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Abstract The workflow paradigm has become the stan-
dard to represent processes and their execution flows.
With the evolution of e-Science, workflows are becom-
ing larger and more computational demanding. Such
e-Science necessities match with what computational
grids have to offer. Grids are shared distributed plat-
forms which will eventually receive multiple requisitions
to execute workflows. With this, there is a demand for
a scheduler which deals with multiple workflows in the
same set of resources, thus the development of multiple
workflow scheduling algorithms is necessary. In this pa-
per we describe four different initial strategies for sche-
duling multiple workflows on grids and evaluate them
in terms of schedule length and fairness. We present
results for the initial schedule and for the makespan
after the execution with external load. From the re-
sults we conclude that interleaving the workflows on
the grid leads to good average makespan and provides
fairness when multiple workflows share the same set of
resources.
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1 Introduction

Grid computing has turned into a widely used paradigm
for processing high amounts of data over a geographi-
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cally distributed system. Computational grids are re-
ceiving substantial attention from the research com-
munity since the middle of the 1990’s [25]. A compu-
tational grid is a dynamic, heterogeneous, and shared
system which brings new characteristics along with new
problems to be addressed. Problems concerning scala-
bility and resource management include new variables
to be tackled, thus presenting new challenges. Among
these new challenges, the task scheduling is an impor-
tant one.

In a grid middleware, the scheduler is responsible
for selecting in which resource each task will be exe-
cuted, thus task execution times are strongly dependent
on the scheduler decisions. In general, the task sche-
duling problem is NP-Hard [41], consequently there is
no known algorithm which finds the optimal solution
in polynomial time. Significant effort has been made
towards the development of algorithms which can pro-
vide efficient solutions for the scheduling problem in
distributed systems [23,28,8,31,44,38,37,50,32,27].

Tasks submitted to be processed in a grid can be
splitted into two classes, in general: dependent tasks
and independent tasks. While independent tasks have
no communication between them, dependent tasks have
a data flow, where each task depends on data computed
by other tasks. A set of dependent tasks can be called as
a workflow: a collection of tasks that have dependencies
between them. This paradigm has been widely used to
represent scientific processes [45]. With the emergence
of grid computing, the scheduling of workflows, partic-
ularly for e-Science applications, is receiving substan-
tial attention [4,22,5,43,7,42,49,9]. Some known ap-
plications which make use of the workflow paradigm
are Montage [18], AIRSN [54], LIGO [17], Chimera [3],
and CSTEM [20], including applications in chemistry,
biology, physics, and computer science.



Considering grids as shared environments, they will
eventually need to handle more than one workflow at
the same time, as well as execute tasks proceeding from
users outside the grid. With that, it urges the develop-
ment of grid middlewares to efficiently enact more than
one workflow in the available resources taking into ac-
count the external load in those resources. As an im-
portant part of the grid middleware, the scheduler also
presents the necessity of handling multiple workflows.
Despite many work has been done in workflow schedu-
ling, the scheduling of multiple workflows stills being
an open problem, and only initial studies exist in the
literature [53,6]. The improvement of the execution of
multiple workflows can speed up the result arrival when
processes are submitted to the grid, contributing to the
e-Science development.

The most common objective of a workflow sche-
duling algorithm is to minimize the schedule length
(makespan). The schedule length is directly responsible
for the execution time of the workflow. When multiple
workflows share the same execution environment, be-
sides the minimization of the makespan, there are con-
flicts which must be observed and tackled to guaran-
tee the system efficiency. For example, how to schedule
workflows such that no one will be allocated on the re-
sources with disadvantage when compared to the other
ones in terms of execution time. If there are multiple
workflows to be scheduled and the algorithm considers
only one at a time, the first one considered will be in
advantage, thus its makespan will be minimized by a
greater amount than the makespan of the last workflow
to be scheduled. Thus, a scheduling algorithm should
consider fairness to share the resources equally among
the arriving workflows.

As we consider fairness and makespan two impor-
tant issues when scheduling multiple workflows, in this
paper we focus on the scheduling of multiple workflows
in grids aiming at the minimization of the schedule
length and maximization of fairness among processes.
We describe four different approaches to schedule mul-
tiple workflows and analyze how each strategy impacts
on the schedule length and on fairness when schedu-
ling up to ten workflows at the same time. In addition
to this, we evaluated how each algorithm performs in
the grid shared environment by performing execution
simulations when grid resources have external load.

The rest of the paper is organized as follows. A
background on workflow representation and the schedu-
ling problem are presented in Section 2. Related works
are introduced in Section 3, while the multiple work-
flow scheduling strategies are described in Section 4.
Simulation results, including evaluation of the initial
makespan given by each algorithm and the execution

time on a shared environment, are show in Section 5.
Section 6 presents the concluding remarks as well as
future directions.

2 Background

In this section we introduce some basic concepts needed
for the understanding of this article. We first introduce
how workflows are represented, then we present the con-
sidered grid architecture, and we finish the necessary
background by introducing the task scheduling prob-
lem.

2.1 Workflow representation

The workflow paradigm has become commonly used
to represent scientific applications in recent years [45].
Many workflow programming languages exist in the lit-
erature, and the workflow represented by those lan-
guages can be translated into a directed acyclic graph
(DAG) in general. Workflow programming languages
as SwiftScript [55] and Xavantes [13] may have loop
and conditional structures that prevent the scheduler
to know beforehand which (or how many) tasks will be
executed. However, the static part of the workflow is
still representable by a DAG, while the dynamic part
of the workflow can be translated to compose the DAG
at real-time, and then scheduled using the same sche-
duling algorithm. A middleware support to this kind of
real-time translation would be necessary for dynamic
DAGs to be scheduled by the algorithms presented in
this paper.

In the workflow scheduling algorithms research, a
DAG is the standard manner to represent a workflow,
usually translated from a workflow programming lan-
guage. In this representation, a process (workflow pro-
cess) of dependent tasks is a DAG G = (V, E), where:

V is the set of n, = |V| tasks, and t; € V repre-
sents one atomic task that must be executed on a
resource.

E is the set of n. = |E| directed edges, and ¢; ; € E
represents a data dependency between ¢; and t;.

Labels on nodes represent computation costs and la-
bels on edges represent communication costs. If Je; ; €
E, a task t; can only start its execution after ¢; finishes
and sends all the necessary data to ¢;. An example of
DAG is shown in Figure 1, where task 10 can start its
execution only after tasks 7 and 8 finish and send the
data to task 10. Note that, for example, tasks 7 and 8
are independent and can execute in parallel. The words
process, workflow, and DAG, within this article, refer to



the process composed of dependent tasks and are used
interchangeably.
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Fig. 1 Example of DAG representing a process.

The first node of the DAG is called entry task (tentry)
and the last node is called exit task (fezit). We assume
that all DAGs have only one entry and one exit task.
If a DAG has more than one entry or more than one
exit, one entry task and one exit task, both with zero
cost, are added to the graph, along with costless edges
connecting them to the original entry/exit tasks.

2.2 The grid architecture

A computational grid is composed of heterogeneous re-
sources connected by heterogeneous links. We consider
that groups of resources compose the grid, and an ex-
ample of the grid infrastructure architecture considered
is shown in Figure 2. In this example, the thickness of
the edges represents bandwidth, diameter of computa-
tional resources represents processing power, and gray
tones of computer resources represent different operat-
ing systems. Therefore, the infrastructure is composed
of heterogeneous resources arranged in groups, where
each group can be a LAN or a cluster, for instance.

Each group is autonomous and each resource in a
group is also autonomous. Additionally, a group may
have only one resource, characterizing a personal com-
puter or any kind of resource that is somehow inde-
pendent. Groups are connected by heterogeneous links.
Each resource has a computational power associated,
and each link has a bandwidth capacity. Resources in-
side the same group are considered to have links with
the same bandwidth between them, inspired in the com-
mon group architecture encountered in laboratories and
computational clusters.

Additionally, the grid can be arranged in different
manners, depending on the middleware being used. For
instance, the middleware can create pools of autonomous
groups coordinated by an upper level entity. In this
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Fig. 2 Example of the computational grid infrastructure consid-
ered.

case, a meta-scheduler in the top level would be re-
sponsible for the distribution of the requisitions among
pools, and a low level scheduler would be responsible
to distribute the tasks inside the pool. With this the
system can become more scalable while mantaining the
group architecture shown above. The algorithms pre-
sented here can be used in the low level, to schedule
the tasks to the resources available.

We consider that each resource has a queue of tasks
to be executed, and there is no simultaneous execution
of tasks managed by the grid in the same resource. The
scheduler inserts tasks on this queue, and once a task is
started, it executes alone in the resource until it finishes.
In this context, the word alone means that the task does
not share the resource with another task submitted to
the grid. However, in such a dynamic environment, it
may share the resource with tasks not managed by the
grid middleware, characterizing an external load.

2.3 The task scheduling problem

The task scheduling problem consists in selecting one
resource for each task in the DAG, which represents the
workflow, optimizing an objective function. This prob-
lem was extensively studied in homogeneous systems
[32,37,50]. With the heterogeneous systems emergence,
the scheduling of task graphs has been studied taking
into consideration the heterogeneity of processors and
communication links [8,31,48]. Moreover, the objective
function can have one or more criteria to be optimized,
such as the schedule length (makespan), communica-
tion costs, resource utilization, fairness, and so forth.



Scheduling algorithms can be classified as sched-
ulers for independent tasks and schedulers for depen-
dent tasks. The scheduling of independent tasks does
not need to tackle with tasks communication costs and
dependencies, thus each task can be scheduled inde-
pendently. We are interested in the scheduling of de-
pendent tasks, since workflows are composed of tasks
with dependencies. In this type of scheduling, the al-
gorithm must take into consideration the communica-
tion costs proceeding from data dependencies between
tasks. These costs are implicit when tasks are sent to
execution over a set of distributed resources, with the
heterogeneity of links playing an important role in this
aspect.

Scheduling algorithms can also be classified as static
schedulers and dynamic schedulers. Static schedulers
schedule all tasks using the information initially avail-
able about the resources, while dynamic schedulers may
schedule tasks in turns, updating the information about
resources at each scheduling turn. It is important to
note that static scheduling algorithms are useful to the
development of dynamic schedulers, which can use the
static scheduler to schedule parts of the workflow in
turns. In that sense, we consider that a good static
scheduler is the starting point for a good dynamic sched-
uler. In this work we deal with static schedulers for de-
pendent tasks.

Given the NP-Completeness of the scheduling prob-
lem, some techniques are used to try to approximate
the optimal solution using algorithms with polynomial
time complexity. Some techniques and their character-
istics are listed below.

- Heuristics: can have low complexity and fast execu-
tion, but provide no guarantee related to the solu-
tion quality.

- Meta-heuristics: execution time depends on the stop
condition (usually the number of iterations) imposed
by the programmer. To achieve good quality solu-
tions the execution time is usually higher than that
of heuristics. Also provide no guarantee related to
the solution quality: local optima is frequently the
final solution.

- Linear programming: execution time and solution
quality depend on relaxing restrictions and reducing
the number of variables.

- Approximation algorithms: hard to obtain low com-
plexity approximation algorithms for general prob-
lems, but they provide guarantee related to the so-
lution quality, giving bounds from the optimal solu-
tion. More general the problem, harder to obtain a
satisfactory approximation.

The approach most commonly found in the litera-
ture of DAG scheduling is the use of heuristics, which
can combine good results in general and low complex-
ity. List scheduling, clustering and task duplication are
well-known DAG scheduling techniques for both homo-
geneous and heterogeneous systems. Scheduling heuris-
tics can be classified in three categories, according to
the technique used:

List scheduling is a priority-based technique. First,
each node of the graph receives a priority level. While
there are unscheduled nodes (or tasks), the highest-
priority ready task is selected (task selection phase) and
scheduled on a processor which minimizes a pre-defined
cost function (processor selection phase).

Clustering is a two-phase technique. In the first
phase, called clustering phase, nodes are arranged in
groups of tasks (clusters), aiming at reducing communi-
cation between nodes. In the second phase, called map-
ping phase, each cluster is assigned to an available re-
source according to the objective function. Thus, tasks
which are in the same cluster are scheduled on the same
processor.

Task duplication is a technique where a task can
be duplicated, i.e., scheduled on more than one resource,
hence executed more than once. For example, the task
being scheduled may be duplicated to improve depend-
ability, and the instance which finishes first sends the
result to its successors.

In order to schedule the workflow tasks, in this work
we use the Path Clustering Heuristic (PCH) [7], which
combines the clustering and list scheduling techniques.

When scheduling multiple DAGs at the same time
on the same set of resources, it is important to dis-
tribute the tasks on the resources in a way that the
processing capacities are fairly shared among the work-
flows. This way, no workflow may have advantage in
the execution, considering that all workflows have the
same priority. In this article we study the scheduling of
multiple workflows aiming at the minimization of the
workflows’ execution time and the maximization of fair-
ness.

3 Related work

A computational grid is a heterogeneous, dynamic and
widely distributed system. These characteristics bring
to the grids some peculiarities when compared to dedi-
cated systems. The study of inherent characteristics of
grids, including task scheduling on grids, is receiving
substantial attention nowadays [13,29,24,14,52,28,10,
34,42,11,26,46,51,21,43].

Task scheduling is a largely studied topic [41]. It
is an NP-Complete problem, thus its optimization ver-



sion is NP-Hard. Therefore, most efforts in scheduling
algorithms are concentrated on heuristics and meta-
heuristics [22,35,15,30]. There are some works which
use approximation algorithms [40,27] and combinatorics
approaches [5]. The task scheduling has been studied in
homogeneous systems [32,37,50,23]. With the develop-
ment of heterogeneous systems and the grid, it has been
necessary to consider the heterogeneity in processing
power and bandwidth [1,8,19,16,31,4,48,38,44].

The Heterogeneous Earliest Finish Time (HEFT)
[48] is a well known scheduling heuristic for single DAGs
in heterogeneous systems which uses the list schedu-
ling technique. First, HEFT computes the rank, value
for each task, traversing the graph backwards. The un-
scheduled task with the highest rank, value is sched-
uled on the processor that gives the smallest estimated
finish time for the task. HEFT looks for idle time slots
in the current schedule when scheduling a task. The
Critical Path on a Processor (CPOP) [48] algorithm is
similar to HEFT. The main difference is that all nodes
on the DAG’s critical path are scheduled on the same
processor. HEFT and CPOP can give good results in
non shared environments where DAGs are not executed
at the same time.

Condor [39] is a well known inter-domain resource
manager which is used in grids through the Condor-G
[46]. The DAG Manager (DAGMan) [26] is the Condor
DAG management system. The DAGMan [26] is actu-
ally a meta-scheduler for DAGs. It receives the DAG
and performs the task selection, sending them indepen-
dently to be scheduled by a lower level scheduler. There-
fore, the scheduler schedules tasks without knowledge
about their dependencies, which may lead to higher
communication costs.

In [42] a case study on dynamic scheduling of work-
flows in grids is presented. A rescheduling strategy is
proposed, where a new DAG with the tasks that will be
rescheduled is generated at each iteration. After that,
the new generated DAG is scheduled, actually perform-
ing a re-schedule of the original DAG tasks. The re-
scheduling of DAGs can be complementary to the work
presented here, but the re-scheduling of multiple work-
flows has peculiarities, such as inter-process deadlocks
[6], which must be addressed. An initial approach to
re-schedule multiple workflows is presented in [6].

A two level scheduler for wide area networks (WANs)
is proposed in [11]. A top level scheduler selects in which
local area network (LAN) the entire DAG will be ex-
ecuted. There is no mechanism to split the DAG into
more than one LAN, which can lead to higher execution
times. Also, all second level scheduler must reply to the
top level scheduler. Thus, more requisitions means more

data to be transmitted to/from the schedulers, leading
to higher scheduling times.

In [14] the authors propose a scheduling strategy
for the GraDS project, including an approach to sche-
dule workflows and application reschedule. The work-
flow scheduling in the GraDS project uses a strategy of
classifying each resource according to its affinity with
each component of the process, where the lower the clas-
sification, better the resource matches with the compo-
nent of the process. The scheduler puts these informa-
tion in a performance matrix where the element e; ; of
the matrix shows the affinity of the component ¢ of the
process with the resource j. Finally, three heuristics are
run over the matrix to determine the scheduling of each
component.

Workflow scheduling in conjunction with service com-
position in grids are discussed in [52]. An algorithm to
schedule composed services is proposed. The composed
services are modeled as a workflow, and then this work-
flow is scheduled using a list scheduling heuristic.

An approximation algorithm for task scheduling is
presented in [27]. The algorithm uses the resource uti-
lization as the performance criterion, not focusing on
makespan minimization. Since approximation algorithms
are hard to be developed, the authors make some as-
sumptions to make the problem more specific, like con-
sidering that all tasks of the workflow have the same
weight.

Although there exist many works dealing with work-
flow scheduling in grids [51], the multiple workflow sche-
duling is not receiving the deserved attention. Grids are
shared environments and will eventually process more
than one workflow at the same time. In [53] the au-
thors show an initial analysis on the behavior of mul-
tiple workflow scheduling strategies for heterogeneous
static systems. How to schedule such processes taking
into account their execution time, scalability, and fair-
ness considering the performance degradation of grid
resources is necessary, which is the focus of this article.

4 Multiple workflow scheduling

The starting point in the scheduling of multiple work-
flows is to decide if the DAGs will be scheduled inde-
pendently or if they will be combined in a single DAG
and scheduled after that. To schedule more than one
DAG we can adopt three strategies, in general:

— Schedule the DAGs independently, one after another.

— Schedule the DAGs independently in turns, inter-
leaving parts of each DAG being scheduled.

— Merge the DAGs into a single one, and schedule this
resulting DAG.



To schedule multiple workflows we assume that, at
a given time, we have tasks of N workflows to be sched-
uled. Note that this does not necessarily mean that we
need to schedule all tasks of all workflows at the start-
ing time of the scheduling work. When one or more
workflows arrive we consider all non-executed tasks of
workflows that arrived before. If we only consider work-
flows that just arrived, we would not take advantadge of
the communication times left by the workflows already
scheduled but not executed yet. On the other hand, if
we wait for multiple workflows to arrive, this may de-
lay the execution of the first workflow. Thus, when a
workflow arrives, we consider the non-executed tasks
of the workflows that arrived before as workflows to be
re-scheduled. This way, the new workflow is mixed with
the workflows already scheduled to take advantadge of
their communication times. Which tasks and workflows
would be considered for re-scheduling is defined by the
middleware, which may decide it based on how much
time is left to each workflow to finish, for instance.

In this section we outline four different algorithms
to schedule multiple workflows:

— Sequential algorithm: schedules one DAG after
another on the available resources. One DAG can
only be scheduled to a resource after all tasks al-
ready scheduled on that resource. This algorithm
uses the first strategy.

— Gap search algorithm: also uses the first strat-
egy, scheduling DAGs independently. However, it
searches for spaces between tasks already scheduled,
thus a task from a DAG being scheduled can be ex-
ecuted before tasks already scheduled given that it
does not interfere in their starting time.

— Interleave algorithm: uses the second strategy.
The algorithm schedules pieces of each DAG in turns,
interleaving their tasks in the schedule of the avail-
able resources.

— Group DAGs algorithm: uses the third strategy.
Before scheduling the DAGs, the algorithm merge
them into a single DAG. This sinlge DAG is sched-
uled, actually performing the scheduling of all DAGs
that compose it.

In order to implement and evaluate these schedu-
ling approaches, we must define a scheduling algorithm
which prioritizes and selects the tasks to be scheduled,
and also select the resources where these tasks will run.
In this work, we used a modified version of the Path
Clustering Heuristic (PCH) [6] to do this job, which is
explained in the next section.

4.1 The PCH scheduling algorithm

Before describing the four strategies to schedule multi-
ple workflows, we show the heuristic used by these four
strategies to schedule the DAGs.

The Path Clustering Heuristic is a DAG schedu-
ling heuristic which uses the clustering technique to
generate groups (clusters) of tasks and the list sche-
duling technique to select tasks and processors. The
PCH groups paths of the DAG and schedule them ini-
tially on the same resource, with the objective of re-
ducing communication costs. This scheduling heuris-
tic has shown good performance when communication
between tasks (communication to computation ratio -
CCR) is medium or high [7]. Workflows with such com-
munication characteristics are commonly encountered
in e-Science applications [47,12].

The first step of the PCH algorithm is to compute,
for each task, some attributes based on information
given by the middleware and by the DAG specification.
How this information is gathered and provided is out of
the scope of this work. As most works on DAG schedu-
ling in the literature, we consider that the programming
model and/or the middleware can provide information
about the size of each task to the scheduler. These sizes
can be obtained by application benchmarks, by a his-
tory of executions/input data/data sizes, by estimatives
given by the programmer, or by estimatives according
to past execution and current data sizes.

The task attributes used by the algorithm are de-
fined as follows.

e Weight (Computation Cost):

instructions;

w; =
power,

w; represents the computation cost of the task 7 in
the resource r. Power, is the processing power of the
resource r, in instructions per second.

o Communication Cost:

datai,j
Cr = T
J bandwidth,

ci,;j represents the communication cost between tasks
t and j, using the link between the resources r and t,
where they are scheduled. If r =1t , ¢; ; = 0.

e succ(t;) is the set of immediate successors of the
task t;.



e Priority:

wy, if ¢ is the last task

Pi= 1w+ (cij + Pj),

max otherwise

tjEsucc(n;)

P; is the priority level of the task 7. Note that the
priority attribute P; of a task i represents the largest
path starting in ¢; and ending in ...

e Earliest Start Time:
ifi=1

otherwise

EST(ts,1) = {sze(r.k),
max{Time(ry), ESTpred},
EST(t;,ry) represents the earliest start time of the
task ¢ in resource k. Time(ry) is the time when the
resource k is ready for task execution, and EST)preq =
(ESTy + wp, + cp,i). Note that the EST of ¢;

max
tn€pred(t:)

represents the largest path starting in tenry and ending
in ti.
e Estimated Finish Time:

EFT(tZ-, T}c) _ EST(tZ-, T}c) " instructions;
powerty,

EFT(t;,ry) represents the estimated finish time of
the task ¢ in the resource k.

To calculate the initial values of the attributes, we
assume an homogeneous virtual system with an un-
bounded number of processors where each processor
has the best capacity encountered in the real system
and each link has the best bandwidth encountered in
the real system.

With the initial values of the attributes calculated,
the algorithm starts to create clusters of tasks to begin
the scheduling process. The algorithm uses the priority
attribute to select the first task to be added to the first
cluster (clustering phase). The first node (or task) ¢;
selected to compose a cluster clsy is the unscheduled
node with the highest priority. It is added to clsy, then
the algorithm starts a depth-first search on the DAG
starting on ¢;, selecting ts € succ(t;) with the high-
est Ps + EST, and adding it to clsg, until 5 has a
non scheduled predecessor. The task t; that has a non
scheduled predecessor is not included in the cls;. With
this, clusters always have only tasks with all predeces-
sors already scheduled or to be scheduled along with
them.

For each cluster created, the algorithm selects a re-
source to schedule it. The processor selection step is
performed after each clustering step. Thus, the algo-
rithm creates a cluster, selects a processor to the cre-
ated cluster, recalculates the nodes attributes and re-
peats these steps until all nodes are scheduled.

O Cluster 0
B Cluster 1
O Cluster 2

Fig. 3 Example of scheduling using the modified PCH algo-
rithm.

Hence, after creating each cluster the algorithm must
decide where it will be scheduled. In the processor se-
lection phase, the PCH looks for the resource which
minimizes the EFT of the cluster. Thus, the criterion
to choose the processor to a cluster clsy is to minimize
the EF1¢s,, defined as

EFT.,, = max EFT,
ti€clsy,

After scheduling each cluster, tasks attributes are
recomputed. With this, the algorithm has a new view
of the DAG and tasks priorities. The next tasks to be
selected for the next cluster depends on how the cur-
rent cluster was scheduled, since the ESTs of the tasks
in any path from the current cluster to the exit node
are affected by the new estimated finish time of the
scheduled cluster.

Figure 3 shows an example of clusters created by
PCH and the resulting scheduling. For the sake of sim-
plicity, we consider in this example two resources with
the same processing capacities. First, cluster 0 is cre-
ated, where the depth-first search starts in task 1, going
through tasks 2, 3, 4, 7, and, when it reaches task 9, the
search stops and this task is not added to the cluster.
Then this cluster is scheduled on resource 0. Cluster 1
is composed of tasks 6 and 8, and it is scheduled on
resource 1, which results in the smallest EFT for task
8. Finally, cluster 2, composed of tasks 5, 9, and 10 is
scheduled on resource 0.

The clustering and processor selection steps of PCH,
as presented in this section, are used in the four al-
gorithms for multiple workflow scheduling, which are
presented in the next sections.

4.2 Sequential scheduling

The first and straightforward algorithm to schedule mul-
tiple DAGs is to schedule all DAGs in sequence using
the PCH. This means that, given two DAGs G; and
G, a task t € G5 can only be scheduled on a resource
r after all tasks of G scheduled on r. Thus, the first
available time on each resource after scheduling a DAG



G is the EFT of the last task of G scheduled on it. This
approach is illustrated in Algorithm 1.

Algorithm 1 Sequential scheduling

1: DAGs < Workflows to be scheduled.

2: for all G € DAGs do

3: while there are not scheduled tasks in G do
cls < cluster of G to be scheduled
r < resource selected by PCH for cls

schedule the cluster cls on r
Time(r) <= EFT.s
end while
end for

This is the scheduling mechanism generally used
when scheduling multiple DAGs (naturally, using dif-
ferent heuristics to make the schedule). The DAGs are
scheduled in order of arrival, one after another, thus
the scheduling is triggered by the event of an arrival
of one DAG. Therefore, the scheduler does not modify
the current schedule nor insert tasks of new processes
among the already scheduled ones.

4.3 Gap search scheduling

An alternative to scheduling the DAGs sequentially, but
yet scheduling one by one, is to use a gap search ap-
proach [6]. This method takes advantage of the gaps left
between scheduled tasks, which are result of communi-
cation dependencies. These idle periods can be used to
process tasks from other workflows, potentially reduc-
ing the overall makespan of all DAGs.

When the multiple workflow scheduling with gap
search starts, if there are no other workflows scheduled
in the available resources, there is no need to look for
gaps in the schedule. On the other hand, if there are
tasks currently assigned to one or more resources, the
scheduling uses the gap searching algorithm to select a
resource for each cluster.

Let S, = {ti1,t2,...,tx} be the schedule (queue) of
the resource r. We define the size of a cluster ¢ on S,
as follows:

sizecr = EFT(ty,, 1) — EST(t{,r).

In other words, the size of a cluster ¢ on a given
resource r is the difference between the EFT of the last
task of the cluster and the EST of the first task of the
cluster on r. The gap for the cluster ¢ = {t§,5,...,t5,}
in the resource r is defined as:

Jer = t%igr 2

such that (EST(tjy1,7) — EFT(t;,7)) X s-margin >
sizec, and EST (tj41,7) — EST(t5,7) > sizec,.

The gap search has the objective of inserting an-
other DAG in the current schedule without interfer-
ing or delaying the already scheduled DAGs. In the
dynamic grid environment, the performance of the re-
sources may vary during the process execution. The se-
curity margin, s.margin, is a space left in the found
gap to give room for possible losses of performance in
the resources. With this, if the resource performance is
worse than expected, the cluster inserted in the gap can
execute with minor interference in the tasks previously
scheduled on that resource. The security margin is rel-
ative to the size of the gap. For example, if we want
10% of security margin, then s_margin = 0.9.

When the algorithm searches for gaps for a cluster
¢, it may encounter a gap which leads to a deadlock
among tasks of the same workflow. This occurs if there
exists a task t4 which is on the path from any task in
¢ to the exit task such that ¢4 is after the gap found in
the considered resource. To avoid deadlocks, one verifi-
cation is made when a gap is found. To accomplish this,
after composing each cluster, the algorithm generates a
set of dependent tasks for each task in the cluster. The
set of dependent tasks of a task ¢;, Dy,, is composed
of all tasks in any path from ¢; to teyi (the last task
of the process). Before assigning a gap to a cluster ¢,
the algorithm verifies if there are no tasks ahead of the
gap in the schedule which t¢, (the last task of the clus-
ter) depends on. If there is such a task, the gap cannot
be assigned to that cluster, and the algorithm proceeds
with the search. The gap searching algorithm is shown
in Algorithm 2.

Algorithm 2 receives as input the cluster and the
schedule of the resource currently being considered for
the gap search. In the beginning (line 1), the algorithm
computes the size of the cluster ¢ being scheduled. After
that, it checks how many tasks already exist in the sche-
dule of 7 (line 2). In line 3 it verifies if the cluster being
scheduled fits before the first task scheduled on the re-
source. This may occur if the first task on the resource’s
schedule has EST > 0 and if ¢ is smaller than this gap
in the beginning of the schedule, considering the secu-
rity margin. If the gap is sufficiently big to contain ¢,
the algorithm verifies if there is room for the cluster
discounting its EST, since we do not want to interfere
on the execution of tasks already in the schedule. At
the same time, in line 5, the algorithm verifies if insert-
ing the cluster in the gap found results in a deadlock. If
there is no room for the cluster in the beginning of the
schedule or if there is deadlock, the algorithm iterates
over the tasks on the schedule (line 10), looking for a
gap between the task on the current position, #;, and



Algorithm 2 search_gap(S;, ¢)

Input: S;: current schedule of resource Sy
c: cluster to be scheduled

1: sizec,r <= EFT(tS,,r) — EST(t{,r)

2: k < number of tasks in S,

3. if (EST(t1,7) X s_margin) > sizec,r then

4 Compute ESTs and EFTs for t$ € con the current gap
5: Dy¢ <= tasks ahead which {7, depends on

6:  if (EST(t1,7)—EST(t§,r) > sizec,r) and Dyc = () then
7 ge,r = 0; return g¢

8

9

0

1

: end if
: end if
10: fori=1to k—1do
1 if (EST(tiy1,7) — EFT(t;,1)) X s-margin) > sizec,r
then
12: Compute ESTs and EFTs on current gap Vt; €c
13: D¢ < tasks ahead which ¢7, depends on
14: if (EST(tiy1,7) — EST(t,7) > sizec,r) and Die =0
then
15: ge,r = 1; return ge r
16: end if
17: end if
18: end for

19: ge,r = k; return gc, //no gap found

the next task, ¢;+1 (lines 11 to 17). If no gaps are found,
the algorithm returns the last position on the schedule
of r (line 19).

The gap search is done in the processor selection
phase for every resource available (Algorithm 3), using
the clusters generated by PCH. The algorithm searches
for gaps on every resource, and it inserts the current
cluster ¢ on the position returned by the gap searching
algorithm (lines 2 and 3). The insertion is done after
the task on the stated position, starting with ¢; € S, in
position 1. In line 4 the algorithm computes the EFT of
the cluster c. Finally, the algorithm returns the resource
with the smallest EFT for ¢ (line 6).

Algorithm 3 get_best_resource(c)

Input: c: cluster to be scheduled

1: for all r in resources do

2 ge,r < search_gap(Sr, c)

3 schedule <= Insert cluster on Sy in position ge,r
4:  time, < calculate_EFT(¢S,);

5: end for

6: return resource r with the smallest time,

An example is shown in Figure 4, where numbers
next to nodes and edges are computation and com-
munication costs, respectively. Two processes, PO =
{t1,...,t10} and P1 = {ta,...,tr}, are scheduled with
gap searching. For the sake of simplicity, the example
considers that resources R0 and R1 have same perfor-
mance. The first cluster of PO scheduled is clsg,pg =
{t1,t2,t3,ta,t7}. Then cls1 po = {te,ts} is scheduled.

@ Security Margins

7

Fig. 4 Two DAGs and the resulting schedule when using the
gap searching algorithm.

Finally, clse po = {ts5,%9,t10} is scheduled. After sche-
duling PO, P1 is scheduled, starting with clso,p1 =
{ta,ts,tp} on the gap found before tg. Then, cls; p1 =
{tc,tp,tr} is scheduled on the gap between t5 and tg.

In the example, the cluster cls1 p1 = {tc,tg,tr}
can be scheduled on the gap between t5 and tg with
a security margin of at most 20%, considering that
EST(tc, RO) = 46, EFT (tp, R0) = 65, EFT(t5, R0) =
46, and EST (tg, R0) = 70. More precisely, this gap can
be used if s.margin > 32, since size({tc, tg, tr}, RO) =
19 and EST (ty, R0) — EFT(t5, R0) = 24.

4.4 Interleave

A round robin algorithm is another option to schedule
multiple DAGs. In this approach, a task (or group of
tasks) of each DAG is selected to be scheduled at each
round. After all DAGs have their group of tasks sched-
uled, a new group is selected and another round of
scheduling starts. This way, the DAGs are scheduled
in turns, and their tasks are interleaved in the avail-
able resources. The process interleaving can prioritize
or not the already scheduled processes. This prioriti-
zation can be made considering process characteristics,
such as tasks weights, communication costs, and size of
the critical path.

In the multiple process scheduling scenario, as the
processes arrive to be scheduled, the task selection step
considers the not scheduled tasks of already scheduled
processes and all tasks of the arriving processes. To per-
form this selection, this algorithm considers that the
first workflow to arrive will be the first to have tasks
selected to be scheduled, then the second process has
its tasks selected, and so on. In short, the algorithm
selects a cluster of tasks of each process in the order
they arrived, scheduling each selected cluster until all
processes have all tasks scheduled. These clusters are
generated using PCH, as explained before. During the
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scheduling by interleaving clusters, the algorithm also
performs the gap search, trying to make a better use of
the available resources. With the process interleaving,
the spaces in the schedule originated by data transmis-
sion will be used to process other workflows. Algorithm
4, which is executed when a DAG G arrives to be sched-
uled, shows this procedure.

Algorithm 4 Interleaving overview

1: CLSqueue <= non executed clusters of scheduled processes

2: DAGs < processes with tasks in CLSgycue-

3: DAGs < {DAGs} U{G}.

4: assign priorities to each graph in DAGs according to a pri-
ority policy.

: while there are unscheduled tasks do

G < select next DAG with the highest priority

7 schedule N¢ clusters of G using the gap search, being N

in accordance with the priority policy.
8: end while

[l

In the first line, Algorithm 4 collects the clusters
which were not sent to execution yet, while in line 2 it
creates the group DAGSs, which contains the processes
where these clusters are part of. The process G, which is
the last process that arrived to be scheduled, is added
to the DAGs group in line 3. In line 4, a pre-defined
priority policy assigns to each process a priority level
to be used when selecting processes and deciding how
many clusters of each process will be scheduled. The it-
eration between lines 5 and 8 performs the scheduling,
selecting the graphs in priority order (line 6) and sche-
dule the clusters of the selected DAG(line 7), inserting
the cluster in the queue of the resource which results in
the smaller EST for the successor of its last task.

The priority policy modifies the order that the pro-
cesses are scheduled and the number of clusters sched-
uled for each process in each iteration of the algorithm.
The value Ng used in line 7 represents the number of
clusters of the current process. This value is defined
in the priority policy, and each DAG has its own Ng.
Additionally, Ng may vary during the scheduling pro-
cess. For example, a graph which has executed most of
its tasks may have its priority increased by the prior-
ity policy. Moreover, the priority policy may define if
a DAG which is already scheduled can be rescheduled
when new processes arrive, or the maximum number of
workflows that can be rescheduled when a new process
arrive.

In the experiments performed in this work, we used
the FCFS (First Come, First Served) priority, with Ng =
1V G € DAGSs. Thus, the scheduling of the clusters is
performed in a round robin manner, starting in the first
DAG that arrived and ending when there are no more
unscheduled clusters. Note that the larger the cluster,

15 15
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Fig. 5 Example of scheduling using process interleaving.

the higher the number of scheduled tasks of the DAG.
With this, the communication between tasks on the
same cluster is suppressed, and small clusters are inter-
leaved with clusters from other processes, hence having
their communication times used to process tasks from
other workflows.

Figure 5 shows an example of scheduling using the
interleaving algorithm, where Py = {t1,...,t10}, P =
{ta,...,tr}, and P, = {t,,...,t;}, with P» being an-
other instance of P;. To make the example simpler, we
assumed that both resources have the same processing
power. The first cluster to be scheduled is clsi po =
{1,2,3,4,7}. Then, clusters cls; p1 = {A,B,D} and
cls1,pa = {a,b,d} are scheduled. Back to the first pro-
cess, clsg po = {6, 8} is scheduled. After that, clusters
clso,p1 = {C,E,F} and clsa,p2 = {c,e, f} are sched-
uled. Finally, cluster cls3 po = {5,9,10} is scheduled.
Note that there is only one gap left between all tasks,
consequently resulting in a small idle time in the re-
sources.

While the gap searching algorithm does not inter-
fere in the already scheduled processes, the interleav-
ing allows mechanisms to prioritize workflows accord-
ing to specific policies. For example, a process P, with
high cost data dependencies may have a cluster sched-
uled first, leaving its communication gaps to be used by
other process in the interleaving. Or, if a DAG has only
few clusters left to be scheduled, it can have its priority
increased to have its execution finished soon.

4.5 Group DAGs

Besides the strategy of scheduling multiple workflows
considering them as separate entities, another approach
is to merge all DAGs into a single one by creating
one entry and one exit node and connecting them to
all DAGs. The new entry node has cost 0, as well as
its edges, which are connected to each entry node of
the DAGs being scheduled. Similarly, the new single
exit node has cost 0, and it has edges coming from all
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Fig. 6 Example of grouping two DAGs into a single one by
adding an entry and an exit node.

exit nodes of the DAGs being scheduled. Thus, a single
DAG is created, and then scheduled onto the resources
available. Consider two processes, PO = {t1,...,ts} and
Pl ={ta,...,tr}. The resulting DAG after merging P0
and P1 is shown in Figure 6, where task tg is the new
entry node with cost 0 and task ¢y is the new exit node
with cost 0. The added edges also have cost 0, while the
existing tasks and edges remain with their original cost.

Algorithm 5 shows the group scheduling approach.

Algorithm 5 Group DAGs

1: DAGs < workflows to be scheduled.

2: create DAG Ggroup

3: insert new costless tasks tentry and tegit in Ggroup-
4: for all G € DAGs do

5 create costless edge (tentry,tq,)

6: create costless edge (tezit,te,, )
7
8
9
0
1

: end for
: while there are not scheduled tasks in Ggroup do

cls <= cluster of Ggroup to be scheduled

schedule the cluster cls in the resource selected by PCH
: end while

The input of the algorithm is a group of workflows to
be scheduled (DAGSs). The first step of the algorithm
is to create a new DAG (G oup), which will be the
DAG composed of all workflows in DAGs. To accom-
plish this, the algorithm inserts the costless tasks tepry
and tegi; to this new DAG (line 3). After that, in the
loop within lines 4 and 7, each entry node of each ex-
isting DAG is connected to the just created entry node
tentry. On the other hand, each exit node of the existing
DAGs is connected to tegir. After creating Ggroup, the
algorithm proceeds with the scheduling using the PCH.

5 Simulation results

We evaluated the four described strategies for sche-
duling multiple workflows. The simulations focused on
how these strategies perform when scheduling up to 10
workflows (or processes), named Py to Py, on a grid
environment considering the number of resources and

the execution in conjunction with external load (i.e.,
user processes not managed by the grid). Thus, we an-
alyzed the algorithms performance with variations in
both the number of workflows and the number of re-
sources, which are expected to vary in a real grid envi-
ronment. Such information is important to evaluate the
behaviour of each strategy in what concerns the load
dynamicity and scalability. The results are split into
initial schedule results (makespan after the scheduling
is finished) and exzecution time results (makespan after
execution with external load).

The simulations were run considering the group to-
pology described in Section 2. The number of resources
in each group was randomly taken between 1 and 10,
and we show the simulation results for 2, 10 and 25
groups. Each resource had its processing capacity ran-
domly taken from the interval (50,200). Link band-
widths were taken from the interval (40,80) for pairs
of resources inside the same group, and from the in-
terval (5,40) for pairs of resources of different groups.
This is to ensure that bandwidth between resources of
different groups has never been larger than the band-
width of the same resources inside their groups. Inside
each group, all nodes communicate directly, with each
group being a fully connected graph. We show simula-
tions using the PCH algorithm and some simulations
using the HEFT algorithm [48].

We evaluated how the algorithms performed in what
concerns the makespan and slowdown. The makespan
allows the evaluation of which algorithm results in bet-
ter schedules in the sense of the duration of the work-
flows execution, while the slowdown metric allows the
comparison of the fairness in the resulting schedule. The
metrics used are the average makespan, the slowdown,
and the overall makespan, defined as follows:

Average makespan (averageys, ): average makespan
for the first IV processes after scheduling all the 10 pro-
cesses according to the process quantity /N considered,
1 < N <10, defined as:

N-1

averagens, = N E makespanp,
k=0

Note that the average makespan considers the aver-
age makespan over the first NV workflows scheduled, but
with all workflows already scheduled. For example, for
N = 3 we consider the average makespan for processes
1, 2 and 3 with all 10 workflows scheduled.

Slowdown: Slowdown of each process after scheduling
all the 10 workflows. The slowdown of a process Py
means how many times the resulting makespan of Py, is
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larger than the makespan of P in its initial schedule if
it was scheduled alone on the same set of resources.

Overall makespan (overallys): The overall makespan
of the schedule, calculated with all processes already
scheduled, is defined as:

overally = mgi( makespanp,

Pre Gs

For the overall makespan metric we show results
with 2,3,4,5,6,7,8,9,10, 15, and 25 groups.

Sixteen DAGs were taken for the simulations, where
fifteen were randomly generated with number of nodes
varying from 7 to 82, and the other one was a CSTEM
DAG (Coupled Structural Thermal Electromagnetic A-
nalysis and Tailoring of Graded Composite Structures).
The computation cost of each task was randomly taken
from the interval (5000, 11000), while the communica-
tion costs where taken from the interval (500, 1100). For
the CSTEM DAG, the weights were randomly gener-
ated but with values proportional to those encountered
in the original workflow [20]. All random numbers were
taken from a uniform distribution. The results show av-
erages over 500 executions and show a confidence inter-
val of 95%. Additionally, the gap searching algorithm
was run with s_margin = 0.95. The processes are num-
bered in order of arrival, i.e., Py is the first process
received by the scheduler, while Py is the last one.

5.1 Initial schedule

This section shows the results for the initial schedule,
which is the schedule provided by the algorithms con-
sidering the attributes computed using the capacities
of resources and links as well as the costs of tasks and
dependencies received by the scheduler in conjunction
with the DAG. Therefore, the initial schedule results do
not consider the execution of the workflow tasks, but
only the makespan given by the scheduler initially.

Figures 7, 8, and 9 show the average s, for the first
N processes, N ranging from 1 to 10.

For 2 groups the gap searching algorithm results in
lower average initial schedule when considering N from
2 to 10. The interleaving algorithm performs better
than the group algorithm for all N, and it approximates
the results of the gap search as higher is the number of
processes considered. We can observe that the sequen-
tial and gap search algorithms makespans increase as
later the process was scheduled, with the gap search al-
gorithm performing better than the sequential one. On
the other hand, the interleaving and the grouping al-
gorithms result in more balanced makespans, showing
more fair behavior.
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Fig. 7 Average makespan (averageM ) according to the num-
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Fig. 9 Average makespan (averageM ) according to the num-
ber of processes in the initial schedule with 25 groups of resources.

For 10 groups (Figure 8) the interleaving algorithm
results in lower averages than the gap search if we con-
sider 7 or more processes, and the interleaving stills
performing better than the group approach.

The tendency continues for 25 groups (Figure 9).
The interleaving algorithm starts to give better ma-
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Fig. 11 Slowdown of each process in the initial schedule with 10
groups of resources.

kespans with more than 4 processes. Also, the differ-
ence among the results of the algorithms is smaller,
since there are more resources to spread the processes
tasks, thus the sequential and gap search algorithms
achieve makespans which are closer to the interleave
makespans.

The slowdown results for each process with 2, 10,
and 25 groups are shown respectively in Figures 10, 11,
and 12.

For 2 groups of resources there are noticeable varia-
tions in the slowdown of different processes for all algo-
rithms, except for the interleave approach, which main-
tains the slowdown of all processes in the same level.
This means that the interleaving algorithm can result
in a more fair schedule when considering the slowdown
metric.

The same pattern is observed when there are 10
groups of resources. The interleaving algorithm sched-
ules all processes in a manner that they have really
close slowdown values. In this scenario, the grouping
approach results in slowdowns closer to each other, but
higher than that ones given by the process interleave.
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Fig. 12 Slowdown of each process in the initial schedule with 25
groups of resources.

As for 2 and 10 groups, for 25 groups the inter-
leaving algorithm results in uniform slowdown for all
processes, and it remains close to 1.0, i.e., a low slow-
down. The grouping algorithm also results in uniform
slowdowns, but, again, higher than that ones given by
the interleaving approach. To summarize the slowdown
results, we show the Jain’s fairness index [36] for the
initial schedule in Table 1, where the Jain’s fairness in-
dex for a set of values X = {x1, 2, ...,z } is defined as
follows:

L)
d n Z?:l IZQ

The Jain’s fairness index ranges from % (unfair) to 1
(fair). We can confirm that the interleave and group al-
gorithms are the more fair ones, with the interleave be-
ing slightly more fair. Additionally, the interleave is the
algorithm which shows less variation in the Jain’s fair-
ness index with the variation on the number of groups.

Table 1 Jain’s fairness index for the average slowdowns in the
initial schedule

| Number of groups |

Algorithm | 2 | 10 | 25 |

Sequential | 0.778268 | 0.881259 | 0.964416 |

Gap search | 0.800188 | 0.934998 | 0.986881 |

Interleave | 0.998989 | 0.999576 | 0.999722 |

Group | 0.993800 | 0.997085 | 0.999609 |

Figure 13 shows the average overall makespan (the
average maximum makespan over all processes) for 2,
10, and 25 groups. We can observe that the interleave
and group algorithms result in smaller overall sched-
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Fig. 13 Maximum makespan over all processes in the initial
schedule.

ules than the ones provided by the sequential and gap
searching algorithms.

The group and interleave approaches result in equiv-
alent overall makespans, but, as shown in the slowdown
results, the interleaving algorithm results in more fair
schedules. This is because the group algorithm treats
all DAGs as a single one, thus smaller processes, which
have smaller paths, tend to be scheduled later because
their tasks receive low priorities when calculating the
tasks attributes. This behavior yields on higher slow-
down for such processes, since when scheduled alone
they have low makespans. This does not happen with
the interleaving algorithm because tasks from smaller
processes are taken in the same frequency as that from
larger processes. Therefore, the scheduling of smaller
processes finishes before, while larger processes remain
being scheduled and interleaved. This leads to a more
fair behavior, resulting in similar slowdowns for both
small and big workflows. Furthermore, the interleave
algorithm has shown to be scalable, and it still result
in good schedules with higher number of groups.

5.2 Execution results

Besides scalability, another important point to evaluate
when dealing with grid computing algorithms is how
they behave when external load exists. In this section
we evaluate the same metrics used hitherto, but for a
simulated execution in a shared environment. To simu-
late external load, we assumed that external jobs arrival
follows a Poisson distribution, while each job lifetime is
2.0/z [2], where z is a random number between 0 and
1. This follows process behavior observed in real-life
applications in [33].

Figures 14, 15, and 16 show the resulting execution
time after the simulation with load independent from
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Fig. 14 Average makespan (averageMy) according to the num-
ber of processes after execution with 2 groups of resources.

the grid. In general, we can observe the same pattern
as that encountered in the initial schedule results.

We can observe a better performance of the sequen-
tial algorithm when compared to the other while there
are few processes. This is because there is less interfer-
ence on processes that arrive early from process sched-
uled after them, and losses of performance can be ab-
sorbed by the gaps in the schedule. For example, when
comparing the sequential and gap searching algorithms
after the execution with 2 groups of resources (Figure
14), there is a difference to the results for the initial
schedule. After the execution, the gap search perfor-
mance remains close to the performance of the sequen-
tial algorithm. This is due to the delay of tasks which
filled the gaps of those processes, which are finishing af-
ter the estimated finish time plus the security margin.
This suggests that in a situation of high external load
with few resources available, the gap searching cannot
take much advantage of the gaps to execute other pro-
cesses.

The same reasoning can be applied to the other al-
gorithms: since there is no free space in the schedule,
the delay in tasks reflects on other tasks because there is
no space to absorb the delays. However, the interleaving
approach remains resulting in lower average makespan
than the other algorithms when multiple processes are
executed, including lower average makespan than the
gap searching when we consider 8 or more processes.

When there are more groups of resources (10 and
25, in Figures 15 and 16), the sequential algorithm
still increases the average makespan less than the other
algorithms when compared to the initial schedule re-
sults. We can also note that the interleaving algorithm
does not maintain its better schedules when there are
more than 4 processes. This is because the interleav-
ing can use the best resources to execute more tasks,
since it leaves less gaps in the schedule than the other
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ber of processes after execution with 10 groups of resources.
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Fig. 16 Average makespan (averageMy ) according to the num-
ber of processes after execution with 25 groups of resources.

approaches. Therefore, the delays are spread over the
schedule, while in the other algorithms the tasks are
scattered in more resources and a delay in one task has
less impact in tasks of other processes.

The slowdown metric for simulations with 2 to 25
groups are shown in Figures 17, 18, and 19, respectively.
These figures show that the interleaving approach stills
being fair after the execution, also giving lower slow-
down values when compared to the other approaches
for most of the processes.

To summarize the fairness results after the simu-
lation with external load, we show the Jain’s fairness
index for the slowdowns after the execution in Table
2. We observe that the interleave and group algorithms
still show a more fair result, with the Jain’s fairness in-
dex being very close to that observed in the initial sche-
dule (Table 1). On the other hand, the sequential and
gap search show a worsening in the Jain’s index fair-
ness when compared to the initial schedule results. One
explanation to this behavior is that the sequential and
gap search algorithms tend to accumulate tasks from
the same workflows in a smaller space in the schedule
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Fig. 17 Slowdown of each process after execution with 2 groups
of resources.
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Fig. 19 Slowdown of each process after execution with 25 groups
of resources.

than the other two algorithms. With this, tasks from
the same workflow stay closer in the schedule. There-
fore, load peaks in the resources could potentially harm
more tasks from the same workflow, leaving the sche-
dule more unfair.

Figure 20 shows the maximum overall makespan af-
ter the execution of the workflows. We can observe the
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Table 2 Jain’s fairness index for the average slowdowns after
execution

| Number of groups |

Algorithm | 2 | 10 | 25 |

Sequential | 0.682643 | 0.790583 | 0.921262 |

Gap search | 0.703943 | 0.878235 | 0.976378 |

Interleave | 0.998656 | 0.998800 | 0.999145 |

Group | 0.992068 | 0.997034 | 0.999698 |
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Fig. 20 Maximum makespan over all processes after execution.

same pattern observed before the execution of the work-
flows.

Although there is a difference in terms of absolute
values of makespan, which is inevitable with the exter-
nal load sharing CPU time, in relative terms the execu-
tion results shown only a few variations from the initial
schedule results. This suggests that both the PCH and
the presented strategies are not significantly affected by
the external load, being able to maintain their schedules
as good as they were before the tasks execution.

5.3 Evaluation using HEFT

To have more confidence in the results shown and con-
clusions drawn, we present in this section some evalu-
ations using the HEFT heuristic [48] as the scheduling
algorithm, instead of the PCH. Figure 21 shows the
slowdown results using HEFT as the heuristic for 10
groups of resources in the initial schedule, whiles Fig-
ure 22 shows the slowdown using HEFT for 10 groups
of resources after execution. We can observe the same
pattern shown by the PCH in Figure 11. These results
reinforce the conclusions achieved when using the PCH
heuristic.
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Fig. 21 Slowdown of each process in the initial schedule with 10
groups of resources using the HEFT heuristic.
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Fig. 22 Slowdown of each process after execution with 10 groups
of resources using the HEFT heuristic.

5.4 Discussion

As a general contribution of the presented results, we
are able to conclude from these simulations that the in-
terleaving approach is the best option when there are
more than 4 processes to be scheduled and the number
of resources is not low. When the number of resources
is low (2 groups of resources, in the results shown), the
gap searching resulted in good average makespan, thus
it can be a good choice in this scenario. However, the
gap searching alone seems to be more affected by exter-
nal load than the sequential scheduling, with the later
getting better than the former after the execution when
there are more than 6 processes in 2 groups of resources.
Table 3 gives a summary of the results observed for the
slowdown and average makespan for each algorithm.
Although the sequential scheduling results in worse
average makespans than the other algorithms when we
consider the external load, we can observe that it is the
less affected algorithm, since its averages are propor-
tionally closer to the ones from the other algorithms
than in the initial schedule. This is due to the spaces
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Table 3 Summary of the results.

| Algorithm | Average makespan | Fairness
Sequential | Lower for the first workflows, higher for the later workflows. Less affected | No. The first workflows have lower
by external load because of the gaps left in the schedule. slowdowns.
Gap search Lower for the first workflows, higher for the later workflows. No. The first workflows have lower
Better performance with small number of resources. slowdowns.
Interleave All workflows have similar makespans. Scalable, mantains the good Yes. Results in similar slowdowns.
schedules and fairness with variations in the number of resources. for all workflows.
Group All workflows have similar makespans. Yes. Workflows have slightly
Smaller workflows may be scheduled late, affecting their slowdown. different slowdowns.

available between tasks in the sequential schedule, which
can absorb the delays of tasks.

The four strategies evaluated, namely sequential sche-
duling, interleaving, grouping, and gap searching, shown
assorted behaviors when we look at the makespan of
different number of processes. In the initial schedule re-
sults we can observe that the sequential scheduling pro-
vides total advantage to the first process to be sched-
uled, as the gap searching also does but with better
makespan because it uses communication gaps to exe-
cute tasks from other processes. On the other hand, the
grouping and interleaving approaches result in worse
makespans for the first processes, but with improve-
ments on the makespan of the last processes. On aver-
age, this results in a better use of the resources, since
the overall makespan of interleaving and grouping al-
gorithms are lower than the overall makespan of gap
searching and sequential algorithms. Additionally, the
grouping and interleaving approaches are able to pro-
duce more fair schedules than the other two approaches.
In terms of slowdown, the interleaving approach shown
the best results, achieving lower slowdown in most cases.

6 Conclusion

We presented a study on how four strategies for sche-
duling multiple workflows on grids perform in terms of
schedule length and fairness. This evaluation was made
considering the initial makespan given by each algo-
rithm and the final makespan after executing the work-
flows in a shared grid. The importance of such study on
grids comes from the fact that they are shared environ-
ments and will eventually run more than one workflow
at the same time. Furthermore, this topic has been ne-
glected by most studies in scheduling, and only a few
initial works exist [53,6].

Further work in multiple workflow scheduling is un-
doubtedly necessary. Following the path of this work,
the development of a prioritization scheme to work with

the interleaving approach is an interesting topic. Pro-
cesses already scheduled may have their priority changed
dynamically to avoid starvation or to keep a good re-
lation between fairness and execution time. Therefore,
a dynamic and adaptive priority approach is an un-
touched problem which could be useful in grids execut-
ing multiple workflows at the same time. Additionally,
the re-scheduling of multiple workflows is an interesting
topic.
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