Workflow Scheduling for SaaS / PaaS Cloud
Providers Considering Two SLA Levels

Thiago A. L. Genez, Luiz F. Bittencourt, Edmundo R. M. Madeira
Institute of Computing — University of Campinas — UNICAMP
Av. Albert Einstein, 1252, 13083-852 — Campinas — Sdo Paulo — Brazil
e-mail: thiagogenez @Irc.ic.unicamp.br, {bit,edmundo} @ic.unicamp.br

Abstract—Cloud computing is being used to avoid maintenance
costs and upfront investment, while providing elasticity to the
available computational power in a pay-per-use basis. Customers
can make use of the cloud as a software (SaaS), platform (PaaS),
or infrastructure (IaaS) provider. When one customer utilizes
an environment provided by a SaaS cloud, she is unaware of
any details about the computational infrastructure where her
requests are being processed. Therefore, such infrastructure
can be composed of computational resources from a datacenter
owned by the SaaS or its resources can be leased from a cloud
infrastructure provider. In this paper we present an integer linear
program (ILP) formulation for the problem of scheduling SaaS
customer’s workflows into multiple IaaS providers where SLA
exists at two levels. In addition, we present heuristics to solve
the relaxed version of the presented ILP. Simulation results show
that the proposed ILP is able to find low-cost solutions for
short deadlines, while the proposed heuristics are effective when
deadlines are larger.

I. INTRODUCTION

A SaaS cloud provides software as services to the users
through the Internet [1], [2], [3]. The number of clients
requesting services from the SaaS can be seasonal, thus with
variations over the time. To be able to provide a good quality of
service (QoS) within the customer’s service level agreements
(SLA), the SaaS must be prepared to attend a peak of demand.
Thereupon, the computational capacity of the SaaS provider
should be sufficient to deal with the peak number of customers,
which brings high maintenance costs and underutilization on
off-peak demand times. To contour this situation, the SaaS
may rely on resources leased from IaaS cloud providers also
through SLA, bringing elasticity to its computational power.
With that, more resources can be leased from the IaaS when
they are needed to comply with customers’ QoS.

In this paper we consider a SaaS which provides a workflow
execution service to its customers. The customer submits
his/her workflow to be executed by the SaaS along with a
response time (deadline) to be obeyed. The SaaS provider aims
to execute the customer’s workflow within the deadline using
computational resources leased from multiple [aaS providers.
To achieve this, we formulate a scheduler as an integer
linear program with the objective of minimizing the monetary
execution costs while meeting the deadline stipulated by the
user in the SLA contract. The scheduling algorithm runs in the
SaaS provider and determines which IaaS provider and which
type of virtual machine (VM) have to be leased to execute

This is a pre-print version.
The final version is available at the publisher's website.

the workflow in order to guarantee QoS to SaaS’s costumers.
It is worth noting that this scenario and, thus, the presented
algorithms are also applicable to platform as a service (PaaS)
providers. We use only SaaS in the rest of the text for the sake
of clarity.

The main contributions of this paper are: (i) the integer
linear program (ILP) for the proposed scheduling problem at
the two-level SLA cloud; (ii) two heuristics to obtain integer
solutions from the relaxed version of the proposed ILP; and
(iii) simulations that evaluate scheduling results from the ILP
and the proposed heuristics.

The remainder of the paper is organized as follows. Sec-
tion II shows related works. In Section III we present the
scheduling problem and conceptual background, while Section
IV shows the proposed scenario. The scheduling algorithm
is introduced in Section V. Simulation results are discussed
in Section VI, while the final remarks and conclusions are
presented in Section VIL.

II. RELATED WORKS

Wu et al. describe in [4] a resource allocation algorithm
for SaaS providers that want to minimize infrastructure cost
and SLA violations. They present cost-effective policies for
mapping and scheduling in order to achieve profit maximiza-
tion for the SaaS provider through the use of multiple IaaS
providers. Li and Guo describe in [5] a stochastic ILP for
optimal resource scheduling in cloud computing. They show
how to select resources from public clouds to perform abstract
services in business process instances while satisfying costs
defined in SLAs. Reig et al. propose in [6] a strategy to
minimize the computational resource consumption through
a prediction system which determines the minimum cost
resource for a job to be executed before its deadline to prevent
SLA violations. Although these works present advances in
scheduling tasks on clouds, none of them consider workflows.

Bittencourt and Madeira propose in [7] a strategy to sched-
ule service workflows in a hybrid cloud. They show an
algorithm called Hybrid Cloud Optimized Cost (HCOC) that
decides which resources should be leased from the public
cloud to increase the processing power of the private cloud.
Although HCOC minimizes the monetary cost of the workflow
execution within a deadline, Bittencourt and Madeira do not
consider the notion of SLA, which is an important aspect in the
business model proposed by the cloud paradigm. Pandey et al.

Fig. 1. Example of fork-join DAG with 14 nodes (from [7]).

describe in [8] a particle swarm optimization (PSO) heuristic
to schedule application workflows. They show a model for
task-resource mapping to minimize the overall execution cost
in cloud computing environments. Nevertheless, they do not
consider the notion of SLA on both user and provider sides.

III. BACKGROUND AND CONCEPTS

In this section we briefly introduce the workflow represen-
tation, cloud computing and SLAs in clouds.

A. Workflow Representation

A workflow is generally represented by a Directed Acyclic
Graph (DAG) G = {U, £}, where each node u; € U represents
a service and each edge e; ; € £ represents a data dependency
between services ¢ and j, that is, e; ; is the data produced by u;
and consumed by u;. Labels on nodes represent computation
costs (number of instructions, for instance), while labels on
edges represents communication costs (bytes to transmit, for
instance), as shown in the example of Figure 1. We assume,
without loss of generality, that all DAGs have only one entry
node (first node) and one exit node (last node). In addition, we
assume that each node u € U is indivisible and will execute
in only one virtualized processing core. Therefore, the main
objective of the workflow scheduler is to decide where each
node component of the DAG will execute.

B. Cloud Computing and SLA

Cloud customers usually need the services offered by ser-
vice providers with certain Quality-of-Service (QoS) guaran-
tees specified in Service Level Agreements (SLA) [9]. SLA
is a legal document where the descriptions of such services
are formally defined, delivered, and charged [10]. The SaaS
provider can lease VM instances provided by IaaS providers
through two types of SLA contracts: on-demand or reserved.
In the first SLA type, the SaaS provider will lease VMs with no
long-term commitments and will pay only for the computing
power per time unit (usually per hour). On the other hand, in
the reserved VMs SLA, the SaaS provider will lease VMs
with a long-term commitment (1 to 3 years, for instance)
and will pay an advance fee to reserve each VM. In turn,
the SaaS provider receives a significant discount on the time
unit usage charge for each reserved instance. The idea of SLA
contracts used in this paper will be similar to the Amazon EC2
contract !.

! http://aws.amazon.com/ec2/

SLA Information
1aas and VM data
VM Performances

/ VM Prices. / 2
.y H\ P = w\H\)

Fig. 2. The proposed scenario

IV. THE CLOUD SCENARIO

The proposed scenario for serving SaaS cloud’s customers
is shown in Figure 2. Its main components are a workflow
manager, a workflow scheduler, and a repository used by these
components. In practice, there is a limited number of VMs that
the IaaS provider can offer per cloud user [4]. The importance
of this scenario is that, to maximize its profit, the SaaS
provider must not refuse customer requests when its reserved
computational resources (and/or its own infrastructure) are
entirely busy on peaks of demand.

In this scenario the SaaS’s customer submits his/her work-
flow to be executed and he/she wants to have it finished before
a certain time (deadline). The workflow manager analyzes the
workflow, consulting the repository (database), which contains
information such as VM performance and VM prices. The
repository may also have historical information about previous
executions of services requested by the SaaS customers and
resources performance for each one of them. The workflow
manager sends such information to the workflow scheduler
which uses it to perform the scheduling using the proposed
scheduling algorithms. If the current infrastructure (SaaS pri-
vate resources and/or reserved resources from IaaS providers)
is not enough to obey the workflow deadline, the scheduling
algorithm will also return schedules to IaaS resources which
should be leased on-demand.

V. THE SCHEDULING ALGORITHM

The proposed scheduling algorithm deals with the trade-off
between leasing cheap or powerful (and expensive) VMs. The
objective is to find solutions that minimize the global SaaS
infrastructure monetary costs and SLA violations.

A. Notation and Problem Modeling

The following notation is used for the integer linear pro-
gramming formulation of the problem:

« n: number of nodes in the DAG (n € N);

e W={wi,...,wy}: set of processing demands for each
node u € U, expressed as the number of instructions to
be processed (wy € R™);

e fij : number of data units transmitted between u; € U

and u; € U (fi’j € R+)
o H(j) = {ij : i < j, there exists an arc from vertex
i to vertex j in the DAG}, is the set of immediate
predecessors of u; € U;

o Dg: finish time (deadline) desired by the SaaS customer
for the DAG G;

e T ={i1,...,0y}: the set of IaaS providers composing

the infrastructure;

e 0;: maximum number of VMs that a cloud customer can

have leased from the TaaS ¢ € Z at any given time ¢
(6; € N).

Our scenario is composed of two SLA layers. The first one
contains all SLAs where deadline D is defined. The second
one is composed of all SLAs that defines the characteristics of
each VM leased, such as number of processing cores, amount
of memory, and prices. Let S; be the set of all SLAs that have
been signed between the SaaS provider and each laaS provider
i € Z. We define the set S; = o] U o] which consists of
two subsets, where the subset o] includes SLAs for reserved
VMs readily available, and the subset o7 includes only SLAs
for on-demand VMs that can be leased on-the-fly.

Let V; be the set that includes only VMs associated with
prices for reserved resources from IaaS ¢ € 7 and V; be the set
that includes only VMs associated with prices for on-demand
resources from IaaS i € Z. Each SLA s, € o7 is related to one
VM v € V;, and each SLA s, € o7 is related to one VM v €
V7. One of the parameters defined in each contract agreement
s € S; is the number of reserved VMs a; € Nt available
for the SaaS provider. Another SLA parameter indicates the
duration time t; € NT of the term commitment. Furthermore,
the provisioning of virtual machines is limited by the each IaaS
provider for each client, then the following restriction must be
strictly obeyed at any given time ¢: Z as <d0;, Viel.

SES;
The resources available for leasing come from a set of
infrastructure providers (IaaS) Z = {41,...,%,,} and a set

of VMs V = (U VZ), where each V; = V] UV} consists
i=1

of the union of two subsets having reserved and on-demand
resources from the TaaS 4, according to the SLAs in S;.
Moreover, we define the following IaaS characteristics for the
ILP formulation:
« m: number of IaaS providers (m € N);
o P,: number of processing cores of v € V), where P, € N;
o Jy,: time units that VM v €) takes to execute 1
instruction, with J, € R™;
o Ly, v,: time units taken to transmit 1 data unit over the
network link between v, € V and vy, € V, with Evgﬂ,g =
0 and £, ., € RT;
e B, ,: binary variable that assumes a value of 1 if v € V
belongs to the TaaS ¢ € Z, and 0 otherwise;
e C,: price to lease v € V during one time unit, with C,, €
R*.
Besides that, on-demand pricing of any v, € V; is generally
greater than reserved pricing for the same kind of VM v, € V;

in the same ¢ € Z, which is also a usual configuration in
real environments. In other words, C,, > C,., V v, €
VY, Y ou. € V. Let (= {o],...,0,,} be the set that
contains all SLAs associated with reserved VMs. Thus, we
define the variable s, that assumes a value of 1 if the SLA
s € (is related to the reserved VM v € V, or 0 otherwise.
That means, if €5, = 1 and B;, = 1, then s € o] and
veV.

The scheduling cost-optimization problem can be stated as
follows: “Find a feasible mapping M between the nodes of the
DAG G and the VMs from multiple laa$S providers, such that
the sum of the monetary computation cost for all nodes u € U
ona VM v € V is minimal, the dependencies among nodes
are not violated, and the total execution time of the mapping
M (makespan) Mg is at most equal to the deadline required
by user, i.e., Mg < Dg”.

B. Formulation of the Integer Linear Program

The integer linear program solves the scheduling problem
through the binary variables x and y and the constant C,:

e I, binary variable that assumes the value 1 if the node
u finishes at time ¢ in the VM v; otherwise this variable
assumes the value 0;

e Y., binary variable that assumes the value 1 if the VM
v is being used at time ¢; otherwise this variable assumes
the value 0;

o C,: constant that assumes the cost per time unit for using
the VM wv.

The formulation of the integer linear programming problem
considers discrete time intervals. Let 7 = {1,...,Dg} be
the timeline of the possible workflow execution time, which
ranges from 1 to the desired deadline Dg. The integer linear
program is formulated as follows.

Minimize Z Z Yt,u X Cy, Subject to:
teT veV
(C1) Z Z Tt = 15
teT veY
Y uelU,
[we X Tu]
(C2) Z Z Z Lu,t,v = 0;

uceU vev t=1

t—’—wz ><.7r+fu,z><Li,j-| t
TR SRR S S
=1

s=1 s=
VzeU, YueH(z), Vrve,
VteT, Vi je€T|Biy=1 Bj,=1

t+[wu X Tu]—1

(04) Z Lu,s,v < Pv
ueU s=t:t<Dg—[wy XTu]|

YveV, VteT;

t

(C5) >

s=t—[wy X Tp]+1
Yueld, YveV, Vte{[lwsxTn],...

Ysw = Tut X (’—wu X Jv-|)

»Dg s

(C6) > o < &

veY

VieZ, YVteT]|Bi,=1;
(C7) Z Yt,v < as

veY

Vse(, VteT | Ksp=1;
(CS) Tu,t,v € {O: 1}

Yueld, YteT, YveV;
(C9) wtw€{0,1}

VteT, YveEY;

The constraint (C1) specifies that a service must be executed
only once and in a single VM. The constraint (C2) establishes
that a DAG node u cannot be set as finished until it has been
executed in a VM v. The constraint (C3) determines that a
DAG node z cannot begin its execution until all preceding
nodes have finished their processing and the resulting data has
arrived at the VM that will run z. The constraint (C4) specifies
that the number of DAG nodes executing on a VM v at a
given time ¢ cannot exceed the number of processing cores of
v. The constraint (C5) determines that a VM must stay active
(i.e., with status being used enabled in the variable y) while
it is executing the node which requires it. The constraint (C6)
specifies that the number of reserved VMs plus the number of
on-demand VMs cannot exceed the maximum number allowed
by each IaaS provider. The constraint (C7) establishes that the
amount of virtual machines being used cannot exceed the limit
stipulated in the SLA. The last two constraints, (C8) and (C9),
specify that the variables of this integer linear program, namely
z and y, will only assume the binary values O or 1.

Given the NP-Completeness of the workflow scheduling
problem, the time taken by the ILP solver to find the optimal
integer solution with the proposed ILP increases exponentially
with the input size. We considered three different manners to
cope with this: (i) optimal approach: find an optimal solution
within a time limit that, if reached, returns the best solution so
far; (ii) first solution approach: returns the first integer solution
found within a time limit, if reached, returns the best solution
so far; and (iii) relaxed approach: solve the relaxed ILP and
apply heuristics to the fractional solution in order to find the
integer solution. Approaches (i) and (ii) are directly obtained
by changing the solver parameters. By doing this, the solver
stops when a certain execution time is reached or when the
optimal solution is found (for approach (i)) or when the first
integer solution is found (for approach (ii)). In both cases,
if the time limit is reached, the solver may return the best
solution so far or declare the problem instance unfeasible.
Approach (iii), besides telling the solver to relax the solution,
needs the implementation of a heuristic over its output, since in
this case the variables x and y can assume values in R*. Next,
we describe two heuristics proposed to find integer solutions
based on relaxed ones given by the ILP solver.

C. ILP Relaxation

The relaxation of the integer linear program consists in
changing the integer set {0,1} of the constraints in (C8)

and (C9) to its real [0,1] interval. Thereupon, the relaxed
integer linear program returns real numbers in the variable
Zu,t,v Tepresenting the best way to split a node among virtual
machines, therefore potentially returning more than one VM
option to execute each node. However, each node in the DAG
is indivisible. In this section we describe two heuristics that
use an iterative method to obtain an integer solution from a
relaxed one in the proposed ILP. Both heuristics are based on
the variable z,, ,, which provides the node id u, node finish
time £, and VM v to execute it.

The iterative method works as follows. Given a DAG G, a
deadline Dg, and the set V of IaaSs, the first step is to call the
ILP solver to obtain a relaxed solution for the input instance.
With this, we obtain real values for the variable x,, ;.. Based
on these values, we select an output x,, ; ,, and make it integer
by adding a new constraint x, ;, = 1. By setting a z,
to 1 we are actually deciding that node = is scheduled to
run on VM v finishing at time ¢t. These steps are repeated
k < |U| = n times, until all resulting variables present an
integer solution. The two proposed heuristics differ on how
the x,.+, 1S selected from the relaxed solution to be set to 1
at each iteration. The general iterative algorithm is shown in
Figure 3.

Require: DAG G = {U, £}, deadline Dg, set of laaSs V
Ensure: Schedule of G in V

1: Call relaxed ILP solver
2: while 3 u € U such that Z Z ZTu,t,w 7 1 do

teT vey L
Choose a node u; € U according to the heuristic

3

4 Choose a resulting variable ¢, 0, according to the heuristic
5 Add new constraint ., ¢,,0, = 1 to the ILP

6: Call relaxed solver for the new ILP
7

8

: end while
: Return the solution from the last solver call

Fig. 3. The iterative method for obtaining an integer solution.

The first heuristic initially tosses a coin to decide if it should
start from the first or from the last node of the DAG. If the
first node (ug) is selected, then the heuristic sets the variable
Tug,ta,vs = 1 such that t, is minimum, thus stipulating that
node ug will execute in VM wv,, finishing at the minimum
time ¢, returned in the relaxed solution. If the last node wu,,
is selected, the heuristic sets the variable z,,, +, ,., = 1 such
that t;, is maximum, thus stipulating that node u,, will execute
in VM wv,, finishing at the maximum time ¢; returned in the
relaxed solution. After this first round, the heuristic keeps
taking not scheduled tasks from the beginning and from the
end of the DAG in turns, until an integer solution is reached or
an unfeasible instance is found. First level tie-breaks are made
by taking the larger x, and randomly at second level. We call
this heuristic begin-minimum end-maximum times (BMEMT).

The second heuristic randomly selects at each iteration a
ready node u, with all its predecessors already scheduled and
sets the variable x,, ¢, = 1 such that ¢ is minimum. Ties are
broken firstly by selecting the VM v which has minimum cost,
and secondly by taking the larger z. If the tie persists, it is

randomly broken. We call this heuristic begin-minimum time
(BMT).

VI. EVALUATION

We implemented the presented integer linear program in
JAVA and conducted simulations using the IBM ILOG CPLEX
Optimizer® with default configuration. We evaluated the per-
formance of the presented linear program when finding the
optimal solution, the first solution, as well as BMEMT and
BMT heuristics over the relaxed solution, as explained in
Section V-B and Section V-C. The evaluated metrics are the
monetary cost of the schedule, the workflow makespan, the
solve time of the algorithm, and the number of times no
solution was found (number of unfeasible solutions).

A. Simulation Configurations

We used 3 IaaS providers in our simulations, each one with
its own prices for reserved and on-demand VMs. Table I shows
VM options for TaaS A, Table II for IaaS B, and III for TaaS
C'. Moreover, Table IV shows the SaaS SLA contracts for
reserved resources. The maximum number of VMs that can
be leased from each IaaS was set 4 =4, dg =7, 6¢c = 2.

Public clouds usually do not provide information about the
quality of service for communication among internal nodes or
external links. We assume that the bandwidth of links between
VMs within the same IaaS is larger than the external links
(between IaaS providers), which is a reasonable assumption
in real environments. This is reflected in our simulation by
randomly generating a £ in the [2, 3] interval for links between
two different clouds, while for links between VMs inside
the same cloud £ is taken from the [0.1,0.2] interval. Our
evaluation comprises simulations with DAGs of real world
applications such as Montage [11] and fork-join DAG with 20
nodes of Figure 1. Simulations were run in an Intel® Core™ 2
Quad CPU Q6700 2.66GHz and 8G B of RAM.

B. Results

We have run 20 simulations for each DAG with the IaaS
configurations shown in Tables I to I'V. In each simulation, the
computation cost for each node and the communication cost
for each dependency were taken from the [1, 3] interval. Each
simulation was carried out in the following sequence:

1) Run BMT and BMEMT with time limit of 1800 seconds
on each solver iteration and store the running times
RTgyr and RTgyEMT-

2) Run optimal solution and first solution with time limit
equal to RTgpr (curves OPT-vs-BMT and FS-vs-BMT
in the graphs).

3) Run optimal solution and first solution with time limit
equal to RTsapenmT (curves OPT-vs-BMEMT and FS-
vs-BMEMT in the graphs).

To represent possible deadlines requested by the user, we
have run simulations with Dg varying from T4, X 2/7 to
Tinae X 6/7 in 1/7 steps, where T4, is the makespan of

2http://www.ibm.com/software/integration/optimization/(:plex—optimizer/

the cheapest sequential execution of all nodes in the DAG
on a single resource. Deadlines of 71},,, X 1/7 showed only
unfeasible solutions for all algorithms, while scheduling for
deadlines of T},,4; X 7/7 can be achieved by putting all tasks
in the cheapest resource. It is important to note that the divisor
7 was chosen only to assess the evolution of the approaches
(optimal solution, first solution, BMEMT, and BMT) with
increasing deadline, so other dividers could be used.

TABLE V
UNFEASIBLE SOLUTIONS (%).

FS FS OPT OPT
DAG Do vs vs vs vs BMT |BMEMT
TTF'LG“’I)
BMT |BMEMT| BMT |BMEMT
2/7 5 5 0 0 44 38
3/7 0 57 4 57 0 9
FJ-20 4/7 28 85 23 85 0 0
5/7 19 71 19 71 4 0
6/7 44 83 44 83 11 5
2/7 100 100 94 94 100 100
3/7 42 42 4 4 47 38
Mon. 4/7 4 4 0 0 9 19
5/7 23 23 4 14 14 28
6/7 50 50 33 33 44 50

Figure 4 shows results for simulations with 20-node fork-
join DAGs. BMT and BMEMT performs better with larger
deadlines, being able to find solutions with average costs from
40% (Dg = Tmaz X 3/7) to 53% (Dg = Tmaz X 6/7)
lower with the same average solve times. Moreover, the FS-
vs-BMEMT and OPT-vs-BMEMT approaches were not able
to find feasible solutions in nearly all cases (Table V), which
reflects in a lower average makespan for the feasible solutions
when Dg = Trax X 6/7.

Similar results were found when we change the DAG
topology. Results for Montage DAGs are shown in Figure
5, with BMT and BMEMT being from 50% to 72% better
than FS when regarding to costs, although with higher solve
times, and getting up to 50% better than OPT with higher
deadlines with the same solve times. However, we note that
all algorithms tended to increase the number of unfeasible
solutions with higher deadlines due to time limits.

Results presented in this section suggest that the BMT
and BMEMT heuristics can be effective for reducing costs
when having the same running times as the optimal approach
mainly with higher deadlines. This can be explained by the
discretization of time needed for the integer linear formulation:
higher deadlines increase the number of discrete intervals
in 7 = {1,...,Dg}, also increasing time complexity thus
leading the solver to have difficulties in finding a good
feasible integer solution. Moreover, in a general view, higher
costs do not imply in proportionally lower makespans: wrong
VM choices can make the schedule costly without makespan
improvements, as can be concluded from Figures 4(a) and 4(b)
for instance. In addition, the presented algorithms can provide
basis for the SaaS provider to negotiate its SLA contracts with
its customers.

TABLE 1
IAAS PROVIDER A
Type Core | Performance | On-demand | Reserved
Per Core Prices Prices
[Small T 1] 1.5 [$0.13 [$0.045]
[Medium | 2 | 1.5 | $0.20 [$0.070 |
TABLE III
IAAS PROVIDER C
Type Core | Performance | On-demand | Reserved
Per Core Prices Prices
Small 1 2 $0.15 $0.052
Medium 2 2 $0.25 $0.088
Large 4 2.5 $0.50 $0.176
Extra-large 8 2.5 $0.80 $0.281

Schedule Cost - Fork—Join 20 nodes DAG

Schedule Makespan - Fork-Join 20 nodes DAG

TABLE II
IAAS PROVIDER B

Type Core | Performance | On-demand Reserved
Per Core Prices Prices
Small 1 2 $0.17 $0.045
Medium 2 2 $0.30 $0.059
Large 3 2 $0.40 $0.140
Extra-Large 4 2 $0.52 $0.183
Double Extra-Large 8 2 $0.90 $0.316
TABLE IV
SAAS SLAS FOR RESERVED VMS
[Type [TaaS [VM [Number |
Reserved A Small 1
Reserved A Medium
Reserved B Small 1
Reserved B Medium 1

Solve Time — Fork-Join 20 nodes DAG

3.4 24 500
: 2 i
20]
s & § 18] g 301
S 54 3 16 = ggg 1
g 5 2 14 S 200 1
o g 124 5
1, = & 150 4
1. 10 1 100
14 8 4 50 -
12 L . . : . 61— 0 ; . . .
217 3/7 4/7 5/7 6/7 2/7 3/7 47 5/7 6/7 2/7 37 4/7 5/7 6/7
DG / Tmax DG /Tmax DG / Tmax
—e— FS-vs-BMT —&— OPT-vs-BMEMT —o— FS-vs-BMT —&— OPT-vs-BMEMT —o— FS—vs-BMT —8— OPT-vs-BMEMT
—— FS-vs-BMEMT —— BMT —<— FS-vs-BMEMT —— BMT —<— FS-vs-BMEMT —+— BMT
—>— OPT-vs-BMT —o— BMEMT —— OPT-vs-BMT —o— BMEMT —— OPT-vs-BMT —o— BMEMT
(a) Cost (b) Makespan (c) Solve Time
Fig. 4. Results for the Fork-Join DAG with 20 nodes.
Schedule Cost — Montage DAG Schedule Makespan — Montage DAG Solve Time — Montage DAG
7 28 . . . 4000 . . ,
6 1 L 26 1 3500 |
o 241 © 3000 4
7 41] il © 2000 4
3 x 18 2
O 34 S 16 A 3 1500 4
= 7] 1
14 4 1000
24 12 | 500 -
1L 10 0 Lla ? . . .
2/7 3/7 4/7 5/7 6/7 2/7 3/7 a7 5/7 6/7 217 3/7 47 5/7 6/7
DG / Tmax DG/Tmax DG / Tmax

—6— FS-vs-BMT
—<— FS-vs-BMEMT
—>— OPT-vs-BMT

—8— OPT-vs-BMEMT
—+— BMT
—<— BMEMT

—o— FS-vs-BMT

—>— OPT-vs-BMT

—v— FS-vs-BMEMT

—&— OPT-vs-BMEMT
—+— BMT
—<— BMEMT

—6— FS-vs-BMT
—<— FS-vs-BMEMT
—>— OPT-vs-BMT

—8— OPT-vs-BMEMT
—+— BMT
—<— BMEMT

(a) Cost

Fig. 5.

VII. CONCLUSION

While the customer wants its jobs to be executed within an
expected response time (deadline), the SaaS or PaaS clouds
wants to maximize its profit. In this paper we presented an
integer linear program (ILP) to solve the workflow scheduling
problem in SaaS or PaaS clouds with two levels of SLA:
the first one with its customers and the second one with its
TaaS providers. In addition, we present two heuristics, namely
BMT and BMEMT, to find feasible integer solutions over the
relaxed runs of the proposed ILP. Simulation results shown
that the optimal run of the proposed ILP is able to find
low-cost solutions with shorter deadlines, while the proposed

(b) Makespan

(¢) Solve Time

Results for the Montage DAG.

relaxed heuristics are effective to find low-cost solutions for
larger deadlines. In-development works include non-iterative
heuristics. In addition, extending the proposed ILP to consider
(1) multiple workflow scheduling in the same set of resources,
and (ii) fault tolerance mechanisms are considered for future
work.

ACKNOWLEDGMENT

The authors would like to thank CAPES CNPQ, and
FAPESP (2010/14433-8 and 2009/15008-1) for the financial
support, CENAPAD-SP and Intel Manycore Testing Lab for
the computational resources, and IBM for providing the
CPLEX tools.

(1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

C. Hfer and G. Karagiannis, “Cloud computing services: taxonomy and
comparison,” Journal of Internet Services and Applications, vol. 2, pp.
81-94, 2011.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Communications of the ACM, vol. 53, pp. 50-58, apr
2010.

Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art
and research challenges,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 7-18, 2010.

L. Wu, S. K. Garg, and R. Buyya, “SLA-based admission control for a
software-as-a-service provider in cloud computing environments,” Uni.
of Melbourne, Australia, Tech. Rep. CLOUDS-TR-2010-7, sep. 2010.
Q. Li and Y. Guo, “Optimization of resource scheduling in cloud
computing,” in /2th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), sep. 2010, pp. 315 -320.
G. Reig, J. Alonso, and J. Guitart, “Prediction of job resource re-
quirements for deadline schedulers to manage high-level slas on the
cloud,” in 9th IEEE International Symposium on Network Computing
and Applications (NCA), july 2010, pp. 162 —167.

(7]

(8]

9]

[10]

(1]

L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of Internet
Services and Applications, vol. 2, pp. 207-227, 2011.

S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in IEEE International Conference on
Advanced Information Networking and Applications, 2010, pp. 400-407.
R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing
utilities,” in /0th IEEE International Conference on High Performance
Computing and Communications (HPCC 2008), sept. 2008, pp. 5 —13.
M. Alhamad, T. Dillon, and E. Chang, “Conceptual SLA framework
for cloud computing,” in 4th IEEE International Conference on Digital
Ecosystems and Technologies (DEST), april 2010, pp. 606 —610.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz, “Pegasus: A framework for mapping complex scientific
workflows onto distributed systems,” Sci. Program., vol. 13, pp. 219-
237, July 2005.

