

in the field of hardware and network infrastructure. They propose

the installation of specific plug-ins and energy control centers for

large-scale networks, achieving significant impact on the cloud. It

reduces energy consumption in software and hardware, improving

load balancing and communication energy consumption.

Garg et al. [6] propose a nearly optimal scheduling algorithm

with policies that exploits the heterogeneity between multiple

datacenters in a cloud provider. Several factors are considered in

energy efficiency (such as energy cost, rate of carbon emissions,

load, and power efficiency of processor), while switching between

different datacenters according to their location, architectural

design, and system administration. The authors state that the

proposed scheduling policies help to achieve savings of up to 25%

compared with the existing policies.

Binder and Suri [7] propose an algorithm of allocation and

dispatch of tasks that minimizes the number of active servers

required, managing to achieve an energy consumption which is

inversely proportional to the number of concurrent threads

running in workloads.

Srikantaiah et al. [8] study how to obtain consolidation of energy

efficiency based on the interrelationship among energy

consumption, resource utilization, and performance of

consolidated workloads. It is shown that there is an optimal point

of operation among these parameters based on the Bin Packing

problem applied to the problem of consolidation.

Nathuji et al. [9] and Hu et al. [10] use virtual machines with the

objective of reducing energy consumption in virtualized

environments. in virtualized enterprise systems. In [1], Dasgupta

et al. pose workload normalization across heterogeneous systems,

such as clouds, as a challenge to be addressed.

As shown above, many initiatives have been taken in many ways

to make datacenters operating in a cloud more environment-

friendly. The main differences from the algorithm proposed in this

work to other ones are the focus on heterogeneous datacenters and

energy benefits provided by active cooling control for unknown

sized workload processing.

3. BASIC CONCEPTS
In this section we present some basic concepts regarding virtual

machines and energy consumption.

3.1 Virtual Machine Migration
Migration of virtual machines seeks to improve manageability,

performance, and fault tolerance of systems. More specifically,

the reasons that justify VM migration in a production system

include: the need to balance system load, which can be

accomplished by migrating VMs out of overloaded/overheated

servers; and the need of selectively bringing servers down for

maintenance after migrating their workload to other servers [11].

In the algorithm proposed in this work, we use the concept of

migration of virtual machines in order to migrate the virtual loads

of underutilized hosts and then turn them off, thereby maximizing

energy savings.

3.2 Dynamic Voltage and Frequency

Scaling
Dynamic Voltage Scaling (DVS) [12] is a technique of power

management in a computer architecture where the tension of a

particular component can be changed according to some

parameters. Manufacturers of processors benefit from DVS

features to minimize power consumption of their devices and also

cutting the frequency of such equipment to enable them to remain

stable.

Intel Speed Step technology or AMD Coll'n'Quiet automatically

adjusts, in hardware, the operating voltage and frequency of their

processors according to their workloads. If there are high loads of

work, the processor raises the levels of voltage and frequency,

otherwise these levels decrease. The set of possible states of

frequency and voltage is called P-States. Although the processors

come with such technologies, their support is usually disabled on

the motherboard, requiring attention from the system

administrator to activate them. This is the Dynamic Voltage and

Frequency Scaling concept.

In the proposed algorithm the concept of DVFS is always applied,

with the goal of having the intelligent use of the processor power,

adapted to the loads that it needs to process.

3.3 Fan Control
Fan Control is one of the given names to represent the technology

that monitors the temperature of the computers and, through

thermal conditions, regulates the intensity of active coolers.

Several motherboard manufacturers have several modes of

operation of this technology, each one with their own names, for

example: AOpen: SilentTEK; ASUS: Q-Fan; MSI: Core Center;

Abit: µGuru; Gigabyte: EasyTune 6; Intel S478: Active Monitor /

Desktop Control Center; Intel S775: Desktop Utilities and Dell

Inspiron/Latitude/Precision: I8kfanGUI.

Some of these technologies control the rotation speed of the fan

through the operating system or directly from the BIOS, but they

all have a similar behavior: control of cooler intensity according

to the processor heating.

Although this technology was originally designed to reduce noise

of active heatsink, it has a direct consequence: the reduction of

energy consumption. For example, when a fan is powered by 12

volts and becomes powered by 5 volts, it will consume 83% less

power. In this work we used this mechanism along with DVFS to

optimize energy consumption.

4. THE PROPOSED ALGORITHM
The algorithm proposed in this work is named Lago Allocator. It

is designed to handle computing clouds consisting of

non-federated datacenters, so it is assumed that all centers are in

the same cloud. It also considers that the DVFS and Fan Control

are enabled for all hosts.

This algorithm has in its scope datacenters with homogeneous or

heterogeneous machines. Also, it does not need knowledge about

the workload weight that will be allocated to virtual machines in

the datacenter: it dynamically checks the processing needs and

optimizes energy consumption on-the-fly.

In a datacenter operating in a cloud, one of the servers must

perform the function of a broker, which deals with events like

resource requests, virtual machine creation, workload return, and

finalization of workloads and virtual machines.

The main acting point of the Lago Allocator is on the host

allocation for virtual machines. This allocation is done based on

the policy of minimizing energy consumption. Before presenting

the algorithm we describe some functions used by it.

The getCurrentMIPSUtilization function returns the current MIPS

utilization of a host. The getMIPS function returns the maximum

MIPS utilization of a virtual machine or a host. The available

MIPS of a host can be obtained by subtracting its processing

entities MIPS from the sum of the MIPS of the VMs that are

allocated to it.

The getMaximumPower function returns the maximum power of a

host, composed of its base power (motherboard, disks, RAM, etc)

plus the processor power at maximum usage (DVFS off) plus the

maximum fan power usage (Fan Control off). The getPower

function returns the current power usage of a host, which is result

from its base power plus the processor current power (with DVFS

on) plus the current fan power usage (with Fan Control on). Since

it depends on the platform, it should be implemented accordingly.

The getPowerAfterAllocation function returns the estimated

power of a host after an allocation of a virtual machine.

getUtilizationOfCpu returns the current CPU use percentage and

getTotalMips returns the total MIPS a CPU supports. In a linear

power model the getPowerAfterAllocation function can be defined

in equation (1), where paa is the power consumption after virtual

machine allocation, hsp is the host static power, hmax pow is the

maximum host power consumption, MIPSc is the host current

MIPS in use, MIPSvm is the virtual machine MIPS consumption,

and MIPSmax is the total host MIPS.

 paa! hsp" #hmax pow– h sp$%
MIPS c" MIPS vm
MIPS max

 (1)

The Lago Allocator algorithm is defined as follows:

Lago Allocator Algorithm: findHostForVm(vm)

1. bestEfficiency = -∞

2. bestHost = null

3. foreach host in datacenter do

4. utilization = getCurrentMIPSUtilization(host) +

 getMIPS(vm)

5. if (utilization < getMIPS(host)) then

6. efficiency = getMIPS(host) / getMaximumPower(host)

7. if (efficiency > bestEfficiency) then

8. bestEfficiency = efficiency

9. bestHost = host

10. else if (efficiency == bestEfficiency) then

11. pw_vm_at_host = getPower(bestHost) +

 getPowerAfterAllocation(host, vm)

12. pw_vm_at_bestHost = getPower(host) +

 getPowerAfterAllocation(bestHost, vm)

13. if (pw_vm_at_host < pw_vm_at_bestHost) then

14. bestHost = host;

15. else if (pw_vm_at_host == pw_vm_at_bestHost) then

16. if (getUtilizationOfCpu(host) >

 getUtilizationOfCpu(bestHost)) then

17. bestHost = host

18. else if (getUtilizationOfCpu(host) ==

 getUtilizationOfCpu(bestHost)) then

19. if (getTotalMips(host) >

 getTotalMips(allocatedHost)) then

20. bestHost = host

21. end if

22. end if

23. end if

24. end if

25. end if

26. end foreach

27. return bestHost

For each virtual machine to be allocated in the datacenter it is

checked on all hosts which are those that can receive the incoming

virtual machine. The primary condition for a host to receive a

virtual machine is having sufficient MIPS available for the VM to

be allocated (line 5). For each candidate host, the efficiency of

energy that it consumes is verified (line 6). The algorithm ranks

the host that is more energy efficient to allocate the virtual

machine (line 7).

A tie can occur, especially in homogeneous environments. A

tiebreaker comparison is made as follows: since the system has

DVFS enabled, along with Fan Control, there will probably exist

some hosts consuming less energy than others. So, hosts are

confronted against each other and the lesser energy consumer is

chosen to allocate the virtual machine (line 13).

Yet there may be a tie, for example if there are two or more

machines of equal power consumption that still have not received

virtual machines. Thus another tiebreaker is performed: the host

with the highest CPU utilization (under 100%, as checked on line

5) is chosen. This choice is based on the fact that if a CPU is

processing more load, it will take longer to reach its virtual load

migration threshold (line 16). If there is still a tie, the host with

more processing power is chosen, since this is potentially able to

receive a greater number of workloads (line 19).

Once all the virtual machines have been created, the loads are

submitted for processing. If there are not enough virtual machines

available for processing such loads, the loads that could not be

processed will be delayed. With all loads submitted, the algorithm

checks the hosts and turns off virtual machines which have

completed the processing of their loads.

At this point the algorithm checks which hosts are being utilized

below a defined threshold and tries to migrate the virtual

machines from these hosts to other ones, and then shutdown the

underutilized hosts. The choice of target host in the migrations is

done with the same algorithm.

The optimal value of threshold may be difficult to calculate. There

are academic researches on which would be the best way to

calculate this threshold. Mukherjee and Sahoo [14], for example,

propose the use of a honeybee colony system to calculate good

thresholds for virtual loads migrations. As future work we

consider adding techniques like this to implement adaptive

thresholds for our algorithm.

5. SIMULATION
To achieve an efficient simulation that addresses various

scenarios, the choice of a robust simulator is essential. The

research conducted in this work indicated that the best simulator
for this purpose would be CloudSim [13] (version 2.2.1).

5.1 Simulation Rules
For evaluation purposes, the relevant metrics of the simulation are

the cloudlets completion time and energy consumption. In

CloudSim, a cloudlet represents a task that is submitted to a

datacenter virtual machine.

To make appropriate comparisons between the algorithms in this

paper, some definitions are presented: A represents a cloud

scheduling algorithm; C represents a set of configurations which

an algorithm uses, namely: shutdown of unused hosts, migration

of virtual loads, DVFS, and Fan Control; and P represents a set of

simulation parameters: number of hosts, virtual machines number,
and millions of instructions of each cloudlet.

EC(A, C, P) is the average energy consumption of algorithm A

with the set of configurations C and parameters P; ECI(A, C, P) is

the 95% confidence interval of EC(A, C, P). TC(A, C, P) is the

average makespan time of algorithm A with the set of

configurations C and parameters P; and TCI(A, C, P) is the 95%

confidence interval of TC(A, C, P).

Each configuration was simulated 30 times. An algorithm A1 with

C1 settings and simulation parameters P is considered better in

energy consumption than algorithm A2 with C2 settings and
parameters P, A1 ≠ A2, if the inequality shown in (2) is true.

EC !A1,C1, P"# ECI ! A1,C1,P "<

EC !A2,C2,P "– ECI !A2,C 2,P "
 (2)

An schedule given by an algorithm A1 is considered intolerably

slower than A2 for simulation parameters P if for the same set of

configurations C and simulation parameters P the inequality (3) is
satisfied.

TC ! A1,C , P"# TCI !A1,C , P ">

2$!TC !A2,C , P "% TCI! A2,C ,P ""
 (3)

5.2 Datacenter Configuration
A datacenter is a physical set of machines connected by a network

available to receive the virtual machines and workloads

accordingly (cloudlets).

The simulations to evaluate the Lago Allocator algorithm were

conducted with small, medium, and large datacenters having

homogeneous and heterogeneous hosts. For small datacenters, we

considered that they have 10 hosts, 20 virtual machines, and

receive 20 cloudlets. In medium sized datacenters, these numbers

are 100 hosts, 200 virtual machines, and 200 cloudlets. In large

datacenters these values are 1000 hosts, 2000 virtual machines,
and 2000 cloudlets.

5.3 Common Hosts Configuration
It is defined that the usual settings of the regular host to

homogeneous and heterogeneous are as follows: Each host has 1

processing entity (the processor), 1 TB of disk space, 24 GB of

RAM and gigabit ethernet. It is assumed that the hosts are running

on a datacenter with x86 architecture, Xen as virtual machine
monitor, and Linux as OS.

Regarding cloudlets, each virtual load uses one processing entity.

Also, each cloudlet submitted to the datacenter, before processing,

has 300 bytes (standard of CloudSim models) and 300 bytes of

data after the processing (standard of CloudSim models). Each

cloudlet in a datacenter has 10,000, 15,000, 20,000 and 25,000
Millions of Instructions in a round-robin distribution.

The datacenter virtual machines have processing capabilities of

500, 750, and 1000 MIPS in a round-robin distribution. For

example, in a simulation where 20 virtual machines are generated,

7 VMs are created with 500 MIPS, 7 VMs with 750 MIPS and 6

VMs with 1000 MIPS. Moreover it was adopted that each virtual

machine has 128 MB of RAM and 2,500 Kbps of bandwidth.

Each virtual machine has 2,500 MB of image size and Xen as

virtual machine monitor.

In the simulations with DVFS, it was assumed that when the host

is working at minimum level of processing, it consumes 70% of

its maximum power, and the growth of its load adopts a linear

model. For example, when a 250 watts host is working at 0%

capacity it consumes 175 watts; when working at 50% capacity it

consumes 212 watts, and when working at full capacity it

consumes 250 watts. For the simulations with activated threshold

for virtual machines migration, we try to migrate VMs when the

hosts are operating below 80%, followed by their shutdown.

For the simulations, we based on the Intel i5 750 stock cooler

which works with 0.6 amps and maximum voltage of 12 volts. In

other words, it consumes 7.2 watts of power. Although active

cooling mechanisms allow the complete shutdown of the cooler

under good circumstances, we decided to keep a safety margin to

guarantee that the simulation is valid, so the fan never turns off.

Thus we adopt the minimum consumption of the fan when it is at
low speed, at a voltage of 5 volts.

The warming of the processors depends on many factors,

including temperature, sink type, architecture, and lithography.

Given that there is no pattern of warming among the various

existing processors, a model that is valid for all of them is very

difficult to estimate. Since the processor temperature is directly

proportional to the power dissipated and that grows proportionally

to the frequency of the processor and the square of its operating

voltage, it was adopted the cooler power consumption is

proportional to the power consumed by the processor with DVFS
enabled, adopting a linear model for this.

5.3.1 Settings for Homogeneous Datacenters
For the simulations in homogenous datacenters, the following

settings were adopted: each host in a homogeneous datacenter has

one processing entity (processor containing one core) with 2,000
MIPS; and each host power consumption is set to 250 watts.

5.3.2 Settings for Heterogeneous Datacenters
For the simulations in heterogeneous datacenters, the following

settings were adopted: each host in a heterogeneous datacenter has

a single processing entity, containing the following amount of

MIPS in a round-robin distribution: 1000, 1500, 2000, 2500,

3000; and each host in a heterogeneous datacenter has the

following power consumption in a round-robin distribution: 200,
250, 300 and 350, as exemplified in Table 1.

Table 1: Example of Initial Configuration of hosts in a

heterogeneous datacenter

Host h1 h2 h3 h4 h5 h6 h7

MIPS 1000 1500 2000 2500 3000 1000 1500

Power 200 250 300 350 200 250 300

5.4 Algorithms and Settings
To validate the proposed algorithm, the results of its simulation

were compared to the results of two literature classic scheduling

algorithms – Round Robin and Best Resource Selection – and the

best algorithm focusing on power management on CloudSim –

Minimum Power Diff.

In the Round Robin algorithm, each virtual machine is allocated

in a different host, making a cycle. Hosts that can not allocate

virtual machines are skipped. When there are no more hosts

capable of receiving virtual machines, the allocation will be

delayed. In the Best Resource Selection algorithm, the host with

the highest ratio (MIPS in use) / MIPS, and currently supporting

virtual machines coming, is allocated. This ensures minimization

of migrations and tends to produce results faster. Minimum Power

Diff, implemented by Beloglazov et al., is used as the primary

model of energy savings in CloudSim. Each incoming virtual

machine is allocated to the host which will consume less energy to

execute the VM. The chosen algorithms have been implemented

using different combinations of the following features: Power

Aware (ability to turn off unused hosts); DVFS (Dynamic

Frequency and Voltage Scaling treating the P-States as a linear

model where the unused host consumes 70% of its power and

fully used host consumes 100%); Threshold (migration of virtual

loads trying to keep the processing entities of the hosts with at

least 80% activity); and Fan Control (proposed in this work, to use

the fan control with linear power consumption proportional to the
DVFS).

5.5 Simulation Results
Thirty simulations were performed for each algorithm for each of

the settings mentioned in the previous section. In this section

acronyms are used to describe algorithms and their settings used

for each set of simulations: RR = Round Robin; BRS = Best

Resource Selection; MPD = Minimum Power Diff; LA = Lago

Allocator. Acronyms for algorithm settings: N = Non Power

Aware; P = Power Aware; PD = Power Aware and DVFS; PDT =

Power Aware, DVFS and Threshold; PDTF = Power Aware,

DVFS, Threshold and Fan Control; PT = Power Aware and

Threshold. For all values of energy measures presented in this

section the metric is kilowatts * hour, and for measurements of
time, seconds.

As shown in Figures 1, 3 and 5, the best algorithms in power

consumption are the MPD and LA, nearly tied. However, the
Figures 2, 4 and 6, identify a slight better performance of LA.

Table 2 presents a comparison between the best competing

algorithm, the MPD with the PDT settings, compared to the

algorithm proposed in this work, the LA with the PDTF settings.

Even running the MPD with Fan Control mechanisms used by the

LA, results suggest that LA performs better in large-scale
heterogeneous environments, as shown in Table 3.

Table 2: Competitive Comparison Between Minimum Power

Diff PDT and Lago Allocator PDTF

Scenario MPD PDT-ECI

MPD PDT+ECI

LA PDTF-ECI

LA PDTF+ECI

Conclusion

Small Homo 0.227 0.221
Tie

0.234 0.229

Small Hetero 0.209 0.201 LA is better

(0.5% to 7%) 0.215 0.208

Medium Homo 2.204 2.163 LA is better

(1% to 3.1%) 2.229 2.183

Medium Hetero 2.091 2.007 LA is better

(2.8% to 5.3%) 2.114 2.034

Large Homo 21.982 21.674 LA is better from

(1.1% to 1.8%) 22.061 21.751

Scenario MPD PDT-ECI

MPD PDT+ECI

LA PDTF-ECI

LA PDTF+ECI

Conclusion

Large Hetero 20.890 19.770 LA is better

(5.3% to 6.1%) 20.974 19.834

The proposed algorithm shows improvement in almost all

scenarios compared to the MPD PDT. Only in small and

homogeneous datacenter there is no clear significant

improvement. This indicates that the proposed algorithm with

the proposed settings performs better than the other ones

evaluated. The best result occurs for the case of a large

heterogeneous datacenter, where this improvement can reach

6.1%. This progress suggests that the greater the datacenter, the

greater the difference between LA and MPD. Even in the

scenario where the algorithm proposed in this work is faced with

the same settings (PDTF) in MPD, the LA has best performance,
especially in the case of heterogeneous datacenters.

Figure 6: Large Heterogeneous Datacenter

Power Consumption

Figure 5: Large Homogeneous Datacenter

Power Consumption

Figure 4: Medium Heterogeneous

Datacenter Power Consumption

Figure 3: Medium Homogeneous

Datacenter Power Consumption

Figure 2: Small Heterogeneous Datacenter

Power Consumption

Figure 1: Small Homogeneous Datacenter

Power Consumption

Table 3: Competitive Comparison Between Minimum Power

Diff PDTF and Lago Allocator PDTF

Scenario MPD PDTF-ECI

MPD PDTF+ECI

LA PDTF-ECI

LA PDTF+ECI

Conclusion

Small Homo 0.225 0.221
Tie

0.234 0.229

Small Hetero 0.204 0.201
Tie

0.211 0.208

Medium Homo 2.172 2.163
Tie

2.192 2.183

Medium Hetero 2.035 2.007 LA is better

(0.05% to 3%) 2.066 2.034

Large Homo 21.649 21.674
Tie

21.720 21.751

Large Hetero 20.449 19.770 LA is better

(3.1% to 4%) 20.558 19.834

Considering both tables, it is clear that LA is a competitive

algorithm in homogeneous datacenters and better in

heterogeneous datacenters. In addition, simulations with

homogeneous cloudlets (15,000 MI only) on homogeneous

datacenters showed similar behavior when compared to the same
datacenter type running heterogeneous cloudlets.

In the simulations carried out, LA was never considered

unacceptably slower than any other algorithm. As expected, the

executions were faster in a not power aware environment. LA

PDTF remained between 15% (in the simulations with

heterogeneous small datacenters) and 43% (in the simulations

with homogeneous large datacenters) slower than the best

algorithm in each of these simulations, respecting the imposed

rules of acceptable execution times. When compared to the

Minimum Power Diff, LA provided average makespan around

3% smaller, thus improving the cloudlets execution times
besides minimizing the energy consumption.

Regarding the number of virtual machines migrations, the LA

PT algorithm presented 29.6±0.52, 25.67±0.98, 308.7±1.23,

307.76±1.07, 3114.43±4.05, 3115.87±4.32 migrations in Small

Homo, Small Hetero, Medium Homo, Medium Hetero, Large

Homo, and Large Hetero scenarios, respectively (considering a

95% confidence interval). Moreover, when compared to LA P,

the LA PT presented an average time increment of 29%, 13%,

43%, 43%, 77%, and 76%, for the same scenarios mentioned
above – caused exclusively by virtual machines migrations.

6. CONCLUSION
The inefficient use of servers in a datacenter leads to high

energy costs, expensive cooling hardware, floor space, and an

adverse impact on the environment [1]. In this work we

presented a scheduling algorithm for cloud computing based on

green computing concepts capable of performing the task

scheduling in non-federated datacenters, homogeneous and
heterogeneous, with sizes of workloads known or not.

Results obtained in the simulations showed that the proposed

algorithm competes with the best surveyed algorithms in

homogeneous datacenters, being able to overcome them in cases

of large-scale heterogeneous datacenters. Also, the results

indicate that the presented algorithm performs better with

heterogeneous and large datacenters. Moreover, the results

showed that the use of active cooling control in the datacenter
generates a small but relevant improvement.

It is proposed as future work to adapt the presented algorithm in

order to be able to deal with federated datacenters. The

algorithm can also improve if it is possible to measure the size

of the virtual loads to be processed by applying heuristics,

modeled as studies in the bin-packing problem. In addition,

techniques to automatically optimize the threshold value to

perform virtual machines migration, aiming to make the cloud
more energy efficient, can be developed.

7. ACKNOWLEDGMENTS
We would like to thank FAPESP (2010/14592-9 and

2009/15008-1) and CNPq. Thanks to Anton Beloglazov

(Department of Computer Science and Software Engineering,

University of Melbourne, Australia) for the quick answers in
discussions about CloudSim.

8. REFERENCES
[1] DASGUPTA, G.; SHARMA, A.; VERMA, A.; NEOGI, A.;

KOTHARI, R. “Workload Management for Power Efficiency in
Virtualized Datacenters”. Communications of the ACM 131-141,

Volume 54, No. 7, July 2011.

[2] BITTENCOURT, L. F; MADEIRA, E. R. M. “HCOC: A Cost
Optimization Algorithm for Workflow Scheduling in Hybrid

Clouds”. Journal of Internet Services and Applications (in press).
2011.

[3] BELOGLAZOV, A.; BUYYA R. “Energy Efficient Resource
Management in Virtualized Cloud Data Centers”. 2010 10th

IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing. 2010.

[4] DUY, T. V. T.; INOGUCHI, Y. S. Y. “Performance Evaluation of

a Green Scheduling Algorithm for Energy Savings in Cloud
Computing”. 2010 IEEE International Symposium on Parallel &

Distributed Processing (IPDPSW). 2010.

[5] BERL, A.; GELENBE, E.; GIROLAMO, M.; ET AL. “Energy-
Efficient Cloud-Computing”. University of Passau. 2009.

[6] GARG, S. K; YEO, C. S.; ANANDASIVAM, A.; BUYYA, R.

“Environment-conscious scheduling of HPC applications on
distributed Cloud-oriented data center”. Journal of Parallel and

Distributed Computing, 732-749, Volume 71, No. 6, Elsevier,
2011.

[7] INDER, W.; SURI, N. “Green Computing: Energy Consumption

optimized service hosting”. SOFSEM '09: Proceedings of the 35
Conference on Current Trends in Theory and Practice of Computer

Science, 117-128. Berlin, Heidelberg. 2009.

[8] SRIKANTAIAH, S.; KANSAL A.; ZHAO F. “Energy Aware
Consolidation for Cloud Computing”. Microsoft Research, 2008.

[9] NATHUJI, R.; SCHWAN, K. "VirtualPower: Coordinated Power
Management in Virtualized Enterprise Systems". SOSP'07.

Stevenson, Washington, USA. October, 2007.

[10] HU, L.; JIN, H.; LIAO, X.; XIONG, X.; LIU, H. “Magnet: A
Novel Scheduling Policy for Power Reduction in Cluster with

Virtual Machines”. 2008 IEEE International Conference on Cluster
Computing, 13-22. 2008.

[11] VOORSLUYS, W.; BROBERG, J.; VENUGOPAL, S.; BUYYA,

R.: “Cost of Virtual Machine Live Migration in Clouds: A
Performance Evaluation”. Cloud Computing Lecture Notes in

Computer Science, 2009, Volume 5931/2009, 254-265.

[12] RABAEY, J. M. “Digital Integrated Circuits”. Prentice Hall, 1996.

[13] BUYYA, R.; RANJAN, R.; CALHEIROS, R.N. “Modeling and
simulation of scalable Cloud computing environments and the

CloudSim toolkit: Challenges and opportunities”.International
Conference on High Performance Computing & Simulation, 2009.

HPCS '09. August 2009.

[14] MUKHERJEE, K.; SAHOO, G. “Green Cloud: An Algorithmic
Approach”. International Journal of Computer Applications (0975-

8887). Volume 9, No 9, November 2010.

