
Scheduler for Data-Intensive Workflows in Public
Clouds

Walisson F. Pereira, Luiz F. Bittencourt, and Nelson L. S. da Fonseca
Institute of Computing – University of Campinas (UNICAMP)

Campinas, São Paulo, Brazil 13083-852
Email: {walisson, bit, nfonseca}@ic.unicamp.br

Abstract—Data-intensive workflows can require the use of

intermediary data storage in the order of terabytes. Thus,

planning the execution of such workflows in the cloud considering

only processing demand, regardless its data storage needs, leads

to performance decrease and potential increase in costs. In this

paper, we present an integer linear program scheduler that

considers disk storage scheduling besides the task scheduling

based on processor time. The proposed scheduler aims to achieve

the lowest economic cost while serving a deadline set by the user.

The results show that the scheduler can find good schedules in

situations where the disk size of rented virtual machines is a

limiting factor.

I. INTRODUCTION

Science and business have adopted computational tools to
assist data analysis and simulation of complex models that
usually deal with large amounts of data. Various complex
e-Business and e-Science applications can be modeled as
workflows, which are composed of sets of tasks to be pro-
cessed in a well-defined order [1], since each task can depend
on the computed data of other precedent tasks. Workflows
are usually represented by a Directed Acyclic Graph (DAG),
which represents the tasks and their dependencies.

Scientific applications typically demand large amounts of
computing resources such as processing, storage, and data
transmission. Such applications can be found in a variety of
fields, such as Physics (astronomy, thermodynamics), Bioin-
formatics (DNA sequencing, proteomics), Chemistry (protein
dynamics), and Computer Science (computer vision, image
processing) [2]. There exist experiments that need to analyze
large amounts of data, possibly in the order of terabytes, and
that take a lot of time to execute. Such computations often
involve thousands of tasks with data dependencies between
them, which can be executed in parallel in a distributed
environment. Scientific workflows have been employed to
represent such applications.

Computing requirements of large workflows with large
datasets can overwhelm the locally available resources, spe-
cially when those resources are being utilized by other ap-
plications. The pay-per-use paradigm is the option offered
by public cloud providers to obtain on-demand resources to
comply with quality of service requirements, such as maxi-
mum desired execution time for a workflow (deadlines). This
characteristic of providing computing power and storage when
needed avoids upfront investment and low utilization, which
can lead to savings in the long-term. On the other hand, such

approach also brings many challenges: it is hard to decide
which resources to lease and how long such resources will
be needed; and it is difficult to evaluate cost-effective options
when running in specific environment [3].

The scheduler is the element responsible for determining
which task of a workflow runs in which computational re-
sources by distributing the tasks in order to run them in
parallel. Thus, the problem of workflow scheduling consists
in, given a set of dependent tasks and their dependencies,
choosing which resource will run each task. However, the
distribution of tasks must be performed according to certain
objectives, such as the minimization of the workflow execution
time (makespan) and minimization monetary costs.

There are several ways to set up, acquire resources and
execute tasks, which makes cloud computing more challenging
than in the traditional clusters and grid environments [4]. The
task scheduler has the critical role of mapping tasks in virtual
instances considering their dependencies, and the cost of use
of resources. Schedulers commonly consider CPU power when
scheduling applications into the cloud. However, the cost of
running an application in the cloud also depends on storage
and communication that will be consumed [5].

Cloud providers offer storage in the CPU instances as well
as separate storage blocks independently of CPU instances,
which, to the best of our knowledge, has not been considered
so far in the literature. In this paper, we present a workflow
scheduler based on an Integer Linear Programming (ILP)
formulation for public clouds that considers storage constraints
as well as the possibility of renting CPU-independent storage
resources (extra storage).

This work is organized into the following sections: Section
II discusses schedulers for public cloud and some solutions
to deal with storage constraints; Section III introduces the
cloud and application models considered in the paper; Section
IV describes the proposed scheduler; Section V provides an
analysis of the results; Section VI discusses the conclusion of
this work.

II. RELATED WORK

Ramakrishnan et al. [6] describe an approach that seeks to
minimize the amount of space required by the workflow during
its execution and ensures that the amount of data required
and generated by the workflow fits on individual resources.
Their approach adds cleaning tasks of data files when they

This is a pre-print version.
The full version is available at the publisher's website.

are no longer required by other tasks in the workflow, or
when they have already been transferred to permanent storage.
Furthermore, the scheduler needs to ensure that the resource
used has storage space available for the task.

Pandey et al. [7] proposed a workflow scheduler in clouds
based on Particle Swarm Optimization (PSO). The scheduler
takes into account both the cost of computing and the cost of
transmission. The scheduler aims to minimize the cost.

Barrett et al. [8] proposed an approach for cloud work-
flow scheduling which employs the Markov Decision Process
(MDP) to optimally guide the workflow execution depending
on the state of the environment. The scheduler uses genetic al-
gorithm to generate their schedules and MDP is used to choose
the best scheduling based on the environment’s observed state.
Attached to it, a learning algorithm based on Bayesian model
was used becoming an agent able to choose the resources
according to the feedback of current environment. The goal
of MDP is to ensure the complete execution of the workflow
within deadline and budget constraints.

Zhu et al. [9] proposed a two-steps scheduler which seeks
to maximize the use of resources and minimize the overhead
of the cloud. A two-steps heuristic workflow mapping called
“Algorithm allocation of virtual machines with limited cost-
effective runtime” is used. The approach also considers the
workflow execution delay if the calculated makespan is less
than the deadline seeking to reduce the overhead of startup
and shutdown of a virtual machine.

Genez et al. [10] address the importance of the scheduler
to also consider the I/O performance of virtual machines in
a cloud. The authors developed a task scheduler based on
ILP which goal is to minimize the cost of execution provided
it meets a given deadline. The approach neither tackles the
different storage options, nor the cost and space limitations.

To the best of our knowledge, there is no scheduler that
considers the possibilities of renting extra storage resources. A
scheduler that can rent more storage resources can enable com-
pliance with strict deadlines for accepting higher concentration
of jobs in the same virtual machine. The proposed scheduler
is an option to scheduling data-intensive workflows in public
clouds.

III. DEFINITION OF THE PROBLEM

In this paper, we consider a public cloud model where
virtual machine instances can be leased on-demand. These on-
demand virtual machines have an associated CPU capacity, a
certain amount of RAM available, and storage space specified
in the service level agreement established between the provider
and the client. The cloud client is able to rent a set of different
virtual machines of different capacities over time, leasing and
releasing them in a pay-per-use basis.

Besides the storage available in the leased VMs, the client
has the option to lease CPU-independent disk storage (e.g. as
EBS1). These storage blocks are also rented by the client in
a pay-per-use basis, where the payment is proportional to the

1http://aws.amazon.com/pt/ebs/

amount of storage utilized and the number of I/O operations
performed.

Our focus is on data-intensive applications, in which storage
is an important component. Based on the storage options the
user has, we consider the following possible combinations on
leasing CPU-storage resources:

1) Client rents VMs and utilizes exclusively the in-VM
storage to support his/her computation.

2) Client rents VMs with in-VM storage, but is also able
to lease CPU-independent storage to support his/her
computation.

We consider workflow applications composed of dependent
tasks and modeled as directed acyclic graphs (DAGs), where
each task can only start its execution after all its predecessors
have finished and the data have been transferred to the machine
where it is scheduled to execute. Each workflow task (i.e., each
node of the DAG) has a computational demand associated,
which is translated into how long it takes to run according to
the CPU capacity of each VM. Also, the data transmission be-
tween two tasks occurs in the network that connects the VMs
where these two tasks are scheduled. If they are scheduled
to the same VM, the data transmission time between them is
zero. For example, Montage [11] (Figure 1) is an application
that makes mosaics from images of the sky for astronomy
research. The DAG in Figure 2 is a Fork-Join DAG, a generic
representation of applications that can be split in independent
tasks, sometimes into an arbitrary number of homogeneous
or heterogeneous tasks that can be run in parallel. Examples
of fork-join applications include image processing filters and
a MapReduce [12] application with single map and reduce
functions2.

During the workflow execution, the necessary data to each
task can be kept into the storage available in the VM where
the task is running, or it can be stored in extra storage from
rented storage facilities. While the VM-storage cost is included
in the VM price, the extra storage is charged independently.
Moreover, this extra storage is deployed over the network,
and therefore there exist a maximum transfer speed from this
storage to the VM where the task is being run.

IV. THE SCHEDULING ALGORITHM

We developed a cloud workflow scheduler based on integer
linear programming formulation. The scheduler receives as
input the description of the workflow, the description of both
the virtual machines and storage available for rent as well
as their costs, and the deadline required by the user. With
this information, the scheduler decides where tasks should
run and where results should be kept so that the execution
time is within the desired deadline and the execution cost is
minimized.

A. Notation and Problem Modeling

To model the system characterized by the description given
in Section III, we used the following notation:

2The MapReduce paradigm includes fault-tolerant mechanisms in addition
to the fork-join tasks.

����������	��

������������

���

�������������

���

������	�
���

��	

�
�����������

���

�������������

���

������
������

���

������
�������

���

�����		������

���

��������	�	��

��	

�������
������

���

�	���
	�	����

���

�������������

���

���������	�	��

���

���

��������������

���

��
����������	

���

�������������

��	

��������������

���

��
�����������

��

�������
�����	

���

�������
�
���

���

��	����	������

���

���������
���	

���

������
�������

��� ��� ��������� ������

��������������

���

��� ��� ��� ���

�������������	

��� ��� ��� ���

Fig. 1: DAG Montage

���������	
���

�
���
���	
���

���

��������
	����

���

�����
���	����

��

���������	
���

���

���������	��
�

��

���

��

������
���	��
�

��

����������	
���

���

������
���	
���

��� ��� ��� ��� ��� ��� ��
 ���

Fig. 2: DAG Fork-Join

• DAG G = (U , E) represents a scientific workflow, where
U is the set of tasks (nodes) and E is the set of depen-
dencies (arcs);

• n indicates the number of tasks of the DAG (n = |U|).
• w = {w1, w2, . . . , wn} is the set of computational

demands, where wi is the demand units of task i 2 U
(w 2 R+);

• o = {o1, o2, . . . , on} is the set of I/O demands, where oi
is the demand units of task i 2 U (o 2 R+);

• bi,j indicates the communication demand between the
tasks i and j, such that i, j 2 U and 9ei,j 2 E (b 2 R+);

• A graph C = (V,L) represents the available infrastructure
to rent from a public cloud C, where V is the set of VM
and L is the set of links. We assumed that all VMs are
fully meshed;

• R is a set of types of available virtual disks to rent in the
cloud C. We defined that r = 0 means in-VM disk and
r = 1 means CPU-independent storage. (R 2 {0, 1});

• TWv indicates the time needed to fulfill one compu-
tational demand unit by one virtual machine v 2 V
(TW 2 R+);

• TOv,r indicates the time needed to fulfill one I/O demand
unit by one disk of the type r 2 R on the virtual machine
v 2 V (TO 2 R+);

• TBv,k indicates the time needed to transfer one data
block from the virtual machine v to a virtual machine
k, being v, k 2 V . If v = k, then TB = 0 (TB 2 R+);

• DG is the expected deadline (DG 2 N+);
• Pv indicates the number of processing cores of a virtual

machine v (Pv 2 N+);
• Tmax is the time needed to execute the whole application

serially on the fastest virtual machine with the standard
disk (type r = 0) (Tmax 2 N+);

The formulation uses the following variables and constants:
• xu,t,v,r is a binary variable. It assumes the value 1 if the

task u at virtual machine v using the disk type r finishes
at time t. Otherwise, it assumes the value 0;

• yt,v is a binary variable. It assumes the value 1 if the
virtual machine v is activated at the time t. Otherwise, it
assumes the value 0;

• sv,r is a integer variable. It indicates the amount of rented
blocks for each type of disk r used by the virtual machine
v (sv,r 2 N+).

• Cv is the cost to rent a virtual machine v by one time
unit (Cv 2 R+);

• Mr is the cost to rent a gigabyte of a virtual disk of the
type r (Mr 2 R+);

• Xr is the cost of the ordering a gigabyte of I/O operations
of the type r (Xr 2 R+).

The timeline granularity is a key issue when we use in-
teger linear programming. The time can be represented by
both continuous and discrete values. Many public cloud that
offers Infrastructure as a Service (IaaS), like Amazon EC23,
Windows Azure4, and Rackspace5, charge a full time unit

3http://aws.amazon.com/pt/ec2/
4https://www.windowsazure.com
5http://www.rackspace.com

(hour or minute) for partial usage. Consequently, the proposed
scheduler uses only discrete time to represent the workflow
execution. The level of timeline granularity and the workflow
length can lead to high execution times. For this reason,
we defined � as a multiplicative factor that determines the
granularity of the discrete-time scheduling problem. So, the
timeline is described as T = {�, 2�, 3�, ...,⇤}. ⇤ is limited
by DG and ⇤ 2 N+. In the simulations carried out in this
paper we utilized � = 2, i.e., the timeline considered by
the scheduler presents twice the granularity offered by the
provider with the aim to reduce the search space and reduce
the scheduler running time. A detailed study on the impact of
timeline granularity is presented in [13].

B. Integer Linear Program Formulation

The developed ILP formulation is presented in Figure 3.
The objective function minimizes the total economic cost.

The function is composed of the three parts: the first is the
sum of the cost of renting virtual machines; the second is the
sum of the cost to rent storage; and the third is the sum of the
cost of all the I/O operations.

The constraint (C1) determines that a task u can begin
only when all its precedent tasks complete and submit all
data to the virtual machine where the task u is allocated.
The constraint (C2) states that the maximum number of tasks
running simultaneously in the same virtual machine must not
exceed the number of processor cores. The constraint (C3)
establishes that a virtual machine must remain active while
there are tasks running on it. The constraint (C4) determines
that a virtual machine must remain active while receiving data
from all precedent tasks and while sending data to all successor
tasks. The constraint (C5) specifies that every task must be
executed only once and in a single virtual machine. The
constraint (C6) states that a task cannot end its operations until
all instructions are executed and all I/O demands have been
performed. The constraint (C7) establishes that the sum of the
storage demand of all tasks that use a type of disk in a virtual
machine does not exceed its storage capacity. This constraint
guarantees that the I/O operations during task execution are
considered. The constraint (C8) determines that the workflow
execution should not exceed the stipulated deadline. The
constraints (C9) and (C10) specify that the variables x and y
will only assume the binary values 0 or 1. The last constraint,
(C11), determines that the variable namely s will be an positive
integer.

V. EVALUATION

In this section, we evaluate the benefit of renting storage
space in addition to that configured with VM rented. The trade-
off analyzed is whether it is more advantageous to rent a higher
number of VMs to support the storage demand of applications
or to rent a lower number of VMs and additional storage.

We implemented the scheduler as an integer linear program
using java6 and the IBM ILOG CPLEX Optimizer 7. The

6http://openjdk.java.net/
7http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

TABLE I: IaaS Pricing

Service Cost Unit

Virtual machine usage $0.090 per hour
Virtual machine standard storage $0.000 per gigabyte
I/O operations at standard storage $0.000 per gigabyte

Extra storage usage $0.125 per gigabyte
I/O operations at extra storage $0.025 per gigabyte

evaluated metrics are the monetary cost of the schedule and
the workflow makespan.

A. Simulation Configuration

We simulated a cloud that let us rent up to 10 virtual
machines. We considered two types of storage: in-VM disk
with fixed size, and CPU-independent storage that can be
rented without a VM instance (extra storage).

The computational performance of each virtual machine
was generated randomly from a uniform distribution between
796-1025 MIPS. The I/O performance for each disk type in
each virtual machine are generated randomly from a uniform
distribution between 259-316 IOPS whereas each block has 4
KBs. The performance of data transmission on the network is
generated randomly from a uniform distribution between 70-
702 Mbps. All virtual machines have four processing cores
and a 10 GB standard disk. Simulations experiments were run
20 times, each with a different seed for the random number
generator. The Table I shows the prices used for renting cloud
resources.

We limited the CPLEX solver to execute up to 10 minutes,
when the solver delivers the best result found so far. We
configured our scheduler in two different manners:

a) Configuration 1: we allow the scheduler to use only
VM storage. This was done by adding the following constraint
to equation 1 of our ILP formulation (Figure 3).

X

u2U

X

t2T

X

v2V
xu,t,v,r = 0, for r = 1 (1)

The constraint in Equation (1) determines that no CPU-
independent storage available for rental can be used.

b) Configuration 2: the ILP formulation as presented in
Figure 3. It means that the scheduler is free to chose the best
way to use the available storage from both the VMs and from
the CPU-independent storage.

We simulated the DAG of astronomic application MON-
TAGE [11] (Figure 1) and a Fork-Join DAG (Figure 2) with
26 tasks. Both applications are data-intensive. The weights
of both tasks and arcs were generated randomly from a
uniform distribution. The computational demands are between
200-300 millions of instructions. The I/O operation demands
are between 5-7 gigabytes. The communication demands are
between 2.5-3.5 gigabytes.

To represent possible deadlines, we ran simulations with the
deadline DG with different ratio in relation to the makespan of
the sequential execution of the workflow. We utilized deadlines

Minimize
P
t2T

P
v2V

(yt,v⇥Cv)+
P

v2V

P
r2R

(sv,r⇥Mr)+
P

u2U

P
t2T

P
v2V

P
r2R

(xu,t,v,r⇥doue⇥Xr)

subject to
P

u2H(z)

P
v2V

P
r2R

t�d(wz⇥TWk)+(oz⇥TOk,r)+(bu,z⇥TBv,k)eP
s=1

xu,s,v,r �
tP

s=1
xz,s,k,h⇥|H(z)|, (C1)

8z2U, 8k2V, 8h2R, 8t2T

P
u2U

P
r2R

t+d(wu⇥TWv)+(ou⇥TOv,r)e�1P
s=t

xu,s,v,r  Pv, (C2)

8v2V, 8t2T | t(DG�d(wu⇥TWv)+(ou⇥TOv,r)e)

tP
s=t�d(wu⇥TWv)+(ou⇥TOv,r)e+1

ys,v � xu,t,v,r⇥(d(wu⇥TWv)+(ou⇥TOv,r)e), (C3)

8u2U , 8v2V, 8r2R, 8t2{d(wu⇥TWv)+(ou⇥TOv,r)e,...,DG}

s�d(wz⇥TWk)+(oz⇥TOk,h)eP
p=t+1

(yp,v+yp,k) � 2⇥(xu,t,v,r+xz,s,k,h�1)⇥⇡, (C4)

8z2U, 8u2H(z), 8v,k2V,8r,h2R,8s,t2T ,

↵=(s�t�d(wz⇥TWk)+(oz⇥TOk,h)e), �=(dbu,z⇥TBv,ke),
if ↵�� then ⇡=↵ else ⇡=�

P
t2T

P
v2V

P
r2R

xu,t,v,r = 1, (C5)

8u2U

P
u2U

P
v2V

P
r2R

d(wu⇥TWv)+(ou⇥TOv,r)e�1P
t=1

xu,t,v,r = 0, (C6)

P
u2U

t+d(wu⇥TWv)+(ou⇥TOv,r)e�1P
s=t

(xu,t,v,r⇥ou)  sv,r, (C7)

8v2V, 8r2R, 8t2T | tDG�d(wu⇥TWv)+(ou⇥TOv,r)e

P
u2U

P
v2V

P
r2R

TmaxP
s=DG+1

xu,s,v,r = 0, (C8)

xu,t,v,r 2 {0,1}, 8u2U, 8t2T , 8v2V (C9)
yt,v 2 {0,1}, 8t2T , 8v2V (C10)
sv,r 2 N+, 8v2V, 8r2R (C11)

Fig. 3: ILP formulation

varying from Tmax ⇥ 1/7 to Tmax ⇥ 6/7 in 1/7 steps, where
Tmax is the makespan of the serial execution of the application
in the fastest virtual machine of the cloud.

The scheduler ran on a computer with the following con-
figuration: Intelr i7TMCPU 2.4GHz and 32GB of RAM.

B. Results

Figure 4 presents the distribution of costs for the MON-
TAGE scheduling. Costs are detailed by the cost of rented
VMs, the cost of the rented additional storage (Disk), and the
cost of I/O performed by this additional storage. Configuration
1 was not able to fulfill deadlines 1/7 and 2/7. This happens
because a larger number of VMs are needed to cope with the
storage demand. However, given the limitation of VMs that can
be rented, not all the tasks can be run in parallel, increasing
the makespan which is larger than the required deadlines 1/7
and 2/7. In configuration 2, which employs both VM storage
and additional storage, the utilization of VM storage is less

TABLE II: Average makespan of MONTAGE

Deadline ratio
1/7 2/7 3/7 4/7 5/7 6/7

Configuration 1 - - 18.0 14.0 14.0 14.0
Configuration 2 6.0 10.0 2.8 3.4 2.0 2.0

than that of configuration 1, therefore, it is not necessary to
break task to run in different VMs as in configuration 1 just
to support the storage demand of the application. On the other
hand, configuration 2 implies in higher costs due to the need
of extra storage rental and associated I/O operations. In this
example, the cost tripled to reduce the makespan to 1/7 of
that given by configuration 1, as shown in Table II.

The execution cost distribution is shown in Figure 5 for the
Fork-Join DAG. Configuration 1 could not fulfill any deadlines
for the 1/7 ratio. However, for configuration 2, it was possible
to meet this deadline by reducing the number of VMs and

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
st

Ratio deadline and Tmax
1/7 2/7 3/7 4/7 5/7 6/7

I/O
Disk
VM

Fig. 4: MONTAGE Execution Cost Distribution

 0

 2

 4

 6

 8

 10

 12

 14

 16

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
n
fi

g
u
ra

ti
o
n
1

C
o
n
fi

g
u
ra

ti
o
n
2

C
o
st

Ratio deadline and Tmax
1/7 2/7 3/7 4/7 5/7 6/7

I/O
Disk
VM

Fig. 5: Fork-Join Execution Cost Distribution

making use of additional storage. By doing that, less tasks are
broken to run in different VMs and the existing parallelism can
be better explored. However, the parallel execution paths in the
Fork-Join DAG has less dependent tasks than in Montage, i.e.,
there are less dependent task serially in a path. Consequently,
using additional storage does not pay off for deadlines up
to 4/7, as can be seen by the larger makespan produced by
configuration 2 (Table III). Moreover, under less strict deadline
requirements, the advantage of not breaking tasks to run in
different VMs and using additional storage takes advantages
of existing parallelism and reduces the makespan as in the
Montage DAG.

TABLE III: Average makespan of Fork-Join

Deadline ratio
1/7 2/7 3/7 4/7 5/7 6/7

Configuration 1 - 10.0 8.0 8.0 8.0 8.0
Configuration 2 6.0 12.0 17.2 22.0 2.0 2.0

VI. CONCLUSION

In this paper, we presented scheduler for the scheduling
of data intensive workflows in public clouds. The uniqueness
of the proposed scheduler is that it has the ability to choose
between the default storage capacity available in virtual ma-
chines and extra storage that can be rented. Results shows the
scheduler can fulfill more restrict deadlines when additional
storage is rented. Indeed, in general, renting additional storage
reduces the number of tasks that has to be broken, and in most
of the cases it also reduces the makespan since the intrinsic
parallelism can be better explored.

In order to optimize the storage usage, we are extending the
ILP scheduler to deal with multiple workflows.

ACKNOWLEDGMENT

The authors would like to thank CNPq (156563/2012-6) for
financial support, and IBM for providing the CPLEX tools.

REFERENCES

[1] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost optimization
algorithm for workflow scheduling in hybrid clouds,” Journal of Internet
Services and Applications, vol. 2, no. 3, pp. 207–227, 2011.

[2] L. F. Bittencourt, E. R. Madeira, and N. L. Da Fonseca, “Scheduling
in hybrid clouds,” Communications Magazine, IEEE, vol. 50, no. 9, pp.
42–47, 2012.

[3] G. Juve and E. Deelman, “Scientific workflows and clouds,” Crossroads,
vol. 16, no. 3, pp. 14–18, 2010.

[4] Y. Zhao, X. Fei, I. Raicu, and S. Lu, “Opportunities and challenges
in running scientific workflows on the cloud,” in Cyber-Enabled Dis-
tributed Computing and Knowledge Discovery (CyberC), 2011 Interna-
tional Conference on. IEEE, 2011, pp. 455–462.

[5] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the cloud: the montage example,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008, p. 50.

[6] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou,
K. Vahi, K. Blackburn, D. Meyers, and M. Samidi, “Scheduling data-
intensiveworkflows onto storage-constrained distributed resources,” in
Cluster Computing and the Grid, 2007. CCGRID 2007. Seventh IEEE
International Symposium on. IEEE, 2007, pp. 401–409.

[7] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on.
IEEE, 2010, pp. 400–407.

[8] E. Barrett, E. Howley, and J. Duggan, “A learning architecture for
scheduling workflow applications in the cloud,” in Web Services
(ECOWS), 2011 Ninth IEEE European Conference on. IEEE, 2011,
pp. 83–90.

[9] Q. Wu, Y. Zhao et al., “A cost-effective scheduling algorithm for
scientific workflows in clouds,” in Performance Computing and Commu-
nications Conference (IPCCC), 2012 IEEE 31st International. IEEE,
2012, pp. 256–265.

[10] T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, “Escalonamento
de workflows com uso intensivo de dados em nuvens,” in XI Workshop
de Computação em Clouds e Aplicações, 2013.

[11] NASA, “Applications of montage - scientific product generation,”
http://montage.ipac.caltech.edu/applications.html, 2013, [Online; ac-
cessed 05-October-2013].

[12] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[13] T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, “iscretização
do tempo na utilização de programação linear para o problema de
escalonamento de workflows em múltiplos provedores de nuvem,”
in XXX Simpósio Brasileiro de Redes de Computadores e Sistemas
Distribuı́dos. SBC, 2012.

