


in the field of hardware and network infrastructure. They propose 

the installation of specific plug-ins and energy control centers for 

large-scale networks, achieving significant impact on the cloud. It 

reduces energy consumption in software and hardware, improving 

load balancing and communication energy  consumption. 

Garg et al. [6] propose a nearly optimal scheduling algorithm  

with policies that exploits the heterogeneity between multiple 

datacenters in a cloud provider. Several factors are considered in 

energy efficiency (such as energy cost, rate of carbon emissions, 

load, and power efficiency of processor), while switching between 

different datacenters according to their location, architectural 

design, and system administration. The authors state that the 

proposed scheduling policies help to achieve savings of up to 25% 

compared with the existing policies. 

Binder and Suri [7] propose an algorithm of allocation and 

dispatch of tasks that minimizes the number of active servers 

required, managing to achieve an energy consumption which is 

inversely proportional to the number of concurrent threads 

running in workloads. 

Srikantaiah et al. [8] study how to obtain consolidation of energy 

efficiency based on the interrelationship among energy 

consumption, resource utilization, and performance of 

consolidated workloads. It is shown that there is an optimal point 

of operation among these parameters based on the Bin Packing 

problem applied to the problem of consolidation. 

Nathuji et al. [9] and Hu et al. [10] use virtual machines with the 

objective of reducing energy consumption in virtualized 

environments. in virtualized enterprise systems. In [1], Dasgupta 

et al. pose workload normalization across heterogeneous systems, 

such as clouds, as a challenge to be addressed. 

As shown above, many initiatives have been taken in many ways 

to make datacenters operating in a cloud more environment-

friendly. The main differences from the algorithm proposed in this 

work to other ones are the focus on heterogeneous datacenters and 

energy benefits provided by active cooling control for unknown 

sized workload processing. 

3. BASIC CONCEPTS 
In this section we present some basic concepts regarding virtual 

machines and energy consumption. 

3.1 Virtual Machine Migration 
Migration of virtual machines seeks to improve manageability, 

performance, and fault tolerance of systems. More specifically, 

the reasons that justify VM migration in a production system 

include: the need to balance system load, which can be 

accomplished by migrating VMs out of overloaded/overheated 

servers; and the need of selectively bringing servers down for 

maintenance after migrating their workload to other servers [11]. 

In the algorithm proposed in this work, we use the concept of 

migration of virtual machines in order to migrate the virtual loads 

of underutilized hosts and then turn them off, thereby maximizing 

energy savings. 

3.2 Dynamic Voltage and Frequency 

Scaling 
Dynamic Voltage Scaling (DVS) [12] is a technique of power 

management in a computer architecture where the tension of a 

particular component can be changed according to some 

parameters. Manufacturers of processors benefit from DVS 

features to minimize power consumption of their devices and also 

cutting the frequency of such equipment to enable them to remain 

stable. 

Intel Speed Step technology or AMD Coll'n'Quiet automatically 

adjusts, in hardware, the operating voltage and frequency of their 

processors according to their workloads. If there are high loads of 

work, the processor raises the levels of voltage and frequency, 

otherwise these levels decrease. The set of possible states of 

frequency and voltage is called P-States. Although the processors 

come with such technologies, their support is usually disabled on 

the motherboard, requiring attention from the system 

administrator to activate them. This is the Dynamic Voltage and 

Frequency Scaling concept. 

In the proposed algorithm the concept of DVFS is always applied, 

with the goal of having the intelligent use of the processor power, 

adapted to the loads that it needs to process. 

3.3 Fan Control 
Fan Control is one of the given names to represent the technology 

that monitors the temperature of the computers and, through 

thermal conditions, regulates the intensity of active coolers. 

Several motherboard manufacturers have several modes of 

operation of this technology, each one with their own names, for 

example: AOpen: SilentTEK; ASUS: Q-Fan; MSI: Core Center; 

Abit: µGuru; Gigabyte: EasyTune 6; Intel S478: Active Monitor / 

Desktop Control Center; Intel S775: Desktop Utilities and Dell 

Inspiron/Latitude/Precision: I8kfanGUI. 

Some of these technologies control the rotation speed of the fan 

through the operating system or directly from the BIOS, but they 

all have a similar behavior: control of cooler intensity according 

to the processor heating. 

Although this technology was originally designed to reduce noise 

of active heatsink, it has a direct consequence: the reduction of 

energy consumption. For example, when a fan is powered by 12 

volts and becomes powered by 5 volts, it will consume 83% less 

power. In this work we used this mechanism along with DVFS to 

optimize energy consumption. 

4. THE PROPOSED ALGORITHM 
The algorithm proposed in this work is named Lago Allocator. It 

is designed to handle computing clouds consisting of 

non-federated datacenters, so it is assumed that all centers are in 

the same cloud. It also considers that the DVFS and Fan Control 

are enabled for all hosts. 

This algorithm has in its scope datacenters with homogeneous or 

heterogeneous machines. Also, it does not need knowledge about 

the workload weight that will be allocated to virtual machines in 

the datacenter: it dynamically checks the processing needs and 

optimizes energy consumption on-the-fly. 

In a datacenter operating in a cloud, one of the servers must 

perform the function of a broker, which deals with events like 

resource requests, virtual machine creation, workload return, and 

finalization of workloads and virtual machines. 

The main acting point of the Lago Allocator is on the host 

allocation for virtual machines. This allocation is done based on 

the policy of minimizing energy consumption. Before presenting 

the algorithm we describe some functions used by it. 

The getCurrentMIPSUtilization function returns the current MIPS 

utilization of a host. The getMIPS function returns the maximum 



MIPS utilization of a virtual machine or a host. The available 

MIPS of a host can be obtained by subtracting its processing 

entities MIPS from the sum of the MIPS of the VMs that are 

allocated to it. 

The getMaximumPower function returns the maximum power of a 

host, composed of its base power (motherboard, disks, RAM, etc) 

plus the processor power at maximum usage (DVFS off) plus the 

maximum fan power usage (Fan Control off). The getPower 

function returns the current power usage of a host, which is result 

from its base power plus the processor current power (with DVFS 

on) plus the current fan power usage (with Fan Control on). Since 

it depends on the platform, it should be implemented accordingly. 

The getPowerAfterAllocation function returns the estimated 

power of a host after an allocation of a virtual machine. 

getUtilizationOfCpu returns the current CPU use percentage and 

getTotalMips returns the total MIPS a CPU supports. In a linear 

power model the getPowerAfterAllocation function can be defined 

in equation (1), where paa is the power consumption after virtual 

machine allocation, hsp is the host static power, hmax pow is the 

maximum host power consumption, MIPSc is the host current 

MIPS in use, MIPSvm is the virtual machine MIPS consumption, 

and MIPSmax is the total host MIPS. 

 paa! hsp" #hmax pow– h sp$%
MIPS c" MIPS vm
MIPS max

 (1) 

The Lago Allocator algorithm is defined as follows: 

Lago Allocator Algorithm: findHostForVm(vm) 

1. bestEfficiency = -∞ 

2. bestHost = null 

3. foreach host in datacenter do 

4.    utilization = getCurrentMIPSUtilization(host) + 

       getMIPS(vm) 

5.    if (utilization < getMIPS(host)) then 

6.       efficiency = getMIPS(host) / getMaximumPower(host) 

7.       if (efficiency > bestEfficiency) then 

8.          bestEfficiency = efficiency 

9.          bestHost = host 

10.       else if ( efficiency == bestEfficiency) then 

11.          pw_vm_at_host = getPower(bestHost) + 

               getPowerAfterAllocation(host, vm) 

12.          pw_vm_at_bestHost = getPower(host) +  

               getPowerAfterAllocation(bestHost, vm) 

13.             if (pw_vm_at_host < pw_vm_at_bestHost) then 

14.              bestHost = host; 

15.             else if (pw_vm_at_host == pw_vm_at_bestHost) then 

16.                if (getUtilizationOfCpu(host) >  

                     getUtilizationOfCpu(bestHost)) then 

17.                   bestHost = host 

18.               else if (getUtilizationOfCpu(host) ==  

                    getUtilizationOfCpu(bestHost)) then 

19.                 if (getTotalMips(host) >  

                      getTotalMips(allocatedHost)) then 

20.                   bestHost = host 

21.                 end if 

22.              end if 

23.           end if 

24.        end if 

25.    end if 

26. end foreach 

27. return bestHost 

For each virtual machine to be allocated in the datacenter it is 

checked on all hosts which are those that can receive the incoming 

virtual machine. The primary condition for a host to receive a 

virtual machine is having sufficient MIPS available for the VM to 

be allocated (line 5). For each candidate host, the efficiency of 

energy that it consumes is verified (line 6). The algorithm ranks 

the host that is more energy efficient to allocate the virtual 

machine (line 7).  

A tie can occur, especially in homogeneous environments. A 

tiebreaker comparison is made as follows: since the system has 

DVFS enabled, along with Fan Control, there will probably exist 

some hosts consuming less energy than others. So, hosts are 

confronted against each other and the lesser energy consumer is 

chosen to allocate the virtual machine (line 13). 

Yet there may be a tie, for example if there are two or more 

machines of equal power consumption that still have not received 

virtual machines. Thus another tiebreaker is performed: the host 

with the highest CPU utilization (under 100%, as checked on line 

5) is chosen. This choice is based on the fact that if a CPU is 

processing more load, it will take longer to reach its virtual load 

migration threshold (line 16). If there is still a tie, the host with 

more processing power is chosen, since this is potentially able to 

receive a greater number of workloads (line 19). 

Once all the virtual machines have been created, the loads are 

submitted for processing. If there are not enough virtual machines 

available for processing such loads, the loads that could not be 

processed will be delayed. With all loads submitted, the algorithm  

checks the hosts and turns off virtual machines which have 

completed the processing of their loads. 

At this point the algorithm checks which hosts are being utilized 

below a defined threshold and tries to migrate the virtual 

machines from these hosts to other ones, and then shutdown the 

underutilized hosts. The choice of target host in the migrations is 

done with the same algorithm. 

The optimal value of threshold may be difficult to calculate. There 

are academic researches on which would be the best way to 

calculate this threshold. Mukherjee and Sahoo [14], for example, 

propose the use of a honeybee colony system to calculate good 

thresholds for virtual loads migrations. As future work we 

consider adding techniques like this to implement adaptive 

thresholds for our algorithm. 

5. SIMULATION 
To achieve an efficient simulation that addresses various 

scenarios, the choice of a robust simulator is essential. The 

research conducted in this work indicated that the best simulator 
for this purpose would be CloudSim [13]  (version 2.2.1). 

5.1 Simulation Rules 
For evaluation purposes, the relevant metrics of the simulation are 

the cloudlets completion time and energy consumption. In 

CloudSim, a cloudlet represents a task that is submitted to a 

datacenter virtual machine. 

To make appropriate comparisons between the algorithms in this 

paper, some definitions are presented: A represents a cloud 

scheduling algorithm; C represents a set of configurations which 

an algorithm uses, namely: shutdown of unused hosts, migration 

of virtual loads, DVFS, and Fan Control; and P represents a set of 

simulation parameters: number of hosts, virtual machines number, 
and millions of instructions of each cloudlet. 



EC(A, C, P) is the average energy consumption of algorithm A 

with the set of configurations C and parameters P; ECI(A, C, P) is 

the 95% confidence interval of EC(A, C, P). TC(A, C, P) is the 

average makespan time of algorithm A with the set of 

configurations C and parameters P; and TCI(A, C, P) is the 95% 

confidence interval of TC(A, C, P). 

Each configuration was simulated 30 times. An algorithm A1 with 

C1 settings and simulation parameters P is considered better in 

energy consumption than algorithm A2 with C2 settings and 
parameters P, A1 ≠ A2, if the inequality shown in (2) is true. 

 
EC !A1,C1, P"# ECI ! A1,C1,P "<

EC !A2,C2,P "– ECI !A2,C 2,P "
 (2) 

An schedule given by an algorithm A1 is considered intolerably 

slower than A2 for simulation parameters P if for the same set of 

configurations C and simulation parameters P the inequality (3) is 
satisfied. 

 
TC ! A1,C , P"# TCI !A1,C , P ">

2$ !TC !A2,C , P "% TCI! A2,C ,P ""
 (3) 

5.2 Datacenter Configuration 
A datacenter is a physical set of machines connected by a network 

available to receive the virtual machines and workloads 

accordingly (cloudlets). 

The simulations to evaluate the Lago Allocator algorithm were 

conducted with small, medium, and large datacenters having 

homogeneous and heterogeneous hosts. For small datacenters, we 

considered that they have 10 hosts, 20 virtual machines, and 

receive 20 cloudlets. In medium sized datacenters, these numbers 

are 100 hosts, 200 virtual machines, and 200 cloudlets. In large 

datacenters these values are 1000 hosts, 2000 virtual machines, 
and 2000 cloudlets. 

5.3 Common Hosts Configuration 
It is defined that the usual settings of the regular host to 

homogeneous and heterogeneous are as follows: Each host has 1 

processing entity (the processor), 1 TB of disk space, 24 GB of 

RAM and gigabit ethernet. It is assumed that the hosts are running 

on a datacenter with x86 architecture, Xen as virtual machine 
monitor, and Linux as OS. 

Regarding cloudlets, each virtual load uses one processing entity. 

Also, each cloudlet submitted to the datacenter, before processing, 

has 300 bytes (standard of CloudSim models) and 300 bytes of 

data after the processing (standard of CloudSim models). Each 

cloudlet in a datacenter has 10,000, 15,000, 20,000 and 25,000 
Millions of Instructions in a round-robin distribution. 

The datacenter virtual machines have processing capabilities of 

500, 750, and 1000 MIPS in a round-robin distribution. For 

example, in a simulation where 20 virtual machines are generated, 

7 VMs are created with 500 MIPS, 7 VMs with 750 MIPS and 6 

VMs with 1000 MIPS. Moreover it was adopted that each virtual 

machine has 128 MB of RAM and 2,500 Kbps of bandwidth. 

Each virtual machine has 2,500 MB of image size and Xen as 

virtual machine monitor. 

In the simulations with DVFS, it was assumed that when the host 

is working at minimum level of processing, it consumes 70% of 

its maximum power, and the growth of its load adopts a linear 

model. For example, when a 250 watts host is working at 0% 

capacity it consumes 175 watts; when working at 50% capacity it 

consumes 212 watts, and when working at full capacity it 

consumes 250 watts. For the simulations with activated threshold 

for virtual machines migration, we try to migrate VMs when the 

hosts are operating below 80%, followed by their shutdown. 

For the simulations, we based on the Intel i5 750 stock cooler 

which works with 0.6 amps and maximum voltage of 12 volts. In 

other words, it consumes 7.2 watts of power. Although active 

cooling mechanisms allow the complete shutdown of the cooler 

under good circumstances, we decided to keep a safety margin to 

guarantee that the simulation is valid, so the fan never turns off. 

Thus we adopt the minimum consumption of the fan when it is at 
low speed, at a voltage of 5 volts. 

The warming of the processors depends on many factors, 

including temperature, sink type, architecture, and lithography. 

Given that there is no pattern of warming among the various 

existing processors, a model that is valid for all of them is very 

difficult to estimate. Since the processor temperature is directly 

proportional to the power dissipated and that grows proportionally 

to the frequency of the processor and the square of its operating 

voltage, it was adopted the cooler power consumption is 

proportional to the power consumed by the processor with DVFS 
enabled, adopting a linear model for this. 

5.3.1 Settings for Homogeneous Datacenters 
For the simulations in homogenous datacenters, the following 

settings were adopted: each host in a homogeneous datacenter has 

one processing entity (processor containing one core) with 2,000 
MIPS; and each host power consumption is set to 250 watts. 

5.3.2 Settings for Heterogeneous Datacenters 
For the simulations in heterogeneous datacenters, the following 

settings were adopted: each host in a heterogeneous datacenter has 

a single processing entity, containing the following amount of 

MIPS in a round-robin distribution: 1000, 1500, 2000, 2500, 

3000; and each host in a heterogeneous datacenter has the 

following power consumption in a round-robin distribution: 200, 
250, 300 and 350, as exemplified in Table 1. 

Table 1: Example of Initial Configuration of hosts in a 

heterogeneous datacenter 

Host h1 h2 h3 h4 h5 h6 h7 

MIPS 1000 1500 2000 2500 3000 1000 1500 

Power 200 250 300 350 200 250 300 

5.4 Algorithms and Settings  
To validate the proposed algorithm, the results of its simulation 

were compared to the results of two literature classic scheduling 

algorithms – Round Robin and Best Resource Selection – and the 

best algorithm focusing on power management on CloudSim – 

Minimum Power Diff. 

In the Round Robin algorithm, each virtual machine is allocated 

in a different host, making a cycle. Hosts that can not allocate 

virtual machines are skipped. When there are no more hosts 

capable of receiving virtual machines, the allocation will be 

delayed. In the Best Resource Selection algorithm, the host with 

the highest ratio (MIPS in use) / MIPS, and currently supporting 

virtual machines coming, is allocated. This ensures minimization 

of migrations and tends to produce results faster. Minimum Power 

Diff, implemented by Beloglazov et al., is used as the primary 

model of energy savings in CloudSim. Each incoming virtual 



machine is allocated to the host which will consume less energy to 

execute the VM. The chosen algorithms have been implemented 

using different combinations of the following features: Power 

Aware (ability to turn off unused hosts); DVFS (Dynamic 

Frequency and Voltage Scaling treating the P-States as a linear 

model where the unused host consumes 70% of its power and 

fully used host consumes 100%); Threshold (migration of virtual 

loads trying to keep the processing entities of the hosts with at 

least 80% activity); and Fan Control (proposed in this work, to use 

the fan control with linear power consumption proportional to the 
DVFS). 

5.5 Simulation Results 
Thirty simulations were performed for each algorithm for each of 

the settings mentioned in the previous section. In this section 

acronyms are used to describe algorithms and their settings used 

for each set of simulations: RR = Round Robin; BRS = Best 

Resource Selection; MPD = Minimum Power Diff; LA = Lago 

Allocator. Acronyms for algorithm settings: N = Non Power 

Aware; P = Power Aware; PD = Power Aware and DVFS; PDT = 

Power Aware, DVFS and Threshold; PDTF = Power Aware, 

DVFS, Threshold and Fan Control; PT = Power Aware and 

Threshold. For all values of energy measures presented in this 

section the metric is kilowatts * hour, and for measurements of 
time, seconds. 

As shown in Figures 1, 3 and 5, the best algorithms in power 

consumption are the MPD and LA, nearly tied. However, the 
Figures 2, 4 and 6, identify a slight better performance of LA. 

Table 2 presents a comparison between the best competing 

algorithm, the MPD with the PDT settings, compared to the 

algorithm proposed in this work, the LA with the PDTF settings. 

Even running the MPD with Fan Control mechanisms used by the 

LA, results suggest that LA performs better in large-scale 
heterogeneous environments, as shown in Table 3.

 

Table 2: Competitive Comparison Between Minimum Power 

Diff PDT and Lago Allocator PDTF 

Scenario MPD PDT-ECI 

MPD PDT+ECI 

LA PDTF-ECI 

LA PDTF+ECI 

Conclusion 

Small Homo 0.227 0.221 
Tie 

0.234 0.229 

Small Hetero 0.209 0.201 LA is better 

(0.5% to 7%) 0.215 0.208 

Medium Homo 2.204 2.163 LA is better  

(1% to 3.1%) 2.229 2.183 

Medium Hetero 2.091 2.007 LA is better  

(2.8% to 5.3%) 2.114 2.034 

Large Homo 21.982 21.674 LA is better from 

(1.1% to 1.8%) 22.061 21.751 

Scenario MPD PDT-ECI 

MPD PDT+ECI 

LA PDTF-ECI 

LA PDTF+ECI 

Conclusion 

Large Hetero 20.890 19.770 LA is better 

(5.3% to 6.1%) 20.974 19.834 

The proposed algorithm shows improvement in almost all 

scenarios compared to the MPD PDT. Only in small and 

homogeneous datacenter there is no clear significant 

improvement. This indicates that the proposed algorithm with 

the proposed settings performs better than the other ones 

evaluated. The best result occurs for the case of a large 

heterogeneous datacenter, where this improvement can reach 

6.1%. This progress suggests that the greater the datacenter, the 

greater the difference between LA and MPD. Even in the 

scenario where the algorithm proposed in this work is faced with 

the same settings (PDTF) in MPD, the LA has best performance, 
especially in the case of heterogeneous datacenters. 

Figure 6: Large Heterogeneous Datacenter 

Power Consumption 

Figure 5: Large Homogeneous Datacenter 

Power Consumption 

Figure 4: Medium Heterogeneous 

Datacenter Power Consumption 

Figure 3: Medium Homogeneous 

Datacenter Power Consumption 

Figure 2: Small Heterogeneous Datacenter 

Power Consumption 

Figure 1: Small Homogeneous Datacenter 

Power Consumption 



Table 3: Competitive Comparison Between Minimum Power 

Diff PDTF and Lago Allocator PDTF 

Scenario MPD PDTF-ECI 

MPD PDTF+ECI 

LA PDTF-ECI 

LA PDTF+ECI 

Conclusion 

Small Homo 0.225 0.221 
Tie 

0.234 0.229 

Small Hetero 0.204 0.201 
Tie 

0.211 0.208 

Medium Homo 2.172 2.163 
Tie 

2.192 2.183 

Medium Hetero 2.035 2.007 LA is better 

(0.05% to 3%) 2.066 2.034 

Large Homo 21.649 21.674 
Tie 

21.720 21.751 

Large Hetero 20.449 19.770 LA is better 

(3.1% to 4%) 20.558 19.834 

Considering both tables, it is clear that LA is a competitive 

algorithm in homogeneous datacenters and better in 

heterogeneous datacenters. In addition, simulations with 

homogeneous cloudlets (15,000 MI only) on homogeneous 

datacenters showed similar behavior when compared to the same 
datacenter type running heterogeneous cloudlets. 

In the simulations carried out, LA was never considered 

unacceptably slower than any other algorithm. As expected, the 

executions were faster in a not power aware environment. LA 

PDTF remained between 15% (in the simulations with 

heterogeneous small datacenters) and 43% (in the simulations 

with homogeneous large datacenters) slower than the best 

algorithm in each of these simulations, respecting the imposed 

rules of acceptable execution times. When compared to the 

Minimum Power Diff, LA provided average makespan around 

3% smaller, thus improving the cloudlets execution times 
besides minimizing the energy consumption. 

Regarding the number of virtual machines migrations, the LA 

PT algorithm presented 29.6±0.52, 25.67±0.98, 308.7±1.23, 

307.76±1.07, 3114.43±4.05, 3115.87±4.32 migrations in Small 

Homo, Small Hetero, Medium Homo, Medium Hetero, Large 

Homo, and Large Hetero scenarios, respectively (considering a 

95% confidence interval). Moreover, when compared to LA P, 

the LA PT presented an average time increment of 29%, 13%, 

43%, 43%, 77%, and 76%, for the same scenarios mentioned 
above – caused exclusively by virtual machines migrations. 

6. CONCLUSION 
The inefficient use of servers in a datacenter leads to high 

energy costs, expensive cooling hardware, floor space, and an 

adverse impact on the environment [1]. In this work we 

presented a scheduling algorithm for cloud computing based on 

green computing concepts capable of performing the task 

scheduling in non-federated datacenters, homogeneous and 
heterogeneous, with sizes of workloads known or not. 

Results obtained in the simulations showed that the proposed 

algorithm competes with the best surveyed algorithms in 

homogeneous datacenters, being able to overcome them in cases 

of large-scale heterogeneous datacenters. Also, the results 

indicate that the presented algorithm performs better with 

heterogeneous and large datacenters. Moreover, the results 

showed that the use of active cooling control in the datacenter 
generates a small but relevant improvement. 

It is proposed as future work to adapt the presented algorithm in 

order to be able to deal with federated datacenters. The 

algorithm can also improve if it is possible to measure the size 

of the virtual loads to be processed by applying heuristics, 

modeled as studies in the bin-packing problem. In addition, 

techniques to automatically optimize the threshold value to 

perform virtual machines migration, aiming to make the cloud 
more energy efficient, can be developed. 
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