On the Distribution of Dependent Tasks Over
Non-dedicated Grids with High Bandwidth Links

Luiz F. Bittencourt and Edmundo R. M. Madeira
Institute of Computing
State University of Campinas - UNICAMP
P.O. 6176, Campinas - Sdo Paulo - Brazil
Email: {bit,edmundo}@ic.unicamp.br

Abstract— The distribution of workflow-like dependent tasks
over a set of heterogeneous resources is an NP-Complete problem.
Thus, many solutions are heuristic-based, leading to simulations
for the validation and comparison of dependent task scheduling
algorithms. However, simulations concerning the algorithms’
performance when executed in non-dedicated resources with a
wide range of bandwidth capacities are scarce. On this paper
we evaluate the performance evolution of the dynamic Path
Clustering Heuristic against the static one when scheduling
dependent tasks on resources connected by gigabit networks. The
experimental results indicate that the dynamic PCH mantains a
constant performance gain over the static PCH with the change
from a megabit to a gigabit network.

I. INTRODUCTION

A computational grid is a heterogeneous, geographically
distributed and dynamic system. Thus, the scheduler must
consider the heterogeneity and communication delays when
scheduling dependent tasks on a grid. The scheduler is the
entity that handles the application and assigns it to a resource.
The main goal of a scheduling system is to minimize the
execution time of an application (makespan). In the task
scheduling problem the scheduler handles an application com-
posed of tasks with precedence constraints, trying to minimize
the application’s execution time (makespan) by distributing
its components to the available resources. In a grid, these
resources are heterogeneous, as the communication capacities
between them. Thus, a task scheduler must deal with task
precedence, communication and computation costs. This is an
NP-Complete problem [1], so there is no known polynomial
time solution. Also, a grid task scheduler must deal with an
eventual performance loss in the resources, being adaptable to
the dynamic computing power available.

The NP-Completeness of the task scheduling problem led us
to the development of a heuristic-based algorithm for the as-
sociated optimization problem [2]. This algorithm, called Path
Clustering Heuristic (PCH), was developed to work in a grid
based on Xavantes [3], a middleware that supports dependent
task execution through hierarchical control structures called
controllers.

A grid with high bandwidth links is a powerful environment
for executing processes with dependent tasks, since the high
communication capacities minimizes the delay between the
finish of a task and the start of its dependent task on another
resource. With this, the data dependencies have less impact

on the final makespan when compared to environments with
lower bandwidth links.

A DAG meta-scheduler for grids is proposed in DAGMan
[4]. Tt just sends one task at a time to the scheduler, which
schedules the tasks like independent tasks, without knowl-
edge about dependencies. In [5], a case study on dynamic
scheduling for scientific workflow applications on the grid
is presented. It proposes a static reschedule with iterations
over the workflow application, generating a static DAG with
the tasks that would be rescheduled on each iteration. After
that, the generated DAG is scheduled, actually performing a
reschedule of its tasks. In this work we make a case study
of PCH, comparing the dynamic and static approaches on
grids with high bandwidth links. The experiments were made
considering a wide range of link capacities.

The paper is organized as follows. In Section II we give
a brief introduction to Xavantes. Section III shows the PCH
algorithm and its dynamic approach, while Section IV shows
the experimental results. Section V concludes the paper.

II. XAVANTES MIDDLEWARE

Xavantes [3] is a grid middleware developed to support the
execution of workflow-like processes composed of dependent
tasks. It is composed of a programming model and an infra-
structure, where the resources are organized as autonomous
groups. For example, a laboratory, a LAN or a cluster could
be an autonomous group. The processes are specified in
a hierarchical way, similar to the structured programming
languages, using the programming model defined in [3]. In
the process specification, the programmer should specify the
tasks and also some entities called controllers. The controllers
are responsible for managing the execution of a process,
controlling the execution state and the communication between
tasks. For more details on Xavantes, please reffer to [3].

A process has potentially many controllers, some parallel
and some sequential. Tasks inside a parallel controler have
no dependency and could be executed in paralell, while tasks
inside a sequential controller should be executed in sequence.
When a task finishes its execution, it sends the results of its
computation to the its controller, then the controller will check
the workflow to determine to which task this data should
be sent. The controllers are distributed among the available
resources, distributing also the knowledge of the execution

state of the process. Thus, controllers provide an easy recovery
mechanism to the workflow execution. Also, controllers have
a shared memory space that could be used to allocate shared
variables, giving the possibility of communication between
parallel tasks even if they do not have a data dependency.

A process is represented by a directed acyclic graph (DAG),
with the nodes being the tasks and the edges being the
dependencies between tasks. The labels in the nodes are the
computation costs and the labels in the edges are communi-
cation costs. The computation and communication costs are
specified in the programming model. Additionally, the rect-
angles represent the controllers. In the DAG of Figure 1, the
rectangle 1 represents a parallel controller containing the tasks
7 and 8, and the rectangle 4 represents a sequential controller
containing the activities 2, 5 and 10, and the controller 1.

Fig. 1.

Task graph example.

III. PCH ALGORITHM

The Path Clustering Heuristic (PCH) [2] algorithm was
developed to work with Xavantes, being able to provide a
good performance with easy recovery, taking advantage of
the controllers. Since every communication between tasks
must be via controllers, the presence of them can generate
some communication overhead. For example, if two tasks
that have a dependency are executing on the same resource,
but their controllers are executing on another resource, a
communication would be necessary even with tasks on the
same resource. The data should go to the controllers on another
resource and return after the controller’s action.

Based on the above issues, the PCH tries to group dependent
tasks, minimizing their communication and being able to
execute more controllers on the same resource as their tasks.
With this, the communication overhead of the controllers
could be also minimized. The groups of tasks are called
clusters, and are composed of tasks on the same path of the
DAG, traversing the graph in a depth-fist manner. To choose
what path to follow when there is a fork on the graph, the
algorithm calculates some graph attributes. The decision of
which tasks will compose a cluster is based on these attributes.
An overview of PCH is given in Algorithm 1.

Algorithm 1 PCH Algorithm

1: Compute all tasks attributes

2: while there are unscheduled nodes do

3: cluster < get_next_cluster()

4 resource < get_best_resource(cluster)
5: Schedule cluster on resource
6
7

Recalculate tasks attributes
: schedule_controllers()

The steps of the algorithm are as follows: first, the algorithm
computes the attributes that will guide the creation of clusters
of tasks. Then, the algorithm creates the cluster and selects
a resource to it. The cluster is assigned to the resource
chosen and the attributes are recalculated. This is repeated
while there are unscheduled nodes. With all nodes scheduled,
the algorithm must choose where the tasks’ controllers will
execute, selecting the resource where there are the most tasks
of the controller that is being scheduled. This is the last step
of the algorithm. For details about how the attributes are
calculated, how the clusters are created or how resources are
selected, please reffer to [2].

A. Dynamic PCH

Since we consider a non-dedicated grid, a static scheduling
approach as presented in Section III, where all tasks are
scheduled before the process execution’s start, could not
offer good makespans when there are performance losses on
resources. Therefore, a dynamic approach could improve the
system performance regarding the grid processes’ makespans.

The static PCH gives good results in a static heterogeneous
environment with a mesh heterogeneous (no-group) topology.
In [2] we propose a dynamic algorithm to schedule dependent
tasks on a grid with variations on resources’ performance. The
algorithm uses the static PCH to schedule tasks and introduces
a round-based approach to minimize performance losses on
resources. The PCH makes the initial schedule and then a
round-based approach is applied to reschedule tasks when
necessary. Algorithm 2 is an overview of this approach.

Algorithm 2 Dynamic Approach Overview
1: Schedule DAG G using the static PCH Algorithm
2: while not(all nodes of G have finished) do
3: Select tasks to execute according to a policy.
4: Send tasks of this round to execution.
5
6

Evaluate the resources performance.
Reschedule tasks if necessary.

To make a dynamic schedule of tasks we developed the
concept of rounds. In each round some tasks are selected
based on a criterion and sent to execution. Then, the scheduler
verifies the performance obtained on each resource used on
that round. If the performance of a resource is below a
threshold, the algorithm reschedules the non executed tasks.
Note that there is no reallocation of tasks, so there is no

overhead of moving tasks, since the reschedule is made before
the tasks are sent to execution.

In Xavantes, the scheduler is responsible for detecting and
rescheduling tasks that are in resources with low performance.
Fails in resources are detected by the middleware and the
tasks are sent to the scheduler, so it can reschedule them. The
process of recovery is handled by the middleware, using the
information provided by the controllers.

IV. EXPERIMENTAL RESULTS

In this work we evaluated the performance of the dynamic
PCH against the static PCH in a wide range of link band-
widths. The purpose of such an evaluation is to experimentally
check the evolution of the dynamic PCH when the links capac-
ities change from Mbps to Gbps. Fifteen DAGs composed of
tasks with random computation and communication costs were
taken for the experiment. The interval of computation costs
were (10.000,310.000) millions of instructions. The commu-
nication costs were high, between 250 and 750 megabytes.

The grid for the experiment was composed of groups of
resources with varible link loads and variable computing
power. We considered 5 groups with at most 7 resources
each. A group of resources had internal connection between
100% and 40% of the maximum link bandwidth considered,
simulating a non dedicated network. The connection among
groups was considered to have between 85% and 20% of
the maximum link bandwidth. The computing power of each
machine was a random value between 4.000 and 10.000 MIPS.
Additionally, the resources capacities vary over the time in
a random way, simulating the owner of the resource using
its machine to execute his/her own processes. For each pair
(bandwidth,rounds) each graph was scheduled 1.000 times.

The Figure 2 shows the average speedup for executions with
3, 5 and 7 rounds. The speedup shows how much times the
exectution was faster than if the whole process was executed
on the best resource available. The maximum bandwidth varies
from 100 megabits per second to 50 gigabits per second.

High Communication
16 T T

15|
14 -

13 r
12
11r

Average Speedup

09 -
08 -
0.7
0.6 ! . .

100 500 1000 5000 10000 50000
Bandwidth (mbps)
Riand2/ ResAverdege speedup.
3 Rounds/No —— %ounds INo —— P 7 Roulgds /No —=—

3 Rounds/Yes —<— 5Rounds / Yes —&— 7 Rounds/ Yes —e—

The Figure 3 shows the average SLR (schedule length ratio)
for executions with 3, 5 and 7 rounds. The SLR shows how
much times the execution was slower than the execution of

the graph’s critical path on the best resource available.

High Communication

6.5 [

55

45 -

Average SLR

35

25

I
100 500 1000 5000

Bandwidth (mbps)
Réigs Brescrhwerage SLR

5 Rounds / No 7 Rounds / No —=—
5Rounds / Yes —=— 7 Rounds / Yes —e—

10000 50000

3 Rounds / No —+—
3 Rounds/Yes ——

The results indicates that the dynamic approach of PCH
mantains a good performance with the increase of links
capacities. The speedup results show a wider difference with
50 Gbps than with 100 Mbps, although proportionally the
difference is the same. The SLR results show that the schedule
length ratio difference is smaller in the 50 Gbps scenario than
in the 100 Mbps scenario. Again, proportionally this difference
is the same. Also, in this scenario, there is a stabilization point
near 10 Gbps, where the communication costs are much lower
than the computation costs because the bandwidth is very high.

V. CONCLUSION

In this paper we make an experimental evaluation of dy-
namic and static versions of PCH algorithm in scenarios with
different bandwidth capacities, ranging from 100 Mbps to 50
Gbps. The results show that the round-based dynamic PCH
is not affected by high bandwidth links, mantaining a good
performance when compared to its static version.

Future works include searching for an ideal number of
rounds for each graph, depending on its properties. Also,
a history of resources performance could be added to the
schedule step, trying to do a performance prediction.

ACKNOWLEDGMENT

The authors would like to thank CAPES and FAPESP
(Process 2003/08277-0) for the financial support.

REFERENCES

[1] H. El-Rewini, H. H. Ali, and T. G. Lewis, “Task scheduling in multipro-
cessing systems.” IEEE Computer, vol. 28, no. 12, pp. 27-37, 1995.

[2] L. FE Bittencourt and E. R. M. Madeira, “A dynamic approach for
scheduling dependent tasks on the xavantes grid middleware,” in 4th ACM
International Workshop on Middleware for Grid Computing, Melbourne,
Australia. nov/dec 2006. (Accepted for publication).

[3] E R. L. Cicerre, E. R. M. Madeira, and L. E. Buzato, “A hierarchical
process execution support for grid computing,” Concurrency and Com-
putation: Practice and Experience, vol. 18, no. 6, pp. 581-594, 2006.

[4] J. Frey, “Condor DAGMan: Handling inter-job dependencies.
http://www.cs.wisc.edu/condor/dagman/,” 2002.

[5] R. Prodan and T. Fahringer, “Dynamic scheduling of scientific workflow
applications on the grid: a case study,” in SAC ’05: Proceedings of the
2005 ACM symposium on Applied computing. New York, NY, USA:
ACM Press, 2005, pp. 687-694.

