA

library calls on behalf of the virtual machine (see Figure 2).

The gVirtuS frontend serves two primary functions. First,

it provides a CUDA API and the shared library libcudart.so.

This allows programs to be compiled against gVirtuS, and

also allows pre-built binaries to run unmodified using the

shared library. Second, the frontend provides data mar-

shalling for the CUDA library calls, which allows gVirtuS

backend to accurately reproduce the intended CUDA call.

The gVirtuS backend, residing on the host, provides the

frontend with the necessary remote execution support. The

backend receives CUDA library requests and their associated

data and executes them on the physical hardware as shown

in Figure 2. Unlike the frontend, which provides a mock

libcudart.so shared library, the gVirtuS backend is built

against the NVIDIA-supplied libcudart.so shared library,

allowing the backend to interface directly with the physical

GPU hardware.

gVirtuS provides several user-selectable Communicators
that allow the frontend and backends to communicate. We

selected the VMShm communicator, which uses a shared

memory segment exposed through QEMU [21]. VMShm

exposes a device named /dev/vmshm0 within the virtual

machine and a POSIX shared memory segment on the

host. Both the host and virtual machine mmap() this shared

memory segment and use it for all CUDA communication.

C. GPU Support and Implementation in OpenStack

Intuitively, adding gVirtuS support to OpenStack is

straightforward. A CUDA-enabled virtual machine is simply

an x86 with the gVirtuS shared library pre-loaded and a

working gVirtuS backend residing on the host. There were,

however, several challenges we encountered in enabling

GPU access within a heterogeneous cloud environment. In

this section we describe the challenges and our OpenStack

implementation.

Our first challenge was that gVirtuS’s default action is to

allow a virtual machine to access any GPU within the host

machine. By contrast, our OpenStack implementation should

provide exclusive access to GPUs that have been dedicated

to a specific virtual machine. Adding this functionality

required modification to the backend.

The second challenge was that gVirtuS’ backend process

consumes host resources while servicing a virtual machine.

Typically the resource utilization of gVirtuS is low; however,

crashed CUDA processes within the virtual machine often

resulted in runaway backend processes that pinned a CPU’s

utilization to 100%. This was due to the spinlocks used

during host to virtual machine communication. The solution

to this was to introduce a heartbeat mechanism to gVirtuS

that killed off runaway backend processes in the event of

software crashes within the virtual machine.

With these changes we integrated gVirtuS into Open-

Stack’s Nova compute service via the libvirt connection.

Scheduling a job to a node is a two step process. First

the Nova scheduler identifies a host with an available GPU.

Second, the host that was assigned the job chooses the GPU

to assign to the virtual machine. Specific GPU → VM

assignments are managed through a hash table within the

Nova compute service.

Once the node and the GPU have been identified, Nova

spawns the virtual machine. During this process the job

parameters are identified, and if a GPU is requested, a

gVirtuS backend process is started for the virtual machine,

and the job otherwise starts as usual. Similarly, when a job

is destroyed, the virtual machine is torn down, the gVirtuS

backend is killed, and the hash table entry mapping the

virtual machine to a GPU is deleted.

VI. SUPPORTING NON-X86 ARCHITECTURES

Some (non-x86 based) machine architectures of interest to

technical computing users have either poor or non-existent

support for virtualization. For example, our heterogeneous

381

target, Tilera [22] Linux (MDE-2.1.2) does not yet support

KVM or Xen virtualization.

One alternative to using virtualization to provision hard-

ware in a cloud environment is to do bare-metal provision-

ing: rebooting the machine to a fresh system image before

handing over control to the user, and wiping the local hard

drive when the user is done with the resources.

To support the Tilera architecture through OpenStack, we

developed a proxy compute node implementation, where our

customized nova-compute service acts as a front-end that

proxies requests for nodes to a Tilera-specific back-end that

does the bare metal provisioning of the nodes as needed.

Our intention is to ultimately support different provision-

ing back-ends. Several provisioning tools are available, such

as Dell’s crowbar [23], as an extension of opscode’s Chef

system [24], Argonne National Lab’s Heckle [25], xCat

[26], Perceus [27], OSCAR [28], and ROCKS [29]. These

tools provide different bare-metal provisioning, deployment,

resource management, and authentication methods for dif-

ferent architectures. These tools use standard interfaces

such as PXE (Preboot Execution Environment) [30] boot

and IPMI (Intelligent Platform Management Interface) [31]

power cycle management module. For boards that do not

support PXE and IPMI, such as the TILEmpower board,

specific back ends must be written.

To support provisioning TILEmpower boards, the proxy

compute node is designed as follows. An x86 proxy compute

node is connected to the TILEmpower boards through the

network such that a cloud user can ssh into them directly

after an instance starts on the TILEmpower board. A proxy

compute code may handle multiple TILEmpower boards.

A TILEmpower board is configured to be tftp-bootable.

The proxy compute node acts as the tftp server for the

TILEmpower boards. After the proxy compute node re-

ceives instance images from the image server, it wakes

up a TILEmpower board and passes the images to the

TILEmpower board using tftp protocol, and controls their

booting. Once a TILEmpower board is booted, the proxy

compute node does not do anything except control board

power. Once an instance is running, a user can access the

board through ssh. The block diagram shown in Figure 3

describes the procedure in detail.

Figure 3. Block diagram of proxy bare-metal compute node

The TILEmpower compute node shown in Figure 4 is an

example of proxy compute node.

Figure 4. TILEmpower compute node, an example of a proxy compute
node

We are currently working on the design and implementa-

tion of a general bare-metal proxy compute node that can be

used not only for TILEmpower boards but also other archi-

tectures. This design includes three parts: default connection

functions (spawn/reboot/destroy), bare-metal domain-related

information, a and bare-metal node-specific driver part.

VII. USER INTERFACE

Nova strives to provide API-compatibility with popular

systems like Amazon and Rackspace to enable compatibility

with existing tool sets created for interaction with offerings

from these vendors. This broad compatibility and support for

multiple APIs prevents vendor lock-in. These APIs provide

all the common commands used to interface with and ad-

minister Nova, including for running instances, terminating

instances, rebooting instances, attaching volumes, detaching

volumes, getting console output etc.

The Euca2ools (EC2) API [15] is the most popular cloud

API, and is used in our reference implementation. The

community is currently also working on the open source

OpenStack API [32], which would be compatible with the

Rackspace cloud API. There are plans to add new features

to the OpenStack API and to make it extensible to suit

specific installations. This would allow it to work better

with heterogeneous clouds, and we plan to use it in future

deployments.

The key component that implements OpenStack’s user

interface is the API server. A messaging queue brokers the

interaction between the API server, compute nodes, volumes,

networking controllers and the scheduler. A request from a

user is received by the API server, which first authenticates

the user with an access and secret key. The users access

key needs to be included in the request, and the request

must be signed with the secret key. Availability of objects

required to fulfill the request is evaluated and, if available,

the request is routed to the queuing engine for the relevant

382

workers. Workers continually listen to the queue, and when

such listening produces a work request, the worker takes

assignment of the task and begins its execution. Upon

completion, a response is dispatched to the queue, which

is received by the API server and relayed to the originating

user. Database entries are queried, added, or removed as

necessary throughout the process.

The OpenStack Dashboard provides a web interface into

OpenStack Compute to give end users, application develop-

ers, and DevOps staff similar functionality to the command-

line API. The OpenStack Dashboard is implemented using

Django [33], which is a web application framework written

in Python. The example Dashboard installation provided by

OpenStack is called openstack-dashboard [34]. It uses a

sqlite3 database and the default Django server. To create

a more robust, production-ready installation that supports

heterogeneity, we configured Dashboard to use the Apache

web server and MySQL database. The Dashboard web

interface has several views that make it easy to work with

and administer the cloud.

The Instances page shows the list of current instances

and their state. We added a column to the instances table in

this view that shows the architecture on which the instance

is running. The Images page shows all the images that

are available to the user. We added an additional field that

shows the architecture for which an image is built. The Keys
page shows the currently available key-pairs and provides an

option to create new keys as required. The Volumes allows

a user to create and manage volumes. The Lauch Image
page provides the interface to launch new instances. We

added new options on this page for the user to select more

heterogeneity components as explained below.

As described in Section IV, we let the user choose their

instance with a much finer granularity than the Amazon EC2.

For example, we let the user specify the CPU architecture,

specific CPU features, accelerators such as GPUs, hypervisor

type etc. To support this heterogeneity, we need to specify

these additional choices as strings that are appended to

the instance type string. These are passed as usual to the

API server and are serviced by the scheduler. This scheme

does not require any change to the EC2 API. To make the

dashboard more user-friendly, we present these choices as

selectable options in the dashboard on the Launch Instance

page.

VIII. INITIAL DEPLOYMENT

We deployed OpenStack with the extension of our het-

erogeneous architecture support on the compute cluster at

USC/ISI (Arlington campus). Our extension is applied to

the OpenStack Cactus release, and we plan to merge our

extension to the upstream OpenStack Diablo release that is

due Q3 2011.

Our compute cluster has three heterogeneous compute

elements:

Figure 5. Launch image page of Dashboard.

• one SGI UV100 with 128 cores and 512GB of main

memory

• three GPU-enabled x86 64 machines, each equipped

with an NVIDIA Tesla S2050

• ten TILEmpower boards with TILEPro64 processors

One x86 64 machine that we call the head node is

dedicated to run most of OpenStack nova services except

nova-compute, which include mysql, rabbitmq-server, nova-

api, nova-network, nova-objectstore and nova-scheduler. An-

other x86 64 machine is dedicated for a proxy node for

all the TILEmpower boards. All of them are connected to

10Gig Ethernet switches. All machines except the head node

and TILEmpower boards run the OpenStack nova-compute

service. All x86 64 machines including the SGI UV100 run

64-bit SUSE Linux Enterprise 11 SP1. The TILEmpower

boards run Linux for TILEPro64 processor. A user logs into

the head node and launches instances on the other compute

nodes.

IX. RELATED WORK

In research, universities have expressed interest in mas-

sively scaled computing infrastructure for exploring new ap-

proaches to computationally-intensive problems that would

otherwise be too difficult given ordinary computing infras-

tructure [35]. Recently, the National Science Foundation has

383

awarded nearly $5 million in grants to fourteen universities

through its Cluster Exploratory (CLuE), and in conjunction

with IBM/Google Cloud Computing University Initiative

[35]. One award recipient, the University of Maryland Insti-

tute for Advance Computer Studies (UMIACS), is conduct-

ing research for gene sequencing analysis that involves vast

quantities of information [36]. Researchers at the University

of Massachusetts-Amherst Center for Intelligent Information

Retrieval (CIIR), also funded by NSF CLuE, are exploring

relationships among words, such that search results may be

more effectively ranked [35], [37]. Research methods for

analysis of tens of terabytes of data for anomaly detection,

classification and motion tracking are being developed at

the University of Washington Survey Science Group (SSG)

[38]. SSG is also funded through the CLuE initiative.

Studies show that clouds are a viable option for HPC in

comparasion to local clusters [39] [40] [41]. Cloud providers

are equipping their clouds with HPC hardware to meet the

needs of users from scientific community. Amazon EC2 with

its Cluster Compute and Cluster GPU instances provides

GPU processing power for users to run HPC applications

on the cloud [5]. National Center for Supercomputing Appli-

cations(NCSA) also deployed high-performance computing

cluster,dubbed iForge consisting of mix of servers with

different archtectures and different processing powers to

meet the needs of its private cloud users [42].

X. CONCLUSION AND FUTURE WORK

Cloud computing is quickly becoming a dominant model

for end-users to access centrally managed computational

resources. Through our work in extending OpenStack, we

have demonstrated the feasibility of providing technical

computing users with access to heterogeneous computing

resources using a cloud computing model.

The initial work to date has been to build a proof-of-

concept prototype. In the next phase of our research, we

will focus more on performance issues. Since program per-

formance is a high-priority for technical computing users, it

is important to understand the performance impact of cloud-

related technologies such as virtualization, and to optimize

the system configuration for program performance where

possible. In particular, we will be evaluating alternative

mechanisms for allowing GPU access from an instance, and

we will be examining the impact of virtualization on the SGI

UV hardware.

For enhancing the functionality of our heterogeneous

cloud, we will be looking at supporting locality requests to

improve network communication performance on multinode

applications, as well as incorporating scientific workflow

frameworks such as Pegasus [43], as well as supporting

dynamic network provisioning, by integrating frameworks

such as DRAGON [44].

REFERENCES

[1] K. Keahey, “Cloud computing for science,” in Proceedings of
the 21st International Conference on Scientific and Statistical
Database Management, New Orleans, LA, June 2009.

[2] E. Deelman, G. Singh, M. Livny, J. B. Berriman, and J. Good,
“The cost of doing science on the cloud: the montage exam-
ple,” in Supercomputing Conference, 2008.

[3] L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and
W. Karl, “Scientific cloud computing: Early definition and ex-
perience,” in High Performance Computing and Communica-
tions, 2008. HPCC ’08. 10th IEEE International Conference
on, sept. 2008, pp. 825 –830.

[4] “OpenStack.” [Online]. Available: http://www.openstack.org

[5] “Amazon elastic compute cloud (amazon EC2).” [Online].
Available: http://aws.amazon.com/ec2/

[6] P. C. Corporation. (2011) Platform lsf. [Online]. Available:
http://www.platform.com

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia, “Above the
clouds: A Berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov, “The Eucalyptus open-source
cloud-computing system,” in Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid, ser. CCGRID ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 124–131. [Online].
Available: http://dx.doi.org/10.1109/CCGRID.2009.93

[9] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Capacity leasing in cloud systems using the OpenNebula
engine,” in Proceedings of the 2008 Workshop on Cloud
Computing and its Applications (CCA08), October 2008.

[10] K. Keahey and T. Freeman, “Contextualization: Providing
one-click virtual clusters,” in eScience, 2008. eScience ’08.
IEEE Fourth International Conference on, dec. 2008, pp. 301
–308.

[11] “NASA Nebula.” [Online]. Available: http://nebula.nasa.gov

[12] “DOE Magellan.” [Online]. Available:
http://magellan.alcf.anl.gov/

[13] “RabbitMQ.” [Online]. Available: http://www.rabbitmq.com/

[14] K. Pepple. (2011, Apr.) OpenStack
nova architecture. [Online]. Available:
http://ken.pepple.info/openstack/2011/04/22/openstack-
nova-architecture

[15] “Euca2ools.” [Online]. Available:
https://launchpad.net/euca2ools

384

[16] “Xen hypervisor.” [Online]. Available: http://xen.org/

[17] “Parallels desktop.” [Online]. Available:
http://www.parallels.com/products/desktop/pd4wl/

[18] “Kernel based virtual machine (KVM).” [Online]. Available:
http://www.linux-kvm.org

[19] G. Giunta, R. Montella, G. Agrillo, and G. Coviello,
“A GPGPU transparent virtualization component for
high performance computing clouds,” in Proceedings of
the 16th international Euro-Par conference on Parallel
processing: Part I, ser. EuroPar’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 379–391. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1887695.1887738

[20] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated
high performance computing in virtual machines,” in
Proceedings of the 2009 IEEE International Symposium on
Parallel&Distributed Processing. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 1–11. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1586640.1587737

[21] F. Bellard, “QEMU, a fast and portable dynamic translator,”
in Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’05. Berkeley, CA, USA:
USENIX Association, 2005, pp. 41–41. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1247360.1247401

[22] T. Corporation. (2010, Jan.) Tilera. [Online]. Available:
http://www.tilera.com/

[23] R. Hirschfeld. (2011, May) Cloud installer (system wide,
bare metal, system prereqs, components, networks). [On-
line]. Available: https://blueprints.launchpad.net/openstack-
common/+spec/installer-crowbar

[24] OPSCODE. (2011, Jun.) Opscode chef - open source
sysems integration framework. [Online]. Available:
http://www.opscode.com/

[25] A. N. Laboratory. (2010, Jul.) Heckle. [Online]. Available:
http://trac.mcs.anl.gov/projects/Heckle/

[26] xCat Open Source Project. (2011, May) xCat
extreme cloud administration toolkit. [Online]. Available:
http://xcat.sourceforge.net/

[27] P. O. S. Project. (2010, Apr.) Perceus provision enterprise
resources and clusters enabling uniform systems. [Online].
Available: http://www.perceus.org/

[28] M. J. Brim, T. G. Mattson, and S. L. Scott, “OSCAR: open
source cluster application resources,” in Proceedings of the
3rd Annual Linux Symposium, 2001.

[29] P. M. Papadopoulos, M. J. Katz, and G. Bruno, “NPACI
rocks: tools and techniques for easily deploying manageable
linux clusters,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 7-8, pp. 707–725, 2003. [Online].
Available: http://dx.doi.org/10.1002/cpe.722

[30] Wikipedia. (2011, Jun.) Preboot exe-
cution environment. [Online]. Available:

http://en.wikipedia.org/wiki/Preboot Execution Environment

[31] ——. (2011, May) Intelligent platform management interface.
[Online]. Available: http://en.wikipedia.org/wiki/IPMI

[32] “Openstack api.” [Online]. Available:
http://wiki.openstack.org/OpenStackAPI 1-1/

[33] “Django.” [Online]. Available:
https://www.djangoproject.com/

[34] “OpenStack dashboard.” [Online]. Available:
https://launchpad.net/openstack-dashboard

[35] (2009, Apr.) National science foundation
awards millions to fourteen universities for
cloud computing research. [Online]. Available:
http://www.nsf.gov/news/news summ.jsp?cntn id=114686

[36] White, James, Navlakha, Saket, Nagarajan, Niranjan,
Ghodsi, Mohammad-Reza, Kingsford, Carl, Pop, and
Mihai, “Alignment and clustering of phylogenetic markers
- implications for microbial diversity studies,” BMC
Bioinformatics, vol. 11, no. 1, p. 152, 2010. [Online].
Available: http://www.biomedcentral.com/1471-2105/11/152

[37] G. Druck and A. McCallum, “High-performance
semi-supervised learning using discriminatively con-
strained generative models,” in International Conference
on Machine Learning, 2010. [Online]. Available:
http://www.cs.umass.edu/ gdruck/pubs/druck10high.pdf

[38] Wiley, Connolly, Gardner, Krughoff, Balazinska, Howe,
Kwon, and Bu, “Astronomy in the cloud: Using
MapReduce for image co-addition,” Publications of
the Astronomical Society of the Pacific, vol. 123,
no. 901, pp. 366–380, 2011. [Online]. Available:
http://www.jstor.org/stable/10.1086/658877

[39] Z. Hill and M. Humphrey, “A quantitative analysis of high
performance computing with Amazon’s EC2 infrastructure:
The death of the local cluster?” in Grid Computing, 2009
10th IEEE/ACM International Conference on. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 26–33.

[40] M. Fenn, M. A. Murphy, and S. Goasguen, “A study of a
KVM-based cluster for grid computing,” in ACM-SE 47:Pro-
ceedings of the 47th Annual Southeast Regional Conference,
2009, pp. 1–6.

[41] J. Ekanayake and G. Fox, “High performance parallel com-
puting with clouds and cloud technologies,” in First Interna-
tional Conference CloudComp on Cloud Computing, 2009.

[42] “NCSA deploys new high-performance cluster
dedicated to industrial use.” [Online]. Available:
http://www.ncsa.illinois.edu/News/11/0531NCSAdeploys.html

[43] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kessel-
man, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity,
J. C. Jacob, and D. S. Katz, “Pegasus: a framework for map-
ping complex scientific workflows onto distributed systems,”
Scientific Programming Journal, vol. 13, no. 3, pp. 219–237,
2005.

[44] T. Lehman, J. Sobieski, and B. Jabbari, “DRAGON: a
framework for service provisioning in heterogeneous grid
networks,” Communications Magazine, IEEE, vol. 44, no. 3,
pp. 84–90, March 2006.

385

