Service Workflow Monitoring in Private Clouds:
The User Point of View

Carlos R. Senna, Luiz F. Bittencourt, and Edmundo R. M. Madeira
Institute of Computing - University of Campinas (UNICAMP)
Av. Albert Einstein, 1251, 13083-852, Campinas, Sdo Paulo, Brazil
{crsenna, bit, edmundo} @ic.unicamp.br

Abstract—Cloud computing environments offer, in general,
tools and mechanisms for the user to monitor computational,
storage, and networking resources. However, only a few middle-
wares for cloud computing provide tools that help the user in
the application monitoring. When we consider workflows and
their dependencies, monitoring from the user point of view is
not found in the literature of cloud middlewares. In this paper,
we present an infrastructure for execution of service workflows
in private clouds with tools that allow the user to keep track
of his/her workflows, measuring each activity performed in the
cloud resources. Through this monitoring, our workflow manager
is able to react during the workflow execution, requesting new
or better resources in order to the execution to comply with
the application quality of service requirements. Besides that,
the metrics that our monitoring system offers allow users to
keep a detailed track of the organization internal costs involved
in the processing, and then use this information to evaluate
other alternatives, such as leasing resources from public cloud
providers.

I. INTRODUCTION

The cloud provider must have the ability of feeding the user
with computational resources on-demand, presenting char-
acteristics that include the client auto-servicing, ubiquitous
access, availability, elasticity, and pay-per-use. Three basic
service levels exist in this paradigm: sotware as a service
(SaaS), platform as a service (SaaS), and infrastructure as a
service (IaaS). These three cloud types illustrate the usefulness
of the service oriented computing (SOC) [1], allowing users
to establish links among services, and thus organizing them as
workflows instead of single standalone applications. A work-
flow is a standard to model business and scientific application
data and control flows, as well as services that can be deployed
to serve as part of large e-Science environments [2].

In the IaaS cloud service model, the client usually accesses
cloud resources through an interface to perform user identifica-
tion, to check the available resources, and to create/start/stop
one or more virtual machine instances (VMIs). The user is
charged in a pay-per-use basis, i.e., while the VMI is active.
During this period, it is possible to start applications by
verifying if all the necessary dependencies (other applications,
services, libraries, etc.) are available and ready to use. If this is
not the case, it is the user’s duty to deploy them, installing and
instantiating applications and publishing the services, so that
the application, or the whole workflow, can be started and
run smoothly. Despite the advances in resource abstraction
and management in the cloud paradigm, the user yet has

This is a pre-print version.
The final version is available at the publisher's website.

an expressive labour to be performed on the management of
his/her application’s execution.

One important point in the application management is
monitoring. Current monitoring systems in cloud computing
infrastructures have the objective to follow resources consump-
tion, being oriented to provide information on resource usage
metrics. While these metrics can be useful to the provider, they
have limited usefulness to the cloud user. For example, in the
Amazon EC2 [3], the available metrics are directed to the mon-
itoring the instances: CPUUltilization, DiskRead/WriteOps,
DiskRead/WriteBytes, and NetworkIn/Out are metrics with
more meaning in managing resources than the applications
running on them. With such metrics, the user may decide
to add more resources to its cloud if a VM overload is
detected, but the semantics of the obtained data from these
metrics cannot be directly translated into impact in the appli-
cations running on the monitored resources. As a consequence,
applications could be migrated or more resources could be
included in the cloud with no need, or, on the contrary, the
application may be yet unresponsive and with its quality of
service compromised, and this may not be identifiable through
resource monitoring metrics. This can happen if the VM
itself is not overloaded, but if a hardware component of the
underlying physical machine is overloaded by other VMs.

In this paper we present an infrastructure for the execution
and monitoring of service workflows in private clouds. The
tools in our infrastructure management system allow cloud
users to follow their workflows execution, measuring the per-
formance of computation and data transfer activities performed
by each workflow component in the cloud resources. Through
these measurements, the workflow manager can detect two
basic situations where action can be taken: (i) if resources
are not achieving the expected performance; and (ii) the
application does not need as much resources as allocated to
it. In the first case, the management system can react during
the execution of the application to avoid quality of service
degradation; in the second case the application can be run
on a less powerful resource, leaving the most powerful ones
for other resource-demanding applications. Besides that, the
metrics in our monitoring system allow the user to keep track
of the organization internal costs' involved in the workflow

'Such as in credit systems, where organization departments receive credits
when letting other departments to use their resources.

Workflow Manager Instance Creator

Sewice Service
(WMS) =] (ICS)

Workflow Management -

DAG Generator
Service (DGS)

VM Instance
Creator Service

Workflow Execution

—®
Service (WES) (YMICS)
, :
Scheduler A
Interface Dynamic MCIOUd
57;"’;(;9 Deployment Sae]:\?i?: Zr
t Service (DDS) (cms)
fag. Resource
SS!
(=t Monitor t
l—b Service Cloud
(RMS) Interface
Service
GT
I
[

laaS VMI vMI VMI
(Openstack) GT GT T

Fig. 1. Management system infrastructure.

execution, which could be useful in deciding if it does worth
adding resources from public providers to the cloud.

This paper describes in Section II our software infrastruc-
ture to support the workflow execution in private clouds. In
Section III we detail the application monitoring system in the
cloud, discussing its application as well as some application
scenarios. Section IV presents a use case of the monitoring
system. In Section V we describe related works, while Section
VI presents the conclusion and future work.

II. INFRASTRUCTURE FOR THE MANAGEMENT OF
WORKFLOWS IN CLOUDS

Our infrastructure for the execution of service workflows is
composed of the following components: an laaS middleware, a
computational grid infrastructure, the workflow manager, and
a set of support services.

The management of service composition in our infrastruc-
ture is performed by a set of services (Figure 1), whose coor-
dination is made by the Workflow Manager Service (WMS).
The WMS allows the creation and management of application
flows, tasks, and services from computational grids. The WMS
architecture is based on concepts presented by the OGSA
(Open Grid Services Architecture) [4] and extended with
characteristics of WS-BPEL (Web Service Business Process
Execution Language) [5]. By using a computational grid we
create a distributed environment to support the parallelism
of activities, such as the concurrent execution of workflow
services, the distributed monitoring, and the dynamic service
publishing in the virtual machine instances. To accomplish
this, we chosen the Globus Toolkit (GT) [6], which is an
implementation of the OGSA. In the OGSA, all physical or
logical resources are modeled as services in the grid, thus
being in tune with an IaaS cloud platform.

The workflows are constructed by the user through the
GPOL language [7], which uses concepts of service or-
chestration presented in WS-BPEL, but improved with spe-
cific directives for grid and cloud computing, such as state
maintenance, potentially transient services, notification, data-
oriented services and group-oriented services. GPOL includes
variables, life-cycles, fabric/instance control, flow control, and
fault treatment. Additionally, it allows the user to start the
execution of tasks, services, and workflows sequentially or
in parallel. Also, GPOL allows the user to create abstract
workflows, leaving to the management system, along with the
scheduler, the duty of deciding the best set of resources to run
the application.

We consider that the received workflows are translated into
Directed Acyclic Graphs (DAGs). The user builds abstract
workflows, thus not identifying the physical resources where
each service in the workflow must be run. After receiving
the workflow, the WMS notifies the DAG Generator Service
(DGS), so it can generate the resulting DAG with the de-
scription of the workflow activities along with the involved
computational costs (processing costs, transmission costs, etc).
The generated DAG will be sent to the scheduler, which
decides the best resources to run each workflow component.
The interface between the workflow management and the
scheduler is done by the Scheduler Interface Service (SIS).The
SIS makes the middleware scheduler-independent, and the user
can choose the best scheduler for the current application being
scheduled or cloud objectives.

The scheduler, through the SIS, returns the resource alloca-
tion for the workflow components to the WMS, which starts
the transformation of the abstract workflow into a concrete
workflow. In order to accomplish this, the Instance Creator
Service (ICS) is invoked to create the necessary instances
of the services needed in the workflow execution. However,
before an instance can be created, another verification must
be done: check if all the VMs indicated by the scheduler are
already instantiated.

When all VMs in the concrete workflow already exist, the
cloud infrastructure (OpenStack) needs to take no action, but
the ICS still needs to verify if the necessary services are ready
to be used in the virtual machine instance (VMI). If they are
not, the ICS starts the procedure to publish the necessary
services dynamically, which is done through the Dynamic
Deployment Service (DDS). The DDS requests the service
from the repository, transfers it to the VMI, publishes it, and
updates the VMI’s service container.

When one or more VM instances need to be started, the ICS
calls the Virtual Machine Instance Creator (VMICS), which
is responsible for the creation of the new virtual machine
instance. The VMICS must obtain the most adequate VM
image, start its creation, and return to the ICS the localization
of the freshly deployed VMI so the services related to the
workflow can be instantiated on it. As in the first case, if
the image does not have all the necessary services, the ICS
deploys them through the DDS.

To provide our private cloud, we opted for using the Open-

Stack open source platform [8]. OpenStack fulfills the neces-
sary requirements to support the cloud through its computa-
tional infrastructure (Nova), its storage infrastructure (Swift),
and its VM image management service (Glance). The relation
between our software and the cloud (private, public or hybrid)
is performed through the Cloud Manager Service (CMS),
supported by the Cloud Interface Service (CIS). This design
guarantees the independence of our infrastructure in relation
to the particularities of the cloud infrastructure. For each cloud
provider, we can have a corresponding CIS, restricting to the
CMS all the logic behind our infrastructure. The CIS utilizes
definitions of the Amazon EC2 API [3], what facilitates the
integration of platforms such as OpenNebula, Eucalyptus, and
other cloud solutions that make use of this API’s specification.

With all the necessary services for the workflow execution
already instantiated, the VMs change abstract services for real
URLs, transforming the abstract workflow into the concrete
workflow. The concrete workflow execution is performed by
the Workflow Execution Service (WES).

III. MONITORING THE WORKFLOW EXECUTION

The monitoring provided by our infrastructure acts in vari-
ous ways. It monitors the VMISs resources (memory, CPU, etc),
monitors the network, and closely monitors the execution of
workflow activities. Besides the workflow execution coordina-
tion, the WES also monitors the execution with an activity by
activity granularity, working along with the Resource Monitor
Service (RMS). Together, WES and RMS register the time
taken to run each activity (a service, a data transfer, a database
access, etc) and verify if the performance is complying with
the expected QoS.

All information about the cloud resources is obtained
through the RMS. It operates in a distributed manner, main-
taining one instance on each VMI, and supplying, on demand,
information about the instance to the other infrastructure
services. The RMS gives information about the amount of
memory available, number of cores, CPU utilization, as well
as total and available storage. It also offers information about
the network where the resource is placed on, such as maximum
and available bandwidth. Besides that, the RMS maintains
detailed information about the services available on each VMI.
Moreover, it provides information about each container URL,
its protocol, access ports, and maintains in the repository
average execution times of each operation previously executed
by the VML This information is normalized to reflect the
performance of that resource in relation to the others. The
information on the RMS can also help in the composition of
a usage map from the cloud, which could be useful to the
scheduler. Then, the scheduler can, for instance, place tightly
coupled services closer and connected by faster links.

The WES monitors the execution times of each section
defined in the GPOL workflow, including times taken to
execute other operations invoked in the process, registering
them in a cumulative form into a separate log file for each
workflow. To illustrate this monitoring, we show below a

fragment of a GPOL workflow that applies a filter to an image
file [7].

<?xml version="1.0" encoding="UTF-8"7?>
<job name="ip-A5000x5000" met="31500">
<definitions name="job_Definitions">
(1) <variables>
<variable name="retCode"
</variables>
(2) <gservices>

type="int" value="0"/>

<gsh name="vml" uri="FactIPS" type="Factory"/> <!-— cm="01" ——>
<gsh name="vm2" uri="FactIPS" type="Factory"/> <!-- cm="02" ——>
<gsh name="vm3" uri="FactIPS" type="Factory"/> <!-- cm="02" ——>
<gsh name="vm4" uri="FactIPS" type="Factory"/> <! cm="03" >
</gservices>
</definitions>

<process name="p-ip-A5000x5000">

(3) <invoke name="vml" method="sliceMatrix" met="2500">
<argument variable="sliceIn" type="string"/>
<return variable="sliceOut" type="string"/> </invoke>

(4)<flow name="F-SCP-send" met="7500">
<invoke name="vml" method="runCommand" tagname="sendS1lTovm3">
<argument variable="S1Tovm3" type="string"/>
<return variable="retCode" type="int"/> </invoke>
<invoke name="vml" method="runCommand" tagname="sendS1Tovm4">
<argument variable="S2Tovm4" type="string"/>
<return variable="retCode" type="int"/> </invoke> </flow>

(5) <flow name="F_medianFilterMatrix" met="13000">
<invoke name="vm3" method="medianFilterMatrix" tagname="vm3MF">
<argument variable="mFIn-1" type="string"/>
<return variable="retCode" type="int"/> </invoke>
<invoke name="vm4" method="medianFilterMatrix" tagname="vm4MF">
<argument variable="mFIn-2" type="string"/>
<return variable="retCode" type="int"/> </invoke> </flow>

(6)<flow name="F-SCP-receive" met="7500">
<invoke name="vml" method="runCommand" tagname="rsf_wvm3">
<argument variable="R1Fromvm3" type="string"/>
<return variable="retCode" type="int"/> </invoke>
<invoke name="vm2" method="runCommand" tagname="rsf_wvm4">
<argument variable="R1Fromvm4" type="string"/>
<return variable="retCode" type="int"/> </invoke> </flow>

(7) <invoke name="vml" method="mergeSliceFiles" met="700">
<argument variable="mergeIn" type="string"/>
<return variable="mergeOut" type="int"/> </invoke>

<return variable="retCode" type="int"/>
</process></job>

In step (1), the workflow variables are created with informa-
tion of the services to be used. In step (2), the service instances
(IS) utilized in the workflow are created. It is important to note
that there is no indication about the resources localization or
about the virtual machines localization where the ISs must be
created. Therefore, this specification is related to an abstract
workflow. The computational resources will be indicated by
the scheduler and properly utilized by the WMS, transforming
the abstract workflow into a concrete one during the execution.
The association between the service instance and the VM
where it will be created is given by the tag “gsh-name”. In
our GPOL example, we chose to create four instances of the
FactIP, which associations are with v/, vin2, vm3, and vm4.
In the rest of the workflow, the instance of the service to be
used is always referenced through this name, no matter in
what VMI it was created. In step (3), we used the IS vm/ to
split the image file in two parts. The resulting parts are then
sent in parallel to the resource where they will be executed,
i.e., the resources where vm3 and vm4 are running, so the
filter can be applied independently (4). In step (5) the median
filter is applied in parallel by the ISs vm3 and vm4. In (6)
the resulting filtered file parts are sent to the VMI where the
IS vml is running, which in turn merges the files into the
resulting image. At each execution of this workflow, the WES
adds to the log file the following information:

. GPOMaestro Vr. GPO Maestro Service 1.5.1 Jul 2012
Processing ip A5000x5000.gpol at Sat Sep 15 10:37:20 BRT 2012
Definitions Execution Time: 5
ExecProcess: invoke vml sliceMatrix end - Time: 2378
flow.Invoke: vml runCommand sendS1Tovm3 end - Time:
flow.Invoke: vm2 runCommand sendS2Tovm4 end - Time:
ExecProcess: flow F SCP send end Time: 7051
flow.Invoke: vm3 medianFilterMatrix vm3MF
flow.Invoke: vm4 medianFilterMatrix vm4MF
ExecProcess: flow F_medianFilterMatrix end - Time:
flow.Invoke: vm2 runCommand rsf_vmé4 end - Time:
flow.Invoke: vml runCommand rsf_vm3 end - Time:
ExecProcess: flow F-SCP-receive end - Time: 6799
ExecProcess: invoke vml mergeSliceFiles end - Time: 617
. Process Execution Time: 28806
——— GPO end Processing ip-A5000x5000.gpocl Time:

6246
7050

10202
11958

end - Time:
end - Time:
11958
6701
6797

32162

In this execution, 2378ms were taken to split the file into
two parts (sliceMatrix), 6246ms to send the first slice to vmn3
(sendS1ToVM3), and 7050ms to send the second slice do vim4
(sendS2ToVM4). The filter application took 10202ms in vmn3
(vm3MF), while it took 11958 ms in vin4 (vm4MF). To bring
the filtered slices back to vmiI, 6797ms and 6701ms were
taken for rsf_vm3 and rsf_vm4, respectively. The merge of
the two filtered pieces took 617ms in vml (mergeSliceFiles).
The total Process Execution Time was 28806ms , considering
that many operations were performed in parallel. This small
example shows the relevance of the performance information.
It is possible to note in the data transmission of the slices that
the communication channel between vm/ and vm3 is faster
than between vm/ and vin4. Even though vm3 and vm4 are two
VMs of the same class (cm="02") and run the same service
FactIP, vin3 was faster in the execution of the filter.

Besides generating this log for each workflow, the WES
maintains this information in repositories associated with the
RMS in each cloud resource. Since we are using computational
resources made available in the form of virtual machines,
it is important to normalize the collected information. To
accomplish this, our workflow management system gathers
information about the machine class where the VMI was
instantiated. By combining the execution times and the class
of the host machines, the infrastructure is able to provide
relevant information to the scheduler in its choice for the best
resources. However, the cloud administration should decide
how the machines are classified, and should populate the
middleware repositories with the available hardware classes.
One option to make such classification is to use the model
provided by the public clouds, such as Amazon [9], which
adopts a combination of characteristics (hardware, usage type,
resource options, etc) to charge for the use of its resources.
In our example, we illustrate this by putting this information
as a comment where services of the workflow are defined
(vml/vm2 cm=“01" and vm3/vm4 cm="02"). This is only an
example, since this classification is obtained during the exe-
cution of the workflow directly from the cloud infrastructure.
When the execution is finished, all information is sent to the
global repository, where they are maintained.

Our infrastructure provides to the schedulers not only in-
formation about the resources, such as processing capacity,
storage and communication, but also information about the
resources performance on each operation performed in the
VMIs. The association of the VMI with the hardware where

it is running allows to infer the performance of the cloud
resources without identifying its physical resources.

The RMS also monitors the time involved in other workflow
activities. The time to create each VMI, the time to dynam-
ically deploy each service not available at the time of the
VMI deployment, times taken to initiate service containers,
times taken to create each service instance, and times taken to
distribute service instances and VM images are examples of
information collected by the infrastructure. This information is
made available to the scheduler, supporting it in the choice for
the best resource to be used in the workflow execution. Below
we discuss how information collected through our monitoring,
harvested from the perspective of the user, is used by the
infrastructure to make decisions and act in an attempt to
guarantee the desired QoS.

A. Application scenarios

All workflow activities are monitored during the execution.
By detailing the execution steps, it is possible to identify some
important points from the monitoring in the user’s perspective.
In the definitions section of the workflow, the system monitors
the dynamic creation of service instances that will be used.
The most simple case occurs when the private cloud already
has the VM instances ready to use. In this case, only the time
taken to create the service instance is computed.

The monitoring system allows the user to choose the best
allocation strategies for the VMIs. For workflows that are
often executed, it would be interesting to create VM images
with all services already published. Moreover, the creation of
all necessary instances beforehand may be unfeasible, since
this could consume time and hardware resources, impairing
the execution of other applications in the VMs already de-
ployed in the same physical hardware. Also, by using our
infrastructure monitoring system, the cloud administrator can
observe the cloud usage not only in terms of hardware load,
but also profiling the applications being executed and decide
the best deployment strategy for each type of VM available,
considering costs and energy/green aspects of each strategy.

Note that in the private cloud, the types of VMI available
for deployment are restricted by the available hardware. For
instance, if there is only one 16 core machine in the pool, and it
already has a VMI with 4 cores deployed on it, no VMI with
16 cores could be deployed for an application with higher
demand for CPU parallelism. However, if the 4 cores VMI
was deployed on a 4 cores physical machine, this 16 cores
could still be used in the cloud by deploying a 16 core VMI
on it. Therefore, the dynamic deployment of VMs and service
instances brings benefits to the cloud as a whole, potentially
increasing resource utilization. Thus, for workflows executed
for the first time or workflows with low execution frequency,
it may be interesting to deploy VMIs and services only on
demand, leaving more resource options to other workflows.

B. Rescheduling: correcting QoS

Our infrastructure allows the user to associate Service Level
Agreements (SLAs) with the workflow execution. This can be

done by declaring requirements of each step of the workflow
in the repository or directly in the workflow specification. The
GPOL has the tag met (Maximum Execution Time), which can
be optionally specified in the time-consuming activities of the
workflow. In our example, we indicate mer="“31500" for the
workflow execution as a whole, met=“2500" to the sliceMa-
trix operation, met=“13000" for the flow medianFilterMatrix,
met="“7500" for the flow F-SCP-receive, and met=“700" for
the mergeSliceFiles operation.

If the met is defined, the WES utilizes the measured times
given in a cumulative form to monitor the whole workflow
execution. If this global measurement shows that the time
indicated will not be obeyed, the WES interrupts the execution
and requests to the WMS the generation of a new scheduling
for the activities that were not yet run in the workflow. The
new scheduling should be performed in a way to try to obey
the QoS indicated by the user. When the WMS receives this
rescheduling request, it uses the DGS to obtain the partial
DAG, and then it invokes the scheduler through the SIS.
Finally, the same steps are taken as in the original workflow
execution in order to deploy VMs and service instances
through the cloud services (ICS, VMCIS, etc), returning to
the WES the new concrete workflow to be run.

In our example, an elapsed time above 2500ms in the slice-
Matrix operation indicates that vm/ is not corresponding to the
requested QoS. When this deviation is perceived, the WES can
generate a new DAG, but with the flow F-SCP-send as the first
task to be accomplished. Then, the scheduler should indicate
a faster resource in order to avoid the overall workflow met
to be surpassed. All the necessary references to synchronize
the workflow activities are automatically corrected by the
workflow manager, making this rescheduling process totally
transparent to the user.

C. Monitoring to evaluate public clouds

The presented monitoring service can be also used in public
clouds. To do this, it suffices to create a VM image with the
infrastructure (middleware, published services, workflows, and
the necessary files), and then create the necessary VMs for the
execution of the workflow. Then, the infrastructure can moni-
tor the execution of each activity of the workflow, generating
the execution log. After some executions, it would be possible
to characterize the performance of the VMs in the public cloud
using the local VMs as references. With that, decisions made
by schedulers for hybrid (public + private) clouds could be
better supported, evaluating with better precision the cost-
benefits involved in outsourcing workflows (or part of them)
to public clouds [10].

1V. USE CASE ANALYSIS

In order to illustrate the application monitoring provided by
our infrastructure, we set up a small experiment with a median
filter workflow. The median filter is a fork-join DAG with one
call to a service that slices an image in two, two parallel calls
to a service that applies a median filter to each slice, and one
call to a service that merges the results into the final image.

TABLE I
VMI CLASSES CHARACTERISTICS.

[Class | Cores | RAM | Network | CPU (hardware) |

cmO1 1 2 GB 100 Mbps Intel Pentium 4 3.00GHz
cm02 1 4 GB 1 Gbps Intel Core2 Quad 2.40GHz
cm03 1 16 GB 1 Gbps Intel Xeon ES5430 2.66GHz

Running time of flow components

g 9
= 80]
2 70 -
¥ ——
o 40 EE—
5 % =
g 10 —
3 0
slice copy filter copy-res merge
Flow component

—+— 500 —=— 7500

—— 500/Monitoring —o— 7500/Monitoring

—— 5000 —e— 9000

—=a— 5000/Monitoring —=— 9000/Monitoring

Fig. 2. Cumulative makespan for the median filter workflow.

When these calls are made to services on different resources,
the needed image files are transferred through the network so
the service can be run.We have run the experiments with four
different image sizes: 500 x 500, 5000 x 5000, 7500 x 7500,
and 9000 x 9000. We deployed a cloud with 3 VM classes, as
shown in Table L.

We compared two executions of the workflow: (i) without
the monitoring system, where the slice and merge operations
were performed on a ¢cmOl resource, while the filters were
performed in parallel on two c¢m02 resources; and (ii) with
the monitoring system, where the infrastructure is capable of,
based on the met tag in the workflow, detecting that using a
cmOlI resource would delay the execution, and then it decides
to reschedule the merge operation to a cm03 resource.

Figure 2 shows the cumulative makespan of the workflow
execution after each operation performed. After the slice of
the image file, the monitor system detects that it took too long
to copy the slices from the cm0OI resource to cm02 resources
where the filter is applied. With this, when the monitoring
was active, the rescheduling took place by moving the merge
operation to a c¢m03 resource, which has a faster network
interface. We note that with the monitoring, the operation
copy-res was faster than the first copy operation, accelerating
the execution of the workflow. For the 500 x 500 image size,
the slice size is too small and the network performance of the
copy operation did not delay the workflow execution, and the
rescheduling could be disposable.

V. RELATED WORK

Cloud computing platforms such as Amazon [9], Open-
Stack [8], OpenNebula [11], Eucalyptus [12], and Nim-
bus [13], offer functionalities for monitoring. In general, they
offer a portal through which the users can be aware of the
cloud resources behavior in real time. Some portals can show

performance graphs with statistics about the vital resources,
allowing the creation of alarms for given conditions. Also,
reports can be personalized using tools provided by some plat-
forms. The Amazon Web Service (AWS) platform, through the
Amazon CloudWatch [14] provides an interesting monitoring
system that allows the user to follow the performance not only
of the VM instances, but also of the database systems. The
Amazon CloudWatch has VM monitoring metrics for the CPU
usage, latency, memory usage, I/O frequency, among others.
However, its monitoring system, as the monitoring from the
other cloud platforms, is resource-oriented, not providing
relevant information for the applications execution, whereas
our proposal not only monitors the resources of the cloud but
also the performance of services allowing the user to monitor
each activity of the workflow.

In spite of the rapid evolution of the cloud computing, there
are a few works about monitoring. In [15], the authors discuss
the project and implementation of a monitoring system in
private clouds named PCMONS. Their proposal allows the
construction of a cloud with open source solutions, and it
offers functionalities for the integration with traditional tools
such as Nagios [16]. In [17], the authors propose a holistic
monitoring system based on agents. The system functionalities
are mainly focused on network node monitoring. The network
monitoring is only part of what our infrastructure can provide.

Other alternative is the use of traditional resource mon-
itoring tools such as IBM Tivoli [18], Nagios [16], and
Ganglia [19], adapted to cloud environments. However, in
our scenario, such tools would need to be adapted in order
to cope with applications monitoring, virtualization and its
relation with the underlying hardware (i.e., association with
VMs and hardware classes, and also relation between VMs to
detect underlying hardware overload), as well as to deal with
the execution time of distributed tasks in parallel with their
dependencies.

None of the above solutions offers detailed monitoring of
applications that are a composition of tightly-coupled services
in clouds.

VI. CONCLUSION

Cloud computing environments provide resource monitor-
ing, but they usually do not offer tools that support the user
in the application monitoring. When considering workflows
composed of services, monitoring options from the user point
of view are not available to the best of our knowledge. In
this paper we present an infrastructure for the execution of
service workflows in private clouds. The presented infrastruc-
ture offers tools for the user to keep track of the execution
of the activities completed during the execution of services
that compose the workflow. By having the performance of the
applications monitored, the infrastructure can take actions in
order to improve the workflow execution.

The workflow management in our infrastructure makes the
access to the cloud resources transparent to the user, providing
uniform access by giving automatic support for the creation
of VMs, as well as managing their life-cycle. Through our

monitoring system, the user can observe the performance of
each activity in the workflow, also enabling the gathering
of information about the normalized resources performance.
Moreover, the infrastructure is able to perform rescheduling of
parts of the workflow according to the execution performance
being observed. This can avoid application delays and low
QoS. Our monitoring system can also be utilized to assess
resources leased from public clouds, allowing the user to make
a more concrete evaluation of the cost-benefit offered by each
public cloud provider.

As future work, we are expanding the infrastructure func-
tionalities in order to provide an easy way of measuring and
comparing resources from public clouds with the ones in the
private cloud. The development of rescheduling algorithms for
clouds are also of interest.

ACKNOWLEDGMENT

We would like to thank CNPq and RNP for the financial
support.

REFERENCES

[11 F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The
next step in web services,” Communications of ACM, vol. 46, no. 10,
pp- 29-34, 2003.

[2] I. Taylor, E. Deelman, D. Gannon, and M. E. Shields, Workflows for
e-Science: Scientific Workflows for Grids. Springer, 2007.

[3] Amazon Co., “Amazon Elastic Compute Cloud (ec2) APL”
http://aws.amazon.com/ec2/, 2012.

[4] “The physiology of the grid: An open grid services architecture
for distributed systems integration,” 2002. [Online]. Available:
http://www.globus.org/alliance/publications/papers/ogsa.pdf

[S] “Web services business process execution language version 2.0,”
OASIS Web Services Business Process Execution Language (WSBPEL)
TC, Tech. Rep., April 2007. [Online]. Available: http://docs.oasis-
open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS .html

[6] 1. Foster, “Globus toolkit version 4: Software for service-oriented
systems,” in [FIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, Beijing, China, 2005, pp. 2—
13.

[71 C. R. Senna, L. F. Bittencourt, and E. R. M. Madeira, “Execution
of service workflows in grid environments,” International Journal of
Communication Networks and Distributed Systems (IJCNDS), vol. 5,
no. 1/2, pp. 88-108, 2010.

[8] Openstack Org., “Openstack
http://http://www.openstack.org, 2012.

[9] A. Co., “Amazon Web Services,” http://aws.amazon.com/, 2012.

[10] L.F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca, “Schedul-
ing in hybrid clouds,” IEEE Communications Magazine, vol. 50, no. 9,
pp. 42 —47, september 2012.

Openstack Project, “Opennebula,” http://www.opennebula.org, 2012.

cloud software,”

[11]

[12] Eucalyptus System Inc., “Eucalyptus,” http://www.eucalyptus.com,
2012.

[13] Nimbus Project, “Nimbus platform,” http://www.nimbusproject.org,
2012.

[14] Amazon Co., “Amazon Cloudwatch,”

http://aws.amazon.com/cloudwatch/, 2012.

S. A. de Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an archi-
tecture for monitoring private clouds.” IEEE Communications Magazine,
vol. 49, no. 12, pp. 130-137, 2011.

Nagios Enterprises, “Nagios,” http://www.nagios.org/, 2012.

P. Hasselmeyer and N. d’Heureuse, “Towards holistic multi-tenant
monitoring for virtual data centers,” in Network Operations
and Management Symposium Workshops (NOMS Wksps), 2010
IEEE/IFIP. 1EEE, Apr. 2010, pp. 350-356. [Online]. Available:
http://dx.doi.org/10.1109/NOMSW.2010.5486528

IBM, “IBM tivoli monitoring,” http://www-01.ibm.com/software/tivoli/,
2012.

“Ganglia Monitoring System,” http://ganglia.sourceforge.net/, 2012.

[15]
[16]

[17]

(18]

[19]

