
An Architecture for Adaptation of Virtual Networks

on Clouds

Carlos R. Senna, Milton A. Soares Jr., Luiz F. Bittencourt, and Edmundo R. M. Madeira

Institute of Computing - University of Campinas (UNICAMP)

Av. Albert Einstein, 1251, 13083-852, Campinas, São Paulo, Brazil

④crsenna, bit, edmundo⑥@ic.unicamp.br, milton@lrc.ic.unicamp.br

Abstract—Virtual networks are a new research topic advocated
to increase flexibility, manageability and isolation in the Internet.
However they introduce many open issues to become practical
in real scenarios. On the other hand, cloud computing provides
elasticity, where availability scales up on demand, with resources
being offered frequently as virtualized services over the Internet.
The use of virtual networks as a mechanism in cloud computing
can aggregate traffic isolation, improving security and facilitating
pricing. Also, it allows us to act in cases where the performance
is not in accordance with the contract for services between the
customer and the provider of the cloud. In this paper we propose
an architecture for the deployment of clouds over virtualized
networks. In addition, we experimentally evaluate how the virtual
network manager can benefit from different virtual network
configurations to improve users’ quality of service.

I. INTRODUCTION

The cloud computing paradigm provides resources which

scale up dynamically and are frequently virtualized as services

over the Internet [1]–[5]. The Internet model, based on end-to-

end data transfer services and the TCP/IP protocol stack, ac-

celerated its growth, but caused some structural problems like

scalability, management, mobility, and security. Simple tasks

such as configuration and optimization require the intervention

of administrators that may result in service interruption.

Nowadays, the new approach for the future Internet pro-

poses the pluralism of architectures and defines that net-

work providers should be split into service and infrastructure

providers and proposes the use of virtualization [6], [7]. This

way, the network service providers instantiate virtual networks

over the substrate of the infrastructure providers. Each virtual

network can have its own protocols and configurations, in

accordance with the objectives of the service running over

it.

The use of virtual networks as a tool in cloud computing

can aggregate traffic isolation, improving security and facil-

itating pricing. Also, it allows us to act in cases where the

performance is not in accordance with the contract for services

between the customer and the provider of the cloud. The

combined use of the technologies described hitherto opens a

new horizon of possibilities, making the management of the

cloud much more complex, especially if offering autonomic

aspects.

In this paper we present an architecture for management and

adaptation of virtual networks on clouds. Our architecture is

based on Service Oriented Computing (SOC) [8], and allows

users to establish connections among services, organizing them

as workflows. Its infrastructure is composed of a network

substrate, a set of software tools for creating on demand virtual

networks, a computational grid, and a workflow management

system.

The proposed infrastructure allows the creation of vir-

tual networks on demand, associated with the execution of

workflows, isolating and protecting the execution environ-

ment. Also, it provides performance monitoring of virtual

networks by acting preemptively in the case of performance

dropping below the stated requirements. The management

acts autonomously changing routes automatically and without

interruption of services. To validate the proposed architecture,

we built a prototype on a testbed, which we used to execute

image processing workflows utilized in e-Science applications.

We show results of real workflow executions in our testbed

to evaluate the network performance, the overheads involved

when using virtual routers, how virtual network channels

behave with data flow transmission, and how the adaptation

provided by the virtual network management system can

benefit the workflow execution.

This paper is organized as follows. Section II discusses

some related works in network virtualization and clouds. In

Section III we present the testbed infrastructure deployed

to perform our experiments, while Section IV describes the

experimental setup, scenarios, and results. The conclusion and

future works are presented in Section V.

II. RELATED WORKS

Virtual networks are a new research topic advocated to

increase flexibility, manageability and isolation in the Inter-

net. However they introduce many open issues to become

practical in real scenarios. These perspectives and research

challenges are presented in [9]. In this paper we explore the

interfacing between infrastructure and service providers. Our

scenarios use real services, a workflow application running in

computational resources connected by virtual networks. The

virtual network management system provides an interface to

adjustments required by the workflow manager.

The implementation of virtual networks, its performance

issues and trends, are addressed in [10]. We use its virtual

machine approach to construct our virtual networks. Although

our focus is not on performance, we could evaluate our results

and assess if they are factual.

This is a pre-print version.!

The final version is available at the publisher's website.



TABLE I
RESOURCES IN THE TESTBED.

Name Processor Clock Cores RAM

Apolo Pentium 4 3.00 GHz 2 2.5GB

Nix Core2 Quad Q6700 2.66 GHz 4 8 GB

Hermes Core2 Quad Q6700 2.66 GHz 4 8 GB

Artemis Xeon 3040 1.86 GHz 2 1 GB

In [11], the authors present a resource management frame-

work for VN-based infrastructure providers. In this work,

an architecture called Local Resource Manager (LRM) was

developed to monitor and control virtual resources in a

physical machine and to provide an interface with external

clients/agents to do a high-level management. They extend the

Xen tools to enable a fine grain, self-adjusting virtual resources

control. The evaluation was performed with an implementation

of a mechanism for dynamic adjust of CPU resources based

on the application requirements of QoS. In our work we are

not interested in isolating and controlling the resources in the

hosts of the computer environment, but the ones of the network

that interconnect then.

Hao et al. [12] propose mechanisms to migrate virtual

machines in clouds within different networks. As stated by

the authors, this demands network reconfiguration to offer

uninterrupted services for the cloud users, which is achieved

through network virtualization. However, the authors do not

evaluate performance issues when reconfiguring the virtual

network.

Our work contributes to the decision on how to reallocate

data paths among different virtual networks in order to achieve

a satisfiable performance in a cloud computing infrastructure,

as the one proposed in [12]. This reconfiguration is important

in the virtual network management in order to efficiently use

the available links by allocating virtual networks according

to the current network usage needs. Such actions can help in

obeying SLA contracts, giving priority to flows from users or

applications with more strict requirements.

III. THE TESTBED INFRASTRUCTURE

We deployed a testbed to execute our experiments using the

virtual network. The infrastructure is composed of a network

substrate, a set of software tools for creating on demand virtual

networks, a computational grid, and a workflow management

system. The testbed receives as input a set of workflows used

to evaluate different strategies of network virtualization. Our

infrastructure uses the Globus Toolkit (GT) [13] deployment,

an OGSA (Open Grid Service Architecture) [14] implemen-

tation. In the OGSA, all resources (physical or virtual), are

modeled as services, bringing to the grid the concepts offered

by Service Oriented Computing (SOC). Our base system is

a GT version ✹ deployed on ✹ resources: Apolo, Artemis,

Hermes, and Nix, all with Debian Linux connected by the

network substrate. Resources characteristics are summarized

in Table I.

A. Virtual Networks Testbed

Each virtual network created in our testbed uses two virtual

routers. These virtual routers are located at the real hosts

Zeus and Dionisio, as shown on the top of the Figure 1.

For example, to bring virtual network A to operation, it is

necessary to instantiate the virtual routers horizonzeusA, at the

real host Zeus, and horizondionisioA, at the real host Dionisio.

In our testbed, we instantiated ✹ virtual networks to perform

the experiments. The bottom part of Figure 1 shows Apolo

and Artemis connected by the virtual network A (IP 10.10*).

Similar instantiations were made for the virtual networks B

(IP 10.20*), C (IP 10.30*), and D (IP 10.40*). The paths for

each virtual network can be mapped in one of two possible

physical paths between the real hosts Zeus and Dionisio: an

✶��Mbps link and an ✶Gbps link.

The main tools used to build our testbed are qemu, KVM,

and libvirt. Qemu [15] is a processor emulator which can also

be used as a virtualization platform. The Kernel-based Virtual

Machine (KVM) [16] is a full virtualization hypervisor based

on the machine emulator qemu. KVM is a free software under

the GPL and open-source, and it allows the use of external

tools, such as libvirt, to control it. Libvirt [17] is an API to

access the virtualization capabilities of Linux with support to

a variety of hypervisors, including qemu, KVM, and Xen, and

some virtualization products for other operating systems. It

allows local and remote management of virtual machines. With

libvirt it is possible for a management agent to use the same

code to request information regarding the performance of a

virtual link independent of the hypervisor running in the virtual

routers.

B. Workflow Management System

In order to enact real workflows in our experiments, the

management of the service compositions in our infrastructure

is made by the GPO (Grid Process Orchestration) [18], a mid-

dleware for service workflows execution in the grid (Figure 2).

The GPO allows the creation and management of application

flows, tasks, and services. The GPO uses workflows built with

the GPOL (GPO Language) [18]. The GPOL is based on

concepts of service orchestration from WS-BPEL [19], with

added specific directives for grids, such as state maintenance,

potentially transient services, notification, data-oriented ser-

vices, and groups. The language includes variables, lifecycle,

fabric/instance control, flow control, and fault handling. Ad-

ditionally, it allows the user to start task executions, service

executions, and workflow executions in sequence or in parallel.

The scheduling service (SS) is responsible for distributing the

workflow services to be executed in the available resources.

To accomplish this, the scheduling service may implement

different algorithms with different optimization objectives,

and decide which one to use depending on the application

or current environment characteristics. Information about the

available resources in the grid can be obtained through the

resource monitor (RM). The RM operates in a distributed

manner, maintaining one instance on each computing resource

and providing on demand information for other services. Our



Fig. 1. Network substrate.

Fig. 2. The Workflow Management Architecture.

middleware provides the monitoring of workflow executions.

The GPO monitors the execution times of each section speci-

fied in the GPOL workflow, including the time spent on each

operation invoked in the process, registering them in a log file

exclusive for each workflow.

The integration between the GPO and management of

virtual networks is done through the Virtual Network Interface

Service (VNIS). Using the VNIS, the workflow manager re-

quests the network to be used for workflow execution. During

the workflow execution the RM monitors the performance

of virtual network links and can identify problems such as

miscommunication or underperforming. In such cases, the

GPO notifies the virtual network management system (VNMS)

[20], requesting improvements in the performance of a link or

the entire network when it is appropriate.

In this paper we implemented and deployed a system

using the architecture proposed in Figure 2. Therefore, our

experiments comprise the virtual networks, the workflow spec-

ification in GPOL, the workflow emulation using the emu-

lator service over the GPO middleware, including workflow

data transfers over different configurations of the virtualized

network along with the adaptation provided by the VNMS

component.

The use of real applications in our testbed is essential,

but there exist limitations to implement all the necessary

services for all workflows and deploy them on all available

resources. Such limitations include personnel and software

requirements, which can be conflicting, making it not possible

to experiment the necessary service-resource combinations to

evaluate performance and strategies of network virtualization.

To contour this situation, we created an emulation service

which mimics many aspects of the workflows execution [21].

Using our emulator service we built emulation workflows

which present a quite similar behavior to the real application

workflows. In this paper we used the median filter workflow

to perform virtual network evaluations. The median filter is

an image processing application [22] that can be executed

in parallel by splitting the image into pieces and merging

the results back into one single image. The median filter

substitutes the value of a pixel by the surrounding values on

its neighborhood. Figure 3 shows the file is divided into 5

parts, the slices files processed on parallel way, and the slices

files merged on the final filtered file [18].



Fig. 3. Median filter workflow example.

IV. EXPERIMENTAL RESULTS

We performed real workflow executions in our testbed to

evaluate the network performance in three aspects:

1) The overheads involved when using virtual routers.

2) How virtual network channels behave with concurrent

data flow transmissions.

3) How the adaptation provided by the virtual network

management system can benefit the workflow execution.

The evaluations presented in this section are handy for

the development of advanced management algorithms for

the virtual network substrate. In addition, the experiments

can provide background for the development of autonomic

management agents capable of switching flows across network

links when abnormal behavior is observed.

A. Virtual Network Overheads

We start by evaluating the overhead introduced by the virtual

routers when compared to the transmissions without them, i.e.,

in a switched gigabit ethernet network. In this scenario we

measured the times taken to execute a simple workflow which

performs a median filter in an image. It uses ✸ services and

performs ✷ data transfers, as shown in Figure 4.

Fig. 4. Workflow used in the virtual network overhead evaluation.

The workflow receives a user submission in Apolo and sends

the image to be processed in Nix (transfer 1 - T1), where the

median filter is applied to the image. After that, the image is

copied back to Apolo (T2), where the resulting image is shown

to the user. We executed this median filter workflow for images

of ✶�✱ ��� ✦ ✶�✱ ��� pixels. We compare executions of the

workflow in the Computer Networks Laboratory (LRC) gigabit

ethernet network with the execution in our testbed using the

gigabit links available from the virtual routers. Figure 5 shows

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

scp−AtoN medianFilter scp−NtoA Execution Time

T
im

e
 (

m
s
)

Workflow job

10,000 x 10,000 Image (287MB)

LRC
Virtual Network 1
Virtual Network 2
Virtual Network 3
Virtual Network 4

Fig. 5. Results for images of size ✁✂✄ ✂✂✂☎✁✂✄ ✂✂✂ in all available networks.

the execution times of each workflow step averaged over ✺

executions with confidence interval of ✾✺✆.

Figure 5 presents the execution times of the workflow

services in all available networks in our testbed: ✹ virtual

networks plus the LRC gigabit network. We can observe

that both data transfer services (T1 and T2) double their

execution times when using the virtual network to transfer

the ✶�✱ ��� ✦ ✶�✱ ��� pixels (✷✝✞ MB) images. This impacts

the final execution time of the workflow, which is increased

by ✷✸✆. Therefore, the ✹ virtual networks present similar

behavior with some overhead over the LRC network.

Not surprisingly, the virtual routers introduce overheads to

the file transfers needed by the workflow [10]. This is caused

by a variety of factors, such as:

➙ Complexity in the packet forwarding through virtual

machines;

➙ Multiplexing packets to virtual machines through bridges;

➙ While in the LRC network the data path between Apolo

and Nix has a single hop, the virtual network transfer

passes through ✸ hops, introducing queue/propagation

overheads to the data stream; and

➙ Zeus and Dionisio introduce overheads when processing

the incoming data and forwarding it to the destination.

In this paper we focus on the management of the flows

through the available virtual networks, therefore we accept

this overhead as part of the virtual network infrastructure.

B. Virtual Network Performance

In the previous section we evaluated the performance of

an ✶Gbps link in a virtual network with a single data flow.

In this section we add an ✶��Mbps link, and we analyze the

performance of both channels using up to ✸ data flows. Each

data flow is a transfer of a ✶✺✱ ��� ✦ ✶✺✱ ��� image file (✻✹✹

MB). For such evaluation, we consider ✹ routing scenarios (A,

B, C, and D), as shown in Table II.

In each scenario, we measured the time taken to send all

combinations of ✸ flows, with each one being the data transfer

of a ✶✺✱ ��� ✦ ✶✺✱ ��� image file. The flows are as follows.



 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

Single 1+2 1+3 2+3 1+2+3

T
im

e
 (

m
s
)

Flows

Virtual networks performance − Scenario A

Flow 1 Flow 2 Flow 3

(a) Scenario A

 0

 20000

 40000

 60000

 80000

 100000

 120000

Single 1+2 1+3 2+3 1+2+3

T
im

e
 (

m
s
)

Flows

Virtual networks performance − Scenario B

Flow 1 Flow 2 Flow 3

(b) Scenario B

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Single 1+2 1+3 2+3 1+2+3

T
im

e
 (

m
s
)

Flows

Virtual networks performance − Scenario C

Flow 1 Flow 2 Flow 3

(c) Scenario C

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Single 1+2 1+3 2+3 1+2+3

T
im

e
 (

m
s
)

Flows

Virtual networks performance − Scenario D

Flow 1 Flow 2 Flow 3

(d) Scenario D

Fig. 6. Virtual network performance routing up to ✸ flows through ✶Gbps and ✶��Mbps links.

TABLE II
SCENARIOS USED TO EVALUATE THE VIRTUAL NETWORK PERFORMANCE.

100 Mbps 1 Gbps

Flow 1 Flow 2 Flow 3 Flow 1 Flow 2 Flow 3

A X X X

B X X X

C X X X

D X X X

➙ Flow 1: TCP data transfer from Nix to Apolo using the

virtual network ✁✂✳✁✂✳✧.

➙ Flow 2: TCP data transfer from Hermes to Apolo using

the virtual network ✁✂✳✷✂✳✧.

➙ Flow 3: TCP data transfer from Artemis to Apolo using

the virtual network ✁✂✳✄✂✳✧.

Figure 6(a) shows results for scenario A (all flows routed

through the ✁✂✂Mbps link), where Single is the control mea-

surement, i.e., the time taken for transferring each flow alone.

We can note that the transmission of flows ✁ and ✷ concurrently

(labeled “1+2”) remains a little below the double of the control

time, as expected. The same happens when only flows ✁ and

✄ and when flows ✷ and ✄ are transmitted. When the ✄ flows

are transmitted, all of them have the performance significantly

worsened by the concurrency.

When we consider scenario B (Figure 6(b)), the control

for flow ✁ drops, as expected, since it is now in the gigabit

link. Note that flow ✁ has a similar transfer time with all

combinations of flows, since it is always alone in the ✁Gbps

link. However, we can observe some overhead in flow ✁ when

increasing the number of flows due to processing concurrency

in physical machines where virtual routers are instantiated.

Flows ✷ and ✄ perform similarly to the control time when

transmitted only with flow ✁. When flows ✷ and ✄ are trans-

mitted together, they share the ✁✂✂Mbps link, what worsens

their performance. By comparing scenarios ❆ and ❇ we note

that changing flow ✁ from the ✁✂✂Mbps brings benefits to all

flows.

In scenario C (Figure 6(c)) we observe that flow ✄ is not

affected by flows ✁ and ✷, since flow ✄ is the only one in

the ✁✂✂Mbps link, except in the case where all flows are

sent together. This makes it clear that the concurrency in the



physical machines where virtual routers are instantiated is also

a limiting factor for the virtual network overall performance.

In the “✶� ✷� ✁” case, flows ✶ and ✷ affect each other when

sharing the ✶Gbps link, making their performance to be closer

to the flow ✁ alone in the ✶✂✂ Mbps link.

When all flows are routed through the ✶●✄♣s link (scenario

❉), the results in Figure 6(d) show that any combination of ✷

flows results in a higher transfer time when compared to the

control measurement, as expected. When all the ✁ flows are

transmitted, the concurrency makes the transmission time even

higher. However, it is important to note that the transmission

times of all flows together is smaller than the sum the transmis-

sion time of all flows alone. In addition, the transmission of the

✁ flows concurrently in the ✶ Gbps network, i.e. scenario ❉,

is faster than combinations in scenarios ❆ and ❇. However,

when compared to scenario ❈ , scenario ❉ presents similar

performance when all ✁ flows are being transmitted. Therefore,

scenarios ❈ and ❉ are valid options for transmitting the ✁

flows in the fastest manner in our testbed. These results can

help in the development of adaptation strategies for executing

workflows over virtual networks.

C. Network Adaptation

In this section we present results on how the virtual network

management system (VNMS) could adapt the routing of flows

during the execution to achieve a better performance. We use

the same scenarios names as in the previous section to refer

to different distribution of virtual networks over the links.

We executed the median filter workflow splitting a ✶☎✱ ✂✂✂✦

✶☎✱ ✂✂✂ image file in ✁ pieces, sending them to be processed in

parallel on different resources, and receiving the ✁ pieces back

to generate the final resulting image (Figure 7). The workflow

steps are as follows.

1) Apolo breaks the image in ✁ pieces.

2) Apolo transfers in parallel one piece to Nix using the

virtual network ✶✂✳✶✂✳✧, one piece to Hermes using the

virtual network ✶✂✳✷✂✳✧., and one piece to Artemis using

the virtual network ✶✂✳✁✂✳✧. At this moment, all flows

are routed through the ✶✂✂Mbps link.

3) Nix, Hermes, and Artemis execute the median filter on

their image pieces.

4) Apolo gets all the pieces back from Nix, Hermes, and

Artemis. Here the flows are routed through different

paths, using different scenarios as in the previous sec-

tion.

Upon the execution of the workflow, the VNMS can choose

how to distribute the data flows in the virtual networks

depending on the workflow’s requirements. For example, if the

transmission times for the first three transfers in the ✶✂✂Mbps

link are above the workflow requirements (given by a service

level agreement - SLA, for instance), the VNMS can choose

to migrate some networks to the ✶Gbps link. Figure 8(a)

shows potential gains of such adaptation when executing the

workflow. We can observe that, if the VNMS chooses to

move from scenario ❆ to scenario ❇, it would improve the

transfer times for the returning image pieces (Transfers 4-6).

As a consequence, the workflow execution time would also be

reduced. However, if the workflow requirements are tighter, the

VNMS could choose to move to scenario ❈ or ❉, achieving

a data transfer time for the returning image pieces closer to

the non-virtual network.

Fig. 7. Workflow used in the virtual network adaptation evaluation.

Figure 8(b) shows the time taken by each transfer and

median filter processes. We can observe that transfers ✹ to

✻ show the same transfer time pattern achieved in the four

scenarios from the previous section. For example, Transfer 4

is moved to the ✶Gbps link in scenario ❇, having a transfer

time close to the one presented by flow ✶ in the previous

section. This would be useful when there exist a priority

flow in the network, which could be routed alone through the

✶●✄♣s network. In scenarios ❈ and ❉ the transfer times for

all transfers are similar, corroborating the experiments from

the previous section by showing that both options are valid to

more efficiently transfer three data flows.

D. Adaptation Case Study

In this evaluation we present results of a case study on flow

priority. We consider two workflows: (i) the workflow ❲✶

from Figure 9 for a ✷✂✱ ✂✂✂ ✦ ✷✂✱ ✂✂✂ image, which is split

for processing; and (ii) a higher priority workflow ❲✷ from

Figure 4 with a ✶✂✱ ✂✂✂✦ ✶✂✱ ✂✂✂ pixels image.

The case study was performed as follows. First, ❲✆ starts

its execution, splitting the image file and sending its pieces to

Nix, Hermes, and Artemis using the ✶Gbps link provided by the

virtual network. After the processing, a user ❲P is submitted

to execution in Apolo to be processed in Hermes. At this point,

the network will experience concurrency among ✹ data flows:

❚✷, ❚✹, ❚☎ from ❲✆ and the first data dependency from ❲P

(❚✶) in the gigabit link. At this moment, the GPO requests

priority to the VNMS through the VNIS. The objective of

the VNMS now is to satisfy the higher priority from ❲P .

To achieve this, it must reconfigure the virtual networks to

provide a faster transfer for T1 from ❲P .

We analyze ✁ possible actions to be taken by the VNMS:

➙ Action 1: Take no action. Simply allow all flows to go

through the ✶Gbps link.

➙ Action 2: Reconfigure the network so that flow ❚✶ from

❲P can use the ✶✂✂Mbps link exclusively.



 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

Non−virtualDCBA

T
im

e
 (

m
s
)

Network configuration

Virtual Network Adaptation − Totals

Transfers 1−3
Processes 1−3
Transfers 4−6
Workflow Exec. Time

(a) Totals

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000

Non−virtualDCBA

T
im

e
 (

m
s
)

Network configuration

Virtual Network Adaptation − Jobs

Transfer−1
Transfer−2
Transfer−3
Process−1
Process−2

Process−3
Transfer−4
Transfer−5
Transfer−6

(b) Jobs

Fig. 8. Case study of virtual network adaptation with the workflow of Figure 7.

➙ Action 3: Reconfigure the network so that flow ❚✶ from

❲P can use the ✶Gbps link exclusively, i.e., changing all

the other flows to the ✶��Mbps link.

Results for data transfers in this concurrent workflow ex-

ecution are shown in Figure 10. In the Action ✶ case, the

executions of the whole workflows (i.e., including all the

processing times – not shown in the figure for the sake of

cleanliness) are ✷�✁✱ �✵✂ms for ❲✄ and ✼�✱ ✁�✻ms for ❲P .

Action ✷ has shown to be the worse option for the priority

workflow, since it worsens the data transfer time for its data

dependencies (❲P /T1 and ❲P /T2). In addition, in this case

the total execution times for ❲✄ and ❲P are ✷✶✁✱ ✂✷✻ms and

✂✶✱ ✵✁✂ms respectively. On the other hand, when Action ✵ is

taken, data transfer times from the priority workflow ❲P are

shorter, making the execution time of the whole workflow to

drop to ✻�✱ ✻✺✂ms.

This adaptation case study shows that, when a priority flow

arrives, the best option is to route it through the gigabit link

alone, as expected. However, as a second option, routing it

through the gigabit link along with other ✵ flows may still

be better than routing the priority flow alone in the ✶��Mbps

link.

Fig. 9. Workflow to apply three filters sequentially to the image file.

 15000

 20000

 25000

 30000

 35000

 40000

 45000

Action 3Action 2Action 1

T
im

e
 (

m
s
)

Action taken

Case Study − Priority Workflow

W1 / T1−T3
W1 / T4−T6
W1 / T7−T9

W1 / T10−T12
WP / T1
WP / T2

Fig. 10. Data transfer times according to the action taken.

V. CONCLUSION

The new paradigm of networks as a service (NaaS) based

in the network virtualization can bring benefits to cloud com-

puting as aggregate traffic isolation, improving security, and

facilitates pricing. This new mechanism permits, for example,

to act in cases where the performance is not in accordance with

the contract for services between the customer and the provider

of the cloud. However, the union of these technologies opens

a new horizon of possibilities, making the management of the

cloud much more complex.

In this paper we present an architecture for management and

adaptation of virtual networks on clouds. Our infrastructure

allows the creation of virtual networks on demand, associated

with the execution of workflows, isolating and protecting the

user environment. The virtual networks used in workflow

execution has its performance monitored by our manager

which acts preemptively in the case of performance dropping

below stated requirements.

To validate the proposed architecture, we built a prototype



of testbed to provide insights on how the virtual network

management system can act to offer a better quality of

service to the user. The results of image processing workflow

executions showed that the management and adaptation of

virtual networks is able to improve the data transfer times

for the executed workflows.

As future work, we consider the development of algorithms

to allocate the virtual networks in the available links depending

on the current load/priorities of data transfers in the cloud. This

would impact on the quality of service offered to the user as

well as in the profit of the cloud provider by offering better

SLA contracts.

ACKNOWLEDGMENT

We would like to thank CAPES, FINEP, FAPESP

(09/15008-1), and CNPq for the financial support.

REFERENCES

[1] “The nist definition of cloud computing 15,” National Institute of
Standards and Technology (NIST), Tech. Rep., July 2009. [Online].
Available: http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-
v15.doc

[2] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34 – 41, April 2005.

[3] S. Zhang, S. Zhang, X. Chen, and X. Huo, “Cloud computing research
and development trend,” in Proceedings of the 2010 Second Interna-

tional Conference on Future Networks, ser. ICFN ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 93–97.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50–58, April 2010.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility,” Future Gener. Comput. Syst.,
vol. 25, pp. 599–616, June 2009.

[6] “Horizon project: A new horizon to the internet,” 2011. [Online].
Available: http://www.gta.ufrj.br/horizon

[7] N. Feamster, L. Gao, and J. Rexford, “How to lease the
internet in your spare time,” SIGCOMM Comput. Commun.

Rev., vol. 37, pp. 61–64, January 2007. [Online]. Available:
http://doi.acm.org/10.1145/1198255.1198265

[8] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana, “The
next step in web services,” Communications of ACM, vol. 46, no. 10,
pp. 29–34, 2003.

[9] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862 – 876, 2010.

[10] N. Fernandes, M. Moreira, I. Moraes, L. Ferraz, R. Couto, H. Carvalho,
M. Campista, L. Costa, and O. Duarte, “Virtual networks: isolation,
performance, and trends,” Annals of Telecommunications, vol. 66, pp.
339–355, 2011.

[11] F. Rodrguez-Haro, F. Freitag, and L. Navarro, “Enhancing virtual
environments with qos aware resource management,” Annals of Telecom-
munications, vol. 64, pp. 289–303, 2009.

[12] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Enhancing
dynamic cloud-based services using network virtualization,” Computer
Communication Review, vol. 40, no. 1, pp. 67–74, 2010.

[13] G. Alliance, “Globus toolkit,” 2011. [Online]. Available:
http://http://www.globus.org/toolkit/

[14] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The
physiology of the grid: An open grid services architecture
for distributed systems integration,” 2002. [Online]. Available:
http://www.globus.org/research/papers/ogsa.pdf

[15] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
ser. ATEC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp.
41–41.

[16] I. Habib, “Virtualization with kvm,” Linux J., vol. 2008, February 2008.

[17] M. T. Jones, “Anatomy of the libvirt virtualization library an
api for easy linux virtualization,” 2010. [Online]. Available:
http://www.ibm.com/developerworks/linux/library/l-libvirt/

[18] C. R. Senna, L. F. Bittencourt, and E. R. M. Madeira, “Execution
of service workflows in grid environments,” International Journal of
Communication Networks and Distributed Systems (IJCNDS), vol. 5,
no. 1/2, pp. 88–108, 2010.

[19] “Web services business process execution language version 2.0,” OASIS
Web Services Business Process Execution Language (WSBPEL) TC,
Tech. Rep., April 2007.

[20] C. R. Senna, D. M. Batista, M. A. S. Jr., E. R. M. Madeira, and
N. L. S. Fonseca, “Experiments with a self-management system for
virtual networks,” in II Workshop de Pesquisa Experimental da Internet
do Futuro (WPEIF 2011). Campo Grande, MS, Brazil: Brazilian
Computer Society, 2011.

[21] C. R. Senna, L. F. Bittencourt, and E. R. M. Madeira, “An environment
for evaluation and testing of service workflow schedulers in clouds (to
appear),” in International Conference on High Performance Computing
& Simulation (HPCS), july 2011.

[22] C. A. Lindley, Practical image processing in C: acquisition, manipula-
tion and storage: hardware, software, images and text. New York, NY,
USA: John Wiley & Sons, Inc., 1991.


