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Abstract—Cloud computing has recently emerged as a conver-
gence of concepts such as cluster computing, grid computing,
utility computing, and virtualization. In hybrid clouds, the user
has its private cloud available for use, but she can also request
new resources to public clouds in a pay-per-use basis when there
is an increase in demand. In this scenario it is important to decide
when and how to request these new resources to satisfy deadlines
and/or to get a reasonable execution time, while minimizing the
monetary costs involved. In this paper we propose a strategy to
schedule service workflows in a hybrid cloud. The strategy aims
at determining which services should use paid resources and
what kind of resource should be requested to the cloud in order
to minimize costs and meet deadlines. Experiments suggest that
the strategy can decrease the execution costs while maintaining
reasonable execution times.

I. INTRODUCTION

Cloud computing is nowadays being used for on demand

storage and processing power. It allows the leasing of re-

sources to improve the locally available computational capac-

ity when necessary. When using a cloud, the user accesses

computing resources as general utilities that can be leased

and released [1]. The main benefits to the cloud users is the

avoidance of up-front investment, the lowering of their oper-

ating cost, the maintenance cost reduction, and the scalability

provided on demand. These cloud features provide elasticity

to the user’s computing environment, being able to adapt the

computer system to the user needs.

Cloud computing delivers three defined models: software

as a service (SaaS), platform as a service (PaaS), and in-

frastructure as a service (IaaS). In SaaS the consumer uses

an application but does not control the host environment.

In PaaS the consumers use a hosting environment for their

applications. In IaaS the consumer uses computing resources

such as processing power and storage. In terms of resources

availability, we can classify clouds in three different types:

➙ Public clouds: Providers offer computing resources as

services in a pay-per-use basis, leasing the use of ma-

chines to the user during the requested time.

➙ Private clouds or internal clouds: Resources that can be

accessed and used by individuals inside an organization,

similar to data farms or private grids.

➙ Hybrid clouds: Bring together public and private clouds,

resulting in a combination of control over performance

and security with elasticity.

The on demand computing offered by the cloud allows users

to keep using their private systems (computers, clusters, and

grids), aggregating the cloud resources as they need. However,

this hybrid approach results in a system with new demands,

notably in resource management. Designing a hybrid cloud re-

quires carefully determining the best split between public and

private cloud components [1]. To supply these requirements it

is important to the infrastructure to offer reconfiguration with

the possibility of the deployment of new resources or update

of the existing ones without stopping processes in execution.

In our work we combine a service oriented grid, implemented

using a dynamic service deployer that makes the underlying

grid infrastructure to act as a private cloud, and public clouds.

The similarities between private clouds and private grids allow

us to use a grid manager called Grid Process Orchestration

[2] inside our private cloud. To execute service workflows in

hybrid systems we use our hybrid infrastructure [3], which

provides dynamic instantiation of services.

In this paper we propose a strategy to schedule workflows

in hybrid cloud systems. The objective of the algorithm is to

meet a deadline reducing the execution costs by requesting as

fewer resources as possible to the public cloud. We deployed a

hybrid system to evaluate the execution of an image processing

application using the proposed algorithm, and we compared

the resulting execution times and costs with executions in the

private cloud only and in the public cloud only.

II. THE SCHEDULING ALGORITHM

The workflow scheduling in hybrid cloud systems is a novel

research challenge that comes together with the merging of

private and public clouds. Only a few works considers a

hybrid environment. In [4], the authors propose a scheduling

strategy to use resources from a utility grid when locally

available resources are not sufficient to execute the application.

However, they do not consider workflows in the scheduling.

In [5] the authors propose a hybrid system formed by the

DIET Grid and Eucalyptus, showing some possible ways of

connecting these two architectures but without support to

services or service workflows. In [6] the authors show issues

that limit the use of clouds for highly distributed applications

in a hybrid system. However, it has lack of interoperability

between different cloud platforms, and it does not offer support

to service workflows.

This is a pre-print version.!

The final version is available at the publisher's website.



Fig. 1. Example of fork-join DAG with ✶� nodes

The scheduling algorithm proposed here has the objective of

reducing the makespan maintaining a reasonable cost. While

executing every service of the workflow locally may delay

the execution, on the other hand, executing all services in the

cloud may result in prohibitive costs. Thus, the algorithm tries

to balance the use of private resources with the ones available

from the public cloud in a pay-per-use basis.

A. Background

A workflow is commonly represented by a Directed Acyclic

Graph (DAG) ● ❂ ✁❱✂❊✮, where each node ♥✐ ✦ ❱

represents a service and each edge ❡✐✄❥ ✦ ❊ represents a

data dependency among services ☎ and ✆. We developed a

service to apply a median filter in an image file, which is

split, processed in parallel, and merged. The median filter

application can be represented by a fork-join DAG, as shown

in Figure 1. This example shows a ✝✞ node DAG, where node

✝ is the slice operation, nodes ✷ to ✝✟ are the median filter

application, and node ✝✞ is the merge operation. Nodes in

the DAG are labeled with their computation cost (number of

instructions, for instance), while edges are labeled with their

communication cost (bytes to transmit, for instance).

When submitting a DAG to be executed, the user may want

to have it finished before a certain time. Let❉✠ be the deadline

(or a desired finish time) of a DAG ●. The proposed algorithm

makes an initial schedule using the Path Clustering Heuristic

(PCH) algorithm [7]. This initial schedule considers only the

private resources to check if they already satisfy the deadline.

If the deadline is not satisfied, the algorithm starts the process

of deciding which resources it will request to the public cloud.

This decision is based on performance, cost, and the number

of services to be scheduled in the public cloud. The algorithm

uses some attributes computed for each node of the DAG:

➙ Computation cost:

✇✐✄r ❂
☎♥st✡✉❝t☎☛♥s

♣r

✇✐✄r represents the computation cost (time to execute the

node) of the node ☎ in the resource ✡, and ♣r is the processing

capacity of resource ✡ in instructions per second.

➙ Communication cost:

❝✐✄❥ ❂
❞☞t☞✐✄❥

❧r✄✌

❝✐✄❥ represents the communication cost (time to transfer

data) between nodes ♥✐ and ♥❥ using the link ❧ between

resources ✡ and ♣. If ✡ ❂ ♣, then ❝✐✄❥ ❂ ✍.

➙ ✎✏✑✁✒✓✮ and ✔✕✖✗✁✒✓✮ are the sets of immediate

successors and predecessors of node ♥✐ in the DAG.

➙ Priority:

P✐ ❂

✘
✧

★

✇✐✄r✂ if ☎ has no successors

✇✐✄r ✰ ✙❛①
✚ ✛✜✢ ✣✤✥✭✛✩✪

✁❝✐✄❥ ✰ P❥✮✂ otherwise

P✐ is the priority level of node ☎ at a given time instant

during the scheduling process.

➙ Earliest Start Time:

❊✫❚✁♥✐✂ ✡❦✮ ❂

✬

❚ ☎♠❡✁✡❦✮✂ if ☎ ❂ ✝

✙❛①④❚ ☎♠❡✁✡❦✮✂ ✫❚✐⑥✂ otherwise

where ✫❚✐ ❂ ✙❛①
✚ ✛❤✢ ✌r✯✱✭✛✩✪

✁❊✫❚ ✁♥✲✂ ✡❦✮ ✰ ✇✲✄❦ ✰ ❝✲✄✐✮.

❊✫❚ ✁♥✐✂ ✡❦✮ represents the earliest start time possible for

node ☎ in resource ✳ at a given scheduling instant. ❚ ☎♠❡✁✡❦✮

is the time when resource ✳ is available to execute node ☎.

➙ Estimated Finish Time:

❊✴❚✁♥✐✂ ✡❦✮ ❂ ❊✫❚✁♥✐✂ ✡❦✮ ✰ ✇✐✄❦

❊✴❚ ✁♥✐✂ ✡❦✮ represents the estimated finish time of node ☎

in resource ✳.

After computing these attributes, the initial scheduling takes

place by creating groups of nodes that are in the same path in

the DAG. Such groups, called clusters of nodes, are scheduled

in the same resource. Details about the PCH are in [7].

B. Scheduling in Hybrid Clouds

After the initial scheduling made by PCH, the algorithm

checks if resources from the public cloud are needed based

on the deadline ❉. If the makespan of the schedule given by

PCH is larger than ❉, the algorithm selects the node ☎ that

is currently scheduled in the private cloud and has the largest

P✐ ✰ ❊✫❚✐ to be scheduled considering the public cloud as

well. The algorithm repeats these steps until the deadline is

met or a certain number of iterations is reached. This strategy

is shown in Algorithm 1.

The first line of Algorithm 1 makes the initial schedule using

the PCH and considering only resources in the private cloud.

If the deadline is not met (line ✷), the algorithm iterates until

the deadline is met or the number of iterations is equal to the

number of nodes in the DAG (line ✟). Inside this iteration, the

algorithm selects the node ♥✐ such that P✐✰❊✫❚✐ is maximum

and ♥✐ is currently scheduled in the private cloud (line ✺). In

line ✻, node ♥✐ is added to the set ✵ , which is composed



Algorithm 1 Scheduling in Hybrid Clouds

1: Schedule ● in the private cloud using PCH

2: ❘ ❂ all resources in the private cloud

3: if ♠�❦❡s♣�♥✭●✮ ❃ ✁❡�✁❧✐♥❡✭●✮ then

4: while ♠�❦❡s♣�♥✭●✮ ❃ ❉ AND ✐✂❡r�✂✐✄♥ ❁ s✐☎❡✭●✮

do

5: ✐✂❡r�✂✐✄♥ ❂ ✐✂❡r�✂✐✄♥ ✰ ✆

6: select node ♥✝ such that P✝✰❊✞❚✝ is maximum and

♥✝ is currently scheduled in the private cloud

7: ✟ ❂ ✟ ✧ ✂

8: ♥✠♠ ❝❧✠s✂❡rs ❂ number of clusters of nodes in ✟

9: while ♥✠♠ ❝❧✠s✂❡rs ❃ ✵ do

10: Select resource r✝ from the public clouds such that
✡☛✝☞✌✍

✎✏✑ ☞✒☛✌✓✍★✡✍
is minimum and ♥✠♠ ❝✄r❡s✝ ❁❂

♥✠♠ ❝❧✠s✂❡rs

11: ❘ ❂ ❘ ✧ r✝

12: ♥✠♠ ❝❧✠s✂❡rs ❂ ♥✠♠ ❝❧✠s✂❡rs ✔ ♥✠♠ ❝✄r❡s✝

13: end while

14: for all ♥✝ ✦ ✟ do

15: Schedule ♥✝ in r✎ ✦ ❘ such that ❊✕❚✝ is

minimum

16: Recalculate ❊✞❚ s and ❊✕❚s

17: end for

18: end while

19: end if

of all nodes being rescheduled from the private cloud to the

public cloud. In line ✼, the algorithm computes the number

of clusters of nodes in ✟ , which will determine how many

resources (or cores) will be requested to the private cloud.

After that, an iteration is repeated until the number of selected

cores reaches the number of clusters in ✟ , always selecting the

public cloud resource ✐ which gives the smallest ✡☛✝☞✌✍
✎✏✑ ☞✒☛✌✓✍★✡✍

with ♥✠♠ ❝✄r❡s✝ ❁❂ ♥✠♠ ❝❧✠s✂❡rs. The selected resource

is added to the resources pool ❘. With the resources selected,

the algorithm schedules each node ♥✝ in ✟ in the resource

r✎ ✦ ❘ which results in the smallest ❊✕❚✝.

Figure 2 shows an example considering the DAG of Figure

1 and the resources in Tables I and II with ❉ ❂ ✖✺. The

initial schedule considering only the private cloud resources

is on the left hand side of Figure 1. It allocates services in

two cores of ❈r✄♥✄s (❈✆ and ❈✷) and two cores of ❆♣✄❧✄

(❆✆ and ❆✷), resulting in ♠�❦❡s♣�♥ ❂ ✗✵ and ❝✄s✂ ❂ ✵. The

schedule in the hybrid system is shown on the right hand side.

It uses two cores of ❈r✄♥✄s and ✗ cores of the public cloud

(❩✆ to ❩✗), with ♠�❦❡s♣�♥ ❂ ✖✵ and ❝✄s✂ ❂ ✷✺ ✩ ✵✳✾ ❂

✷✷✳✺, since the lease time is ✷✺ time units and the leasing

of ✗ cores in Zeus costs ✘✵✳✾ per time unit. This schedule is

achieved starting with the schedule on the left hand side, and

then rescheduling services ✆✖✱ ✆✷✱ ✆✶✱ ✆✵✱ ✆✆✱ ✗✱ ✾✱ ✼✱ and ✻, in

this order. The scenario where only resources from the public

clouds are considered results in a schedule with ♠�❦❡s♣�♥ ❂

✶✺ and ❝✄s✂ ❂ ✭✶✺ ✩ ✵✳✾✮ ✰ ✭✷✵ ✪ ✵✳✺✷✮ ❂ ✖✆✳✾, using ✗ cores

during ✶✺ time units plus ✖ cores during ✷✵ time units.

Note that the algorithm deals with a deadline (or desired

TABLE I
RESOURCES IN THE PRIVATE CLOUD.

Name Cores RAM ✙✚ per core

Apolo 2 2.5Gb 1
Cronos 2 4Gb 2

TABLE II
RESOURCES IN THE PUBLIC CLOUD.

Type Cores RAM ✙✚ per core Cost per time unit

Y 1 1Gb 1.5 $0.14
Y 2 1Gb 1.5 $0.25

Z 1 2Gb 2 $0.17
Z 2 4Gb 2 $0.3

Z 3 6Gb 2 $0.4
Z 4 8Gb 2 $0.52
Z 8 16Gb 2 $0.9

(a) Private cloud only (b) Hybrid cloud

Fig. 2. Example of scheduling in the private and hybrid clouds.

execution time), but it can be easily adapted to deal with

budget instead of deadlines.

III. EXPERIMENTAL RESULTS

We evaluated the proposed algorithm in the resources shown

in Tables I and II with the median filter workflow using

different matrix and filter sizes, different number of slices

and different ❉ values. We measured the execution time

(makespan) and cost for executing the workflows, computing

the average over ✶ executions. All results show ✾✺✛ confi-

dence intervals.

The first set of executions was run with ✺✱ ✵✵✵ ✩ ✺✱ ✵✵✵

matrices and ❉ ❂ ✷✵ for ✶✩✶ filter and ❉ ❂ ✶✵ for ✺✩✺ filter.

Figure III shows the average makespan and average cost for

the median filter with ✖, ✗, and ✆✷ slices. Using only locally

available resources from the private cloud cannot meet the

deadline, resulting in the highest makespan among the three

scenarios. The execution considering only resources from the

public cloud can meet the deadline with a very low makespan,

however the cost for the execution is high. The execution in



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

4 slices
3x3

8 slices
3x3

12 slices
3x3

4 slices
5x5

8 slices
5x5

12 slices
5x5

M
a
k
e
s
p
a
n

Makespan − 5000x5000 matrix size

Private cloud
Public cloud

Proposed / Hybrid

 0

 5

 10

 15

 20

 25

 30

4 slices
3x3

8 slices
3x3

12 slices
3x3

4 slices
5x5

8 slices
5x5

12 slices
5x5

E
x
e
c
u
ti
o
n
 c

o
s
t 

($
)

Cost − 5000x5000 matrix size

Public cloud
Proposed / Hybrid

 0

 20

 40

 60

 80

 100

 120

 140

4 slices
3x3

8 slices
3x3

12 slices
3x3

4 slices
5x5

8 slices
5x5

12 slices
5x5

M
a
k
e
s
p
a
n

Makespan − 9500x9500 matrix size

Private cloud
Public cloud

Proposed / Hybrid

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 slices
3x3

8 slices
3x3

12 slices
3x3

4 slices
5x5

8 slices
5x5

12 slices
5x5

E
x
e
c
u
ti
o
n
 c

o
s
t 

($
)

Cost − 9500x9500 matrix size

Public cloud
Proposed / Hybrid

Fig. 3. Results for matrices of size ✺✱ ✵✵✵ ✦ ✺✱ ✵✵✵ and ✾✱ ✺✵✵ ✦ ✾✱ ✺✵✵

the hybrid system with the proposed algorithm can meet the

deadline with costs ✷ to ✹ times lower than costs using only

the public cloud resources. With �✁ ✂✄✄✩ �✁ ✂✄✄ matrices and

❉ ❂ ☎✷ for ✸✩ ✸ filter and ❉ ❂ ✆✄ for ✂✩✂ filter, the hybrid

execution performed better with ✹ slices, maintaining a lower

cost. With ✆ and ✶✷ slices, the hybrid execution meets the

deadline with costs ✷ to ✸ times lower.

From the executions in our cloud testbed we observe that the

proposed algorithm can reduce the makespan when compared

to the local execution, as well as the cost when compared to

the execution in the public cloud. We can note that in the

private cloud, the higher the number of slices, the higher the

execution time. This is because the slice and merge operations

take more time to split the files, but there are no parallel

processors available to execute all the slices. On the other

hand, executing all the workflow in the public cloud can

reduce the execution time, since there are more processors

available and more slices can be executed in parallel. In the

hybrid execution, the algorithm stops requesting public cloud

resources when the deadline is met, thus there are fewer slices

executing in parallel than in the public cloud execution, but

more than in the private cloud execution.

IV. CONCLUSION

The cloud computing paradigm is being widely used for the

execution of many types of applications, including ones with

data dependencies, which can be represented by workflows.

To execute such workflow applications in a hybrid cloud, the

scheduling algorithm must take into consideration costs and

the execution time. In this paper we propose an approach to

schedule service workflows that consider a deadline and exe-

cution costs. We deployed a hybrid cloud that offers support

for automatic service installation in the resources dynamically

provided by the grid or by the cloud to execute the proposed

algorithm. We also compare it with executions in the private

cloud only and in the public cloud only. The experimental

results show that the algorithm is capable of scheduling fork-

join workflows in a real cloud testbed reducing its execution

costs and meeting the desired execution times.
Future works include the introduction of budget with dead-

lines, developing a bi-criteria scheduling for hybrid clouds.
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