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Abstract

The workflow programming paradigm has had a repre-

sentative growth in the last years. This model is useful to

represent flows of control and facilitate the complexity man-

agement of processes that have multiple dependent tasks.

With the emergence of e-Science, workflow is becoming a

standard for management of scientific processes with mas-

sive data sets. Within the workflow execution, scheduling

of tasks is primordial to provide efficiency and to speed

up the process results arrival. In this paper we consider

the execution environment as being a computational grid,

which is dynamic, non-dedicated, and has heterogeneous

resources. We present a strategy for scheduling dependent

task processes, dealing with scheduling and execution of

more than one process at the same time potentially using

resources in common. The algorithm is dynamic and adap-

tive, rescheduling tasks that are on the queue of resources

not presenting good performance. Simulations show that

the proposed strategy can give better schedules by enhanc-

ing the resources usage.

1. Introdution

Grids emerged in the middle of 1990’s [4] and evolved

to a powerful environment for parallel processing and data

storage. These characteristics match with e-Science re-

quirements: high processing power and management of

large data sets. Also, the workflow paradigm helps in devel-

oping distributed systems architectures and algorithms for

executing such processes. Thus, the combination of grids

and workflows is a promising way of doing science [10].

To improve process execution in grids, whilst hetero-

geneity means complexity when selecting resources to ex-

ecute tasks, the dynamic behaviour (variations in resources

performance and availability) means complexity in perfor-

mance prediction and rescheduling. Scheduling, perfor-

mance prediction and rescheduling are receiving substan-

tial attention from the grid researchers nowadays [2, 7, 9].

However, an important point in scheduling is not receiv-

ing the deserved attention: the concurrent execution and

scheduling of processes with dependent tasks.

A schedule of a process composed of dependent tasks

have gaps between execution of tasks, since tasks must wait

for the data from its predecessors to start its execution.

When scheduling more than one process in the same set of

resources, the algorithm can consider these gaps to execute

tasks of processes that arrive. As a consequence, the com-

plexity increases and there are more combinations of pos-

sible schedules, whilst the process execution times can be

decreased and the overall machine utilization maximized.

In this work we study the aspects cited above to have bet-

ter schedules for processes on a grid environment. We mix

a scheduling heuristic, a dynamic scheduling strategy with

performance oriented adaptive task allocation, and we pro-

pose an algorithm to use the gaps to execute tasks. Using

queue and gaps to execute tasks, the algorithm can estimate

the finish time of the process more precisely than when ex-

ecuting processes at the same time on the same resource.

With many processes arriving, the first process can delay in

an unpredictable way if it shares resources with the arriving

processes. This way, one cannot have a good estimation of

the execution time of his/her process when it is submitted,

what can be achieved using queues.

The paper is organized as follows. In the next section

we introduce the task scheduling problem, whilst section 3

shows some related works. An overview of the used base

algorithms is shown in Section 4, and the proposed gap

searching algorithm is presented in Section 5, in conjunc-

tion with a rescheduling strategy. In Section 6 we show

some experiments with the proposed algorithm, and Section

7 concludes the paper.

2. Task Scheduling

The task scheduling problem consists in, given a set of

dependent tasks and its dependencies, choosing in which

This is a pre-print version.!

The final version is available at the publisher's website.



resource each task will execute. A scheduler, in general,

has an objective function. For example, a scheduler can try

to minimize the execution time (makespan) of the whole

process, maximize the resource utilization or maximize the

overall system throughput. We focus on the former.

A workflow is usually represented by a directed acyclic

graph (DAG) ● ❂ �❱✁❊✮, where ❱ is the set of tasks to

be executed and ❊ is the set of edges that represent data

dependencies between tasks. Thus, an edge ❡✐✂✄ , with its

source on task t✐ and its target on task t✄ , means that t✄ can

start its execution only after t✐ ends its execution and sends

all necessary data to t✄ .

Dependent task scheduling is an NP-Complete problem

[3], hence the associated optimization problem is NP-Hard.

To deal with this, we developed a heuristic and a dynamic

adaptive approach to schedule tasks on grids [1].

In a grid environment, besides the NP-Completeness of

the problem, more difficulties arise. The grid is dynamic,

the resources are heterogeneous and they have performance

variations, since it is a shared environment. In this work

we combine some techniques to deal with these character-

istics, with the objective of minimizing the makespan of the

processes. A four-step scheme representing the schedul-

ing strategy is shown in Figure 1. In the first step, we use

the Path Clustering Heuristic (PCH) [1] to make the initial

schedule of tasks. The round-based technique presented in

[1] is used in the second step, where the algorithm decides

dynamically on each round which scheduled tasks will be

sent to execution. With this, the algorithm can have perfor-

mance feedback from the resources to make rescheduling

decisions based on the initial schedule given by the PCH al-

gorithm, avoiding to send tasks to execute in resources with

poor performance. The dynamic module chooses which

tasks will be sent to execution on each round supported by

the adaptive module, which regulates the size of each round.

This adaptive round size regulation tries to avoid sending

too many tasks to execute in resources that had strong per-

formance variations in the past. The round size is measured

in terms of execution time of the tasks on a given resource,

so it depends on each resource capacity. The execution is

the third step, and the rescheduling is the fourth step. We

briefly describe these algorithms in Section 4.

In this work we modify the PCH heuristic to search

for gaps in the schedule (or queue) of each resource when

scheduling new processes. With this, we aim to reduce the

overall makespan of all processes without interfering in pro-

cesses that are already scheduled.

3. Related work

Task scheduling is studied in homogeneous systems ([6])

as well as in heterogeneous systems ([8, 11]).

Figure 1. Four-step scheme.

Two well known task schedulers for heterogeneous sys-

tems are the Heterogeneous Earliest Finish Time (HEFT)

[11] and the Critical Path on a Processor (CPOP) [11].

These algorithms schedule dependent tasks on heteroge-

neous environments without considering performance vari-

ations and dynamic behaviour.

A DAG meta-scheduler for grids is proposed in DAG-

Man [5]. It just sends one task at a time to the scheduler,

which schedules the tasks like independent tasks, without

knowledge about dependencies.

In [7], a case study on dynamic scheduling for scientific

workflow applications on the grid is presented. It proposes a

static reschedule with iterations over the workflow applica-

tion, generating a DAG with the tasks that to be rescheduled

on each iteration. After that, the generated DAG is sched-

uled, actually performing a reschedule of its tasks.

A dynamic two level scheduling for wide area networks

is proposed in [2], where a top level scheduler consults the

second level schedulers to select in which LAN the process

will be executed. There is no way of splitting the process

to execute in more than one LAN, what can lead to higher

completion times. Also, all schedulers in the second level

must reply each scheduling request. If there are many re-

quests, this may overload the schedulers.

Besides many works dealing with workflow scheduling

on grids [12], to the best of our knowledge there is no work

regarding algorithms for execution of more than one process

at the same time on a grid, with considerations of perfor-

mance losses, dynamicity of the environment and resched-

ule. Hence, we consider it as an open problem which we

focus in this paper.

4. Algorithms overview

This section gives an overview of the algorithms used to

schedule tasks within the four-step scheme. The algorithms



are briefly described and details can be found in [1], where

a comparison of PCH with HEFT and CPOP is provided.

✹✳�✳ P❈❍

The Path Clustering Heuristic uses the clustering tech-

nique to generate groups (clusters) of tasks. The PCH

groups paths of the DAG, creating clusters of tasks that re-

duces the communication between them. Each cluster has

tasks that are initially scheduled on the same resource.

First, the algorithm computes for each task some at-

tributes based on informations given by the middleware and

by task specifications, defined as follows.

➙Weight (Computation Cost):

✇✐ ❂
✁♥str✉❝t✁♦♥s✐

♣♦✇❡r✂

✇✐ represents the computation cost of the task ✁ in the

resource r. ✄♦✇❡r✂ is the processing power of the resource

r, in instructions per second.

➙ Communication Cost:

❝✐☎✆ ❂
❞✝t✝✐☎✆

❜✝♥❞✇✁❞t✞✂☎✟

❝✐☎✆ represents the communication cost between tasks ✁

and ❥, using the link between the resources r and t, where

they are scheduled. If r ❂ t , ❝✐☎✆ ❂ ✠.

➙ Priority:

✄✐ ❂

✦
✧

★

✇✐✱ if ✁ is the last task

✇✐ ✰ ✡❛①
✟☛☞✌✍✎✎✭✏✑✮

✒❝✐☎✆ ✰ ✄✆✓✱ otherwise

✄✐ is the priority level of the task ✁.

➙ Earliest Start Time:

❊✔✕✒t✐✱ r❦✓ ❂

✩

✕✁♠❡✒r❦✓✱ if ✁ ❂ ✖

✡❛①④✕ ✁♠❡✒r❦✓✱ ❊✔✕✗✂✘✙⑥✱ otherwise

❊✔✕✒t✐✱ r❦✓ represents the earliest start time of

the task ✁ in resource ✚. ✕✁♠❡✒r❦✓ is the time

when the resource ✚ is ready for task execution, and

❊✔✕✗✂✘✙ ❂ ✡❛①
✟❤☞✗✂✘✙✭✟✑✮

✒❊✔✕✛ ✰ ✇✛ ✰ ❝✛☎✐✓.

➙ Estimated Finish Time:

❊✜✕✒t✐✱ r❦✓ ❂ ❊✔✕✒t✐✱ r❦✓ ✰
✁♥str✉❝t✁♦♥s✐

♣♦✇❡r❦

❊✜✕✒t✐✱ r❦✓ represents the estimated finish time of the

task ✁ in the resource ✚.

Then, the algorithm uses the priority to select the first

task to be added to the first cluster (clustering phase). The

first node (or task) ♥✐ selected to compose a cluster ❝✢s❦ is

the unscheduled node with the highest priority. It is added

to ❝✢s❦, then the algorithm starts a depth-first search on the

DAG starting on ♥✐, selecting ♥✌ ✣ s✉❝❝✒♥✐✓ with the high-

est ✄✌ ✰ ❊✔✕✌ and adding it to ❝✢s❦, until ♥✌ has no un-

scheduled successors.

For each cluster created, the algorithm selects a resource

to schedule it. The processor selection step is performed

after each clustering step. The algorithm creates a cluster,

selects a processor to the created cluster, recalculates the

nodes attributes and repeats these steps until all nodes are

scheduled.

The criterion to choose the processor to a cluster is to

minimize the EST of the successor task of the cluster being

scheduled. To accomplish this, the first step is to calculate

the EFT of each node of the cluster on each available re-

source. If the current resource already has a cluster of the

same DAG, the tasks are sorted in descending order of prior-

ity to obey the precedence constraints, avoiding deadlocks.

The next step is to calculate the EST of the successor of

the last node of the cluster being scheduled. The first clus-

ter has no predecessors and no successors, since it starts on

the process’ first node and ends on the last one. So, hav-

ing no successors, it is scheduled on the resource that gives

the smallest EFT for its last node. In short, a cluster ❝✢s❦
is scheduled on the resource that gives the smallest EST for

the successor of ❝✢s❦. After the scheduling of each cluster,

the tasks attributes are recomputed.

✹✳✤✳ ❉②✥✪✫✬✯ P❈❍

The dynamic PCH introduces dynamic scheduling be-

haviour in the PCH algorithm. The initial schedule made

by the PCH algorithm is sent to the dynamic module and it

decides which tasks will be executed based on the current

round of execution. The number of rounds is determined

when the scheduling starts.

After the initial schedule made by the static PCH, the dy-

namic schedule is started. First, the algorithm selects only

part of the DAG to be sent to execution. A node ♥ is sent

to execution in a round ✚ (of a total of ✕ rounds) if ♥ has

not started its execution and if ❊✜✕✏ ✲
✴✵❦✘✌✗✵✏
❚✶❦ , with

✖ ✲ ✚ ✲ ✕ , or if the task is the first task on the resource

schedule. As the tasks are being executed, the scheduler

can compare the real execution time with that estimated by

the tasks’ attributes calculated by the algorithm. If there

is a performance loss higher than a threshold (for example,

✖✠✷) in a resource, the tasks that have not started their ex-

ecution and are scheduled to that resource are rescheduled

using the PCH algorithm. The rounds are repeated until all

tasks are sent to execution.



✹✳�✳ ❆❞✁♣✂✐✄❡ ❡①✂❡♥☎✐✆♥

After providing a dynamic algorithm to deal with perfor-

mance losses in resources, now we show an adaptive algo-

rithm that adjusts the number of rounds to DAGs of different

sizes and resources with variable performance. The objec-

tive of this adaptive extension is to vary the round size ac-

cording to the weight of the tasks, the size of the process and

the resources performance. Some characteristics are desir-

able in the adaptive algorithm: Adapt the size of the rounds

according to the weight of the tasks, adapt the size of each

round according to the performance of each resource, and

consider the performance history of each resource when de-

ciding the size of the round.

With this, we developed a mathematical model that

shows how these characteristics can be adopted in the

scheduling algorithm. The dynamic module is now sup-

ported by the adaptive module. The size of the initial round

depends on the size of the tasks on the execution queue, and

the next round sizes depend on information about resources

performance provided by the mathematical model formu-

lated in the adaptive extension. An overview of how the

whole scheduling algorithm works is shown in Algorithm

1.

Algorithm 1 Algorithm Overview

1: Schedule the DAG using the PCH

2: Select tasks to send to execution on each resource

3: Send tasks of current round to execution

4: while there are tasks not sent to execution do

5: t ★ wait next task to finish() //blocking wait

6: r ★ resource of t

7: if t is the last task of this round on r then

8: if t✝t✞✟ ✠✡✠☛ t☞♠✠✌ ❃ ✠✡✍✠☛t✠✎ ✠✡✠☛ t☞♠✠✌ ✰

t✏r✠s✏✝✟✎ then

9: Reschedule not started tasks of r with PCH

10: r ★ new resource to remaining tasks of r

11: end if

12: Calculate the round size on r using performance

information provided by the adaptive module

13: Send tasks of the current round to execute on r

14: end if

15: end while

5. Gap searching algorithm

In this section we present an algorithm to queue tasks on

the schedule of each resource considering gaps between the

already scheduled tasks. To make it simple, we modified

the original PCH to be more flexible. The modification was

done to give simpler gaps searching algorithms and to avoid

deadlocks between processes.

The modification on the PCH is in the depth-first search

that composes the clusters. Instead of stopping the search

when it finds a task that has no unscheduled successors,

the modified PCH stops when it finds a task t✑ that has no

scheduled predecessor, and t✑ is not included into the clus-

ter. With this, the clusters always have only tasks with all

predecessors already scheduled. Also, the clusters are po-

tentially smaller than with the original PCH, what increases

the probability of finding a gap with enough space to each

cluster. On the other hand, smaller the clusters, higher the

number of searches for gaps. So, finding gaps for one task

at a time may be too costly, thus using small size clusters

is an intermediary solution. Hereafter, PCH refers to this

modified version and original PCH refers to the version

presented in Section 4.1.

Starting the scheduling of a process, if there are no pro-

cesses currently scheduled on the available resources, the

scheduler does not need to search for gaps, so the schedul-

ing proceeds following the dynamic PCH algorithm with

the adaptive extension. If there are tasks currently assigned

to one or more resources, the algorithm searches for gaps in

the schedule to place each cluster.

Let the schedule (queue) of the resource r be ❙✌ ❂

④t✶✱ t✷✱ ✒✒✒✱ t❦⑥. The gap ❣❝✓✌ for the cluster ☛, ☛ ❂

④t❝✶✱ t
❝
✷✱ ✒✒✒✱ t

❝
✔⑥, in the resource r, is defined as:

❣❝✓✌ ❂ ✕✖✗
✘❥✦✙✚

✭✛✮

such that ✭❊❙✜✭t✢✣✶✱ r✮ ✩ ❊✤✜✭t✢✱ r✮✮ ✪ s ♠✞r❣☞✥ ❃

s☞✧✠❝✓✌ and ❊❙✜✭t✢✣✶✱ r✮ ✩ ❊❙✜✭t❝✶✱ r✮ ❃ s☞✧✠❝✓✌.

We call security margin, s ♠✞r❣☞✥, a free space in the

found gap to give room for possible lost of performance in

resources. This way, if the resource performance is worst

than expected, the cluster inserted in the gap can execute

with minor interference in the tasks previously scheduled

on that resource. This security margin is relative to the size

of the gap. For example, if we want ✫✬✯ of security margin,

we use s ♠✞r❣☞✥ ❂ ✬✒✾. Also, we define the size of a

cluster ☛ on ❙✌ as the difference between the EFT of the last

task of the cluster and the EST of the first task of the cluster

on r, or, s☞✧✠❝✓✌ ❂ ❊✤✜✭t❝✔✱ r✮ ✩ ❊❙✜✭t❝✶✱ r✮.

To avoid deadlocks, one verification is made when the

gap searching algorithm finds a gap for a cluster. After com-

posing each cluster, the algorithm generates a set of depen-

dent tasks for each task in the cluster. The set of dependent

tasks of a task t✑, ❉✘✲ , is composed of all tasks in any path

from t✑ to t❦ (the last task of the process). Before assign-

ing a gap to a cluster ☛, the algorithm verifies if there are

no tasks ahead of the gap in the schedule which t❝✔ (the last

task of the cluster) depends on. If there is such a task, the

gap cannot be assigned to that cluster, and the algorithm

proceeds with the search. The gap searching algorithm is

shown in Algorithm 2.



Algorithm 2 search gap(❙r , ❝)

1: s�✁❡✂✄r ★ ❊☎❚✭t✂♠✱ ✆✮ ✩ ❊❙❚✭t
✂
✶✱ ✆✮

2: ❦ ★ number of tasks in ❙r
3: � ★ ✝

4: if ✭❊❙❚✭t✶✱ ✆✮ ✪ s ✞✟✆❣�✐✮ ❃ s�✁❡✂✄r then

5: Compute ESTs and EFTs for t✂❥ ✦ ❝ on the current

gap

6: ❉✠✡☛ ★ tasks ahead which t✂♠ depends on

7: if ✭❊❙❚✭t✶✱ ✆✮✩❊❙❚✭t
✂
✶✱ ✆✮ ❃ s�✁❡✂✄r✮ and❉✠✡☛ ❂

✫ then

8: ❣✂✄r ❂ ☞; return ❣✂✄r
9: end if

10: end if

11: for � ❂ ✝ to ❦ ✩ ✝ do

12: if ✭✭❊❙❚✭t✌✰✶✱ ✆✮ ✩ ❊☎❚✭t✌✱ ✆✮✮ ✪ s ✞✟✆❣�✐✮ ❃

s�✁❡✂✄r then

13: Compute ESTs and EFTs on current gap ✬t✂❥ ✦ ❝

14: ❉✠✡☛ ★ tasks ahead which t✂♠ depends on

15: if ✭❊❙❚✭t✌✰✶✱ ✆✮ ✩ ❊❙❚✭t✂✶✱ ✆✮ ❃ s�✁❡✂✄r✮ and

❉✠✡☛ ❂ ✫ then

16: ❣✂✄r ❂ �; return ❣✂✄r
17: end if

18: end if

19: end for

20: ❣✂✄r ❂ ❦; return ❣✂✄r //no gap found

The gap searching algorithm first determines the size of

the cluster ❝ being scheduled and the number of tasks in the

schedule of ✆ (lines ✝ and ✷). Then it verifies if the first

task on the resource has ❊❙❚ ❃ ☞ and if ❝ is smaller than

this gap in the start of the schedule, considering the security

margin (line ✹). If ❝ fits in the gap, the algorithm verifies if

there is room for the cluster discounting its EST, since we

do not want to interfer on the execution of tasks already in

the schedule, and it verifies if there is a deadlock (line ✻).

If there is no room for the cluster in the beginning of the

schedule or there is deadlock, the algorithm starts to iter-

ate over the tasks on the schedule (line ✝✝). The algorithm

searches a gap between the task on the current position, t✌,

and the next task, t✌✰✶ (lines ✝✷ to ✝✍). If no gaps were

found, the position is set to the last one (line ✷☞).

The processor selection algorithm with gap searching is

shown in Algorithm 3. For all resources available, the algo-

rithm searches for gaps (line ✷) and inserts the cluster ❝ in

the position returned by the gap searching algorithm (line

✸). The insertion is done after the task on the stated po-

sition, starting with t✶ ✦ ❙r in position ✝. In line ✺ the

algorithm computes the EST of the successor of ❝. Finally,

the algorithm returns the resource with the smaller EST for

❝’s successor in the DAG (line ✼).

An example is shown in Figure 2. Two pro-

cess, P☞ ❂ ④t✶✱ t✎✱ t✏✱ t✑✱ t✒✱ t✓✱ t✔✱ t✽✱ t✾⑥ and P✝ ❂

Algorithm 3 get best resource(❝)

1: for all ✆ in ✆❡s♦✉✆❝❡s do

2: ❣✂✄r ★ search gap(❙r, ❝)

3: s❝✕❡❞✉❧❡ ★ Insert ❝❧✉st❡✆ on ❙r in position ❣✂✄r
4: calculate EFT(t✂♠);

5: t�✞❡r ★ calculate EST(successor(t✂♠))

6: end for

7: return resource ✆ with the smallest t�✞❡r

Figure 2. Two DAGs and resulting schedule.

④t❆✱ t❇✱ t❈✱ t✖✱ t✗✱ t❋ ⑥, are scheduled with gap searching.

For the example, consider that resources ❘☞ and ❘✝ have

same performance. The first cluster of P☞ scheduled is

❝❧s✵ ❂ ④t✶✱ t✎✱ t✏✱ t✑✱ t✓⑥. Then ❝❧s✶ ❂ ④t✒✱ t✔⑥ is sched-

uled. Finally, ❝❧s✎ ❂ ④t✽✱ t✾⑥ is scheduled. After schedul-

ing P☞, P✶ is scheduled, starting with ❝❧s✵ ❂ ④t❆✱ t❇✱ t✖⑥

on the gap found before t✒. Then, ❝❧s✶ ❂ ④t❈✱ t✗⑥ is sched-

uled on the gap between t✓ and t✽. Finally, ❝❧s✎ ❂ ④t❋ ⑥ is

scheduled after t✗ and before t✽.

In the example, ❊❙❚✭t❈✱ ❘☞✮ ❂ ✹✺ and

❊☎❚✭t✗✱ ❘☞✮ ❂ ✻✝. Also, ❊☎❚✭t✓✱ ❘☞✮ ❂ ✹✺

and ❊❙❚✭t✽✱ ❘☞✮ ❂ ✻✺. Tasks t❈ and t✗ can be

scheduled on the gap between t✓ and t✽ considering

a security margin of at most 20% or, more precisely,

s ✞✟✆❣�✐ ❃ ✝ ✩
✑
✶✾ , since s�✁❡✭④t✓✱ t✽⑥✱ ❘☞✮ ❂ ✝✘ and

❊❙❚✭t✽✱ ❘☞✮ ✩ ❊☎❚✭t✓✱ ❘☞✮ ❂ ✹.

✙✳✚✳ ✛✜✢✣❤✜✤✥✧✯✲✴ ✿❢ ❀❛✢❁✢

When a resource does not perform as expected, the dy-

namic algorithm allows to change the current schedule to

avoid sending tasks to that resource. To do this, the al-

gorithm reschedules the not executed tasks that are in the

schedule of the resource. When there is only one process

scheduled on a set of resources, the rescheduling can be

made by reallocating the tasks originally on the resource

with poor performance. In this case, since there are only

tasks of one process on all resources, the selection of a new



resource demands simple verifications to avoid deadlocks.

When more than one process share the same set of resources

and they also use gaps in the schedule of other processes,

the rescheduling of tasks becomes more complex. When

tasks are reallocated, there is a possibility of deadlocks be-

tween tasks of different processes, what we call an inter-

process task deadlock.

Although complex algorithms could be developed to

handle this problem, in this paper we deal with it in a sim-

ple way. If the dynamic algorithm measures a poor perfor-

mance of a resource at the end of the round, the algorithm

searches a new resource for each cluster ahead of the end of

the current round on the aforesaid resource. But, if there is

no gap for a cluster and it is rescheduled on the end of the

current schedule of a resource, deadlocks can also occur.

To avoid deadlocks, the proposed algorithm sorts all tasks

in the schedule by their EST when rescheduling. This way,

a task will never be scheduled before one of its predeces-

sors or after one of its successors. Note that there is no gap

searching in the rescheduling. When sorting tasks by their

EST, the scheduler tries to mantain the rescheduled cluster

starting at a time near that in the original resource, and at

the same time it tries to minimize the cluster’s end time. An

overview of the rescheduling is shown in Algorithm 4.

Algorithm 4 reschedule(❙r)

1: ❈r❡� ★ clusters of ✁ to reschedule

2: for all ❝ ✦ ❈r❡� do

3: for all ✁ in ✁✂s♦✉✁❝✂s do

4: s❝✄✂❞✉❧✂ ★ Insert ❝❧✉st✂✁ on ❙r
5: Order ❙r by EST

6: calculate EFT(t☎♠);

7: t✆✝✂r ★ calculate EST(successor(t☎♠))

8: end for

9: end for

10: return resource ✁ with the smallest t✆✝✂r

6. Experimental Results

In this section we evaluate the initial makespan of

the processes scheduled with the gap searching algorithm

and the makespans when executing and rescheduling the

processes on resources with performance variation. The

comparison uses two processes (process zero and process

one). The scheduling with gap searching is compared with

scheduling without gap searching, where the first process

scheduled executes all its tasks scheduled on a resource be-

fore the next process can execute on the same resource.

With this, the second process can be scheduled on the re-

maining free resources or on resources used by the first pro-

cess, but only after the tasks of the first process.

In this work we consider that grids are composed of

groups of resources. For example, a LAN or a cluster could

be a group. The resources inside the group have same link

capacities between them, and these capacities can be dif-

ferent on each group. The connections between groups are

heterogeneous.

Fifteen graphs supported by the Xavantes programming

model were randomly taken for the experiments, with num-

ber of nodes between ✼ and ✽✞. Medium communication

means that the communication and computation costs were

randomly generated in the same interval (from 500 to 1100

time units). High communication means all communica-

tion costs (from 1100 to 1600 time units) were higher than

all computation costs (from 500 to 1100 time units). The

experiments were made simulating a group topology, as de-

scribed in the Infrastructure section. For each number of

groups, varying from ✞ to ✞✷, two graphs were scheduled

✶✷✟✟✟ times. Each group had a random number of hetero-

geneous resources, varying from ✶ to ✷.

For each execution, two processes among the fifteen

graphs were randomly taken, which means ✶✷ ✪ ✶✷ ❂ ✞✞✷

different configurations of process scenarios. First, process

zero were scheduled using the PCH algorithm. Then, pro-

cess one was scheduled with and without the gap searching

algorithm. We used a security margin of ✶✟✠ on the exper-

iments (s ✝✡✁❣✆✐ ❂ ✟✳✾).

The main comparison metrics used in the literature

are the Schedule Length Ratio (SLR) and the speedup.

The SLR shows how many times the schedule length

(makespan) is bigger than the execution of the critical path

of the DAG on the best resource available (less is bet-

ter). The speedup shows how many times the makespan

is smaller than the makespan of all tasks in sequence on the

best resource (more is better).

Figure 3 shows the average SLR for process one in the

initial schedule (before execution) with and without the gap

searching for medium communication. Fewer the number

of groups, higher the SLR for both algorithms, since there

are less options of resources. But, fewer the number of

groups, higher the gain with the gap searching algorithm

when compared to scheduling without gap searching. This

is because process zero was scheduled on the best resources,

leaving gaps on its schedule. So, when process one is sched-

uled, there are less options of free resources, and the free re-

sources currently have worse performance than the not free

ones, what makes the gaps good options to schedule pro-

cess one’s clusters. On the other hand, with more groups,

although the algorithm with gap searching still perform-

ing better, the difference on the SLR is smaller than with

a few groups. Thus, even with many options of resources

(higher number of groups), the gap searching algorithm can

find gaps that worth to be used in the scheduling of pro-

cess one. This analysis is also valid for the speedup results
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Figure 4. Average speedup for P1.

with medium communication (Figure 4), strengthening the

conclusions. Note that the initial schedule does not inter-

fer on process zero, so its makespan is the same with both

algorithms. Thus, it is not shown on inital schedule results.

In a high communication scenario, the SLR results (Fig-

ure 3) show the same behaviour of SLR for medium com-

munication. The graphic is slightly different from medium

communication ones, since the SLR differences are wider

with a few groups when compared to differences with

medium communication. This is because scheduling on a

few resources supresses the high communication costs, re-

sulting in many tasks of the same process on the same re-

source when using the gap searching algorithm. On the

other hand, more resources can spread the tasks, increas-

ing the communication costs and approximating the results

of both algorithms. For the speedup results with high com-

munication (Figure 4), we can observe a similar behaviour,

but with a smaller difference when having a few groups.

Figure 5 compares the average of speedups for the initial

schedule when scheduling three processes, namely P✵✱ P✶

and P✷, with medium communication. Naturally, when

there are three processes scheduled, the speedup of P✷ is

worse than speedup of P✶, but note that the gain with the

gap searching algorithm is bigger to P✷ than to P✶. We

also observed a similar behaviour for SLR in this scenario.

After evaluating the initial schedule, we now evaluate

how the initial schedules behave when executing the tasks.
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Figure 5. Average speedups for P1 and P2.

No rescheduling means that all tasks are executed in the re-

sources given by the initial schedule, no matter their perfor-

mance, and rescheduling means that the tasks are resched-

uled using Algorithm 4. Note that there is no reallocation

of tasks, so there is no overhead of moving tasks, since the

reschedule is made before the tasks are sent to execution.

To determine the resources performance, we first generated

a pattern of resources performance based on measurements

made on computers in our laboratories. With this, in the be-

ginning of the simulation, we generated processing powers

for each time interval on each resource. These processing

powers were the same for the execution of each algorithm.

The results show the average over both processes with high

communication.

Figure 6 shows the SLR results for the execution of pro-

cess zero and one with and without gap search, and with and

without rescheduling. The executions without reschedule

have similar results. This means that in an environment with

performance variation, the gap searching algorithm can be

useless if there is no rescheduling policy. This is because all

the gain in the gaps is lost when the performance drops in

the resources. This loss of performance works like a snow-

ball when there are no gaps in the schedule, affecting all

tasks of both processes. On the other hand, when the gaps

are empty, there is room to “absorb” the delays in task ex-

ecution, and this delay does not affect the processes in a

way like it does when there are no gaps in the schedule.

When the rescheduling algorithm is used, there is a visible

improvement in the schedule.

Comparing the reschedule with and without gap search

we can see that the gap search can improve the results when

there are a few groups. When there is a higher number

of groups (more than 10), the results of rescheduling with

and without gap searching are equivalent. This can be ex-

plained by the fact that we use the same algorithm in both

cases, and this algorithm has no gap searching because of

potential deadlocks. Thus, when there are many options

of resources, the gaps used in the initial schedule have less

impact on the final execution time. The gain with the gap

searching algorithm is due to the initial gain in the sched-



ule and the security margin, which can “absorb” some per-

formance loss. Hence, the gap searching algorithm is very

useful when there is a little or no performance loss, and can

make little better schedules when there is considerable per-

formance loss by using a simple rescheduling algorithm.
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The previous analysis is also valid for the speedup results

(Figure 7), except for results with a few groups. In this

case, because the algorithm has no good options to make the

reschedule, the sorting of tasks on the available resources

seems to worsen the schedule. However, this problem is not

seen when the number of groups grows to more than ✹.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 5  10  15  20  25

Number of groups

Avrg P0 P1/No Gap search
Avrg P0 P1/No Gap search resc.

Avrg P0 P1/Gap search
Avrg P0 P1/Gap search resc.

Figure 7. Speedup for execution of P0 and P1.

7. Conclusion

In this work we study how to deal with performance

issues when scheduling workflows on the grid. We pro-

pose an algorithm to schedule more than one process using

the same set of resources by searching for gaps in the cur-

rent schedule. This gap searching algorithm uses a security

margin to prevent interference on processes already on the

schedule, and it is combined with a rescheduling algorithm.

The experimental results suggest that the gap search-

ing algorithm in conjunction with the rescheduling algo-

rithm can provide good schedules in situations inherent to

the grid. While the gap searching algorithm, supported

by the dynamic and adaptive modules, tries to make good

schedules when resources have good performance (with lit-

tle or no variation in expected performance), the reschedul-

ing deals with heavier performance variations.

Future works include the development of an advanced

rescheduling algorithm and a performance prediction model

to interact with the dynamic and adaptive modules. It also

could provide information to the security margin in the

gaps. This can contribute to avoid rescheduling of tasks on

foreseeable situations of resources load.
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