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Goals of research

o .

The design, efficient implementation, and evaluation of ef-

fective Image processing operators based on connectivity.

A.X. Falcdo — p.3/12.



Motivation
L o

# Unification
Image operators can be derived from a single algorithm,
favoring hardware-based implementations and the
understanding of how operators relate to each other.

o Efficiency
The IFT algorithm usually runs in linear time. Further
optimizations are possible for specific applications.

& Simplicity
An image operator requires a simple choice of parameters of
the IFT algorithm and a local processing of its output.

o -
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Purpose of the lecture
B o

What may you expect from this lecture?

# Get a different way of looking at image processing
problems.

® Understand the IFT and how it works for several
applications.

# Make it easier to use the C source code of the IFT
algorithm, which is available for download at
www.ic.unicamp.br/"afalcaol/ift.html.

o -
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What is it all about?

fMany Image operators can be directly/indirectly related to a partitionT
of the image into influence zones associated with root pixels, where
the zone of each root consists of the pixels that are more closely
connected to that root than to any other, in some appropriate sense.

Pixel ¢t is more closely connected to root rs.

.
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What is it all about?

The IFT unifies these image operators by computing an T
optimum-path forest in a directed graph derived from the image.

The roots of the forest are drawn from a given set of seed
pixels, which may also consist of all image pixels.

The influence zone of a root r consists of the pixels reached
from r by a path of minimum cost, considering the cost of all
paths in the graph from the seed set to that pixels.

The IFT algorithm outputs three attributes for each image pixel:
an optimum path from the root set, the cost of that path, and its
corresponding root.

An image operator is reduced to a simple local processing of
these attributes. J
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Region-based image segmentation

An object can be defined by pixels whose root belongs to a

given set of internal pixels.
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Image filtering

LA filtered image can be obtained from the cost attribute. J
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Optimum boundary tracking

The path attribute can be used to find an optimum curve that
IS constrained to pass through a given sequence of land-

marks (pixel sets) on the object’s boundary.

L -
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Euclidean distance transform (EDT)

o .

The EDT of a given shape and its exact dilations/erosions
Lcan be obtained from the cost attribute. J



Multiscale skeletonization

MS-skeletons can be obtained from the root attribute and

Lthresholded Into one-pixel-wide and connected skeletons. J
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Multiscale fractal dimension

o .
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The self-similarity of a shape can be expressed in various
scales from the cost attribute.

o -
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Salience points of a shape

Higher curvature points of a shape can be located from the

\_root attribute. J
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Directed graphs

o .

A directed graph is a pair (Z, A), where Z is a set of nodes
and A is a set of ordered pairs of nodes.
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Paths
-

A path is a sequence (¢, to, ..., t;) of distinct nodes in
the graph, such that (¢;,t,41) € Afor1 <i <k —1.

A path is trivial if £ = 1.

Path = - 7 denotes the concatenation of two paths, = and
7, where 7 ends at ¢t and 7 begins at ¢.

{'_E‘/J'\\L’
Path = = 7 - (s,t) denotes the concatenation of the
longest prefix 7 of 7 and the last arc (s, t). J
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Path-cost functions

# A path-cost function is a mapping that assigns to each

=

path 7 a cost f(7), In some ordered set V of cost values.

#® A function f is said monotonic-incremental (MI) when

f{(8)
f(r-(s,1))

where h(t) Is a handicap cost value and © satisfies:
¢ >r=20(st)>x0 (s, t)and z © (s,t) > x, for

r,2' € Vand (s, t) € A.

h(t),
f(r) © (s,1),



Examples of MI cost functions

-

® Additive cost function
fsum(<t>) — h(t)v
fsum(ﬂ" <37t>) — fsum(ﬂ)+w(57t)a

where w(s, t) Is a fixed non-negative arc weight.
#® Max-arc cost function

fmax(<t>) — h(t),
fmax(7'<57t>) — maX{fmax(W)aw(Svt)}ﬂ

where w(s,t) Is a fixed arc weight.



Examples of MI cost functions

o .

1. h(a) =1, fma({a,b,c,e)) =4 and foum({a,b,c,e)) = 10.
2. h(a) =5, finaz({a,b,c,e)) =5 and fsum({(a,b,c,e)) = 14.
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Predecessor map and spanning forest

o .

#® A predecessor map is a function P that assigns to each
node t € 7 either some other node in Z, or a distinctive
marker nil ¢ Z— in which case t is the root of the map.

# A spanning forest is a predecessor map which takes
every node to n:l in a finite number of iterations (i.e. it
contains no cycles).
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Paths of the forest P

o .

For any node ¢ € Z, there is a path P*(t) which is obtained
In backward by following the predecessor nodes along the
path.

For example, path P*(¢) = (a,b, c), where P(c) = b, P(b) = a,
and P(a) = nil; and path P*(¢) = (i), where P(z) = nil.

. .



Optimum-path forest
-

An optimum-path forest is a spanning forest P, where
f(P*(t)) Is minimum for all nodes ¢ € Z. Consider cost
function f,,, In the example below.
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Dijkstra’s algorithm

f # Dijkstra’s algorithm can be slightly modified to computeT
optimum-path forests for Ml cost functions.

# Dijkstra’s algorithm also works for non-MI cost functions
under weaker conditions which are applied to only
optimum paths.

o -
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Smooth path-cost functions

o .

A cost function f is smooth if for any node ¢ € Z, there is an
optimum path 7= ending at ¢ which either is trivial, or has the
form 7 - (s,t) where

1. f(r) < f(m),
2. T Is optimum,
3. for any optimum path 7/ ending at s, f(7'- (s,t)) = f(x).

LThese conditions apply to only optimum paths. J



An Image as a directed graph
B -

# A grayscale image Iis a pair (Z,1), where Z is a finite
set of pixels (points in Z?) and I assigns to each pixel
t € 7 avalue I(t) In some arbitrary value space.

# An adjacency relation A is a binary relation between
pixels of Z, which is usually translation-invariant.

# Once A has been fixed, image I can be interpreted as a
directed graph, whose nodes are the image pixels in Z
and whose arcs are defined by A.

o -
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Examples of adjacency relations

o .

Euclidean relation: A pixel t = (x4, y;) IS adjacent to a pixel
s = (zs,ys) (i.e. arc (s,t) € A) if (x; — x5)* + (1 — ys)* < p.

? ?
o +o
| l
(A) (B)

L(A) p=1and (B) p = 25. J



Examples of adjacency relations

f # Box-shaped relation.
Arc (s,t) € Aif |z — x5 < % and |y; — ys| < 5.

® Set-based relation.
Arc (s,t) e Aift—s e {(-1,-1),(1,-1)}.



Connectivity relation

o .

#® A pixel t is said connected to a pixel s if there is a path
from s to ¢ in the graph.

#® The cost of a path in the graph is determined by an
application-specific smooth path-cost function which
usually depends on local image properties along the
path, such as brightness, gradient, and pixel position.

This notion of connectivity can be exploited in many different ways.

For example, consider the labeling of components using symmetric

connectivity relations...

o -
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_abeling of components

Hello! This i1s a test
to separate letters,
words, and lines.



Labeling of components

| .

For example, consider Euclidean adjacency relation with
p = 2 for labeling letters of a binary text;

L -
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_abeling of components

| .

Euclidean adjacency relation with p = 25 for labeling words
of a text; and

L -
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Labeling of components

| .

box-shaped adjacency relation with ¢« = 30 and b = 5 for
labeling lines of a text.




Labeling of components

-

Consider now (s,t) € Aif (x; — z5)* + (y: — y5)? < 100 and
1I(t) — I(R(s))| < 100, where R(s) Is the initial pixel of the
first path that reached s.

| WANT TO
BELIEVE

| WANT TO
BELIEVE




_Labeling algorithm
B o

Input: Image I = (Z, I) and adjacency relation A.
Output: Labeled image L = (Z, L), where L(t) = 0 initially.
Auxiliary: FIFO ) and variable [ = 1 initially.

1. Forallp € Z, such that L(p) = 0, do
2. Set L(p) «+ [ and insert p in Q.
While @ # 0 do
Remove s from Q).
For all ¢, such that (s,t) € Aand L(t) = 0, do
Set L(t) + L(s) and insert ¢t in Q.

\— : Set] «+ [+ 1. J
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Image Foresting Transform

o .

The IFT takes an image I, a smooth path-cost function f and an
adjacency relation A; and returns an optimum-path forest P.

3 3 3 3

2 1 2 5 8 5 4 5

1
1
1
3
1
Lt

A 4-connected image graph and the optimum forest for max-arc func-

e R R e
R AR Wir itk tpR
W W W W W
Wlwlw wlw
W PR [Rk P
W R AR TR A
W P B R ORPoWw

Ltion Finaz With A(t) = I(t) + 1 and w(s,t) = |I(t) — I(s)]. B
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Tie-breaking
-

The optimum-path forest P may not be unique, because a T
pixel may be reached from two or more roots at the same
minimum cost. This ambiguity requires tie-breaking policies.

#» FIFO policy
Any connected set X of pixels with minimum cost with
respect to two or more roots tends to be equally
partitioned among the respective trees.

# LIFO policy
The pixels in X will all get assigned to a single tree.

o -
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IFT algorithm
-

The algorithm first identifies a root set and then
computes optimum paths within wavefronts that grow
from each root pixel.

During this process, the algorithm propagates for each
pixel t its predecessor P(t) in the optimum path with
terminus ¢, the cost C'(¢) of that path, and its
corresponding root R(t).

The process stops when the wavefronts encounter each
other.

A priority queue ( stores the pixels of the wavefronts

and controls their shapes, by favoring growth toward
directions of minimum-cost paths or according to
FIFO/LIFO policy in the case of ties. J
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FIFO tie-breaking

-

w(s, t) = [1(t)

Consider the max-arc function f,, with hA(t)

= I(t),

— I(s)|, and a 4-connected image graph.
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FIFO tie-breaking

fAfter the first iteration of the algorithm.
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FIFO tie-breaking

fAfter the second iteration of the algorithm.



FIFO tie-breaking

fAfter the third iteration of the algorithm.
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FIFO tie-breaking

The resulting optimum-path forest.




LIFO tie-breaking

-

w(s,t) = |I(t) — I(s)], and 4-connected image graph.
2000y
§<2 >§<2 5 5 5 5 >§<2 1
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-

Consider the same max-arc function f,, with h(t)
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= I(t),
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LIFO tie-breaking

fAfter the first iteration of the algorithm.



LIFO tie-breaking

fAfter the second iteration of the algorithm.
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LIFO tie-breaking

fAfter the third iteration of the algorithm.
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LIFO tie-breaking

fAfter 15 iterations of the algorithm.
®
®
®
®



LIFO tie-breaking

fThe resulting optimum-path forest.




IFT algorithm with FIFO policy

o .

1. For all pixels ¢t € Z do

2 C(t) + f((t)), P(t) < nil, R(t) < t.

3 If C'(t) < +o0, Inserttin Q.

4. While @ # (0 do

5. Remove a pixel s from @ such that C(s) is minimum.
6 For all ¢, such that (s,t) € A and C(t) > C(s), do

7 c < f(P*(s)-(s,1)).

8 If ¢ < C(¢) then

9 If C(t) # +o00, remove t from Q.

10. C(t) < ¢, P(t) < s, R(t) + R(s), inserttin Q.
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8

IFT algorithm with LIFO policy

. For all pixels t € Z do
C(t) < f((t)), P(t) < nil, R(t) < t,Insert ¢ in Q.
. While @ # 0 do
Remove a pixel s from @ such that C(s) is minimum.
For all ¢, such that (s,t) € Aandt € @, do
¢ f(P*(s) - {s,1)).
If ¢ < C'(t) then
Remove t from @, C(t) < ¢, P(t) < s,
R(t) < R(s), Inserttin Q.

=



-

.

Unfair partitions with FIFO

Function f,q; With A(t) = I(t) and w(s,t) = |1(t)

5 5 5 5 5 5 5 5

(a) Image graph

(b) Optimum forest

Other tie-breaking policies may be incorporated to the cost function.
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Priority queue ()
- -

# If ) Is a binary heap, the algorithm will run in
O(m + nlogn) time and O(n) storage, where m = | A|
and n = |Z]|.

# In most applications, we can find a small integer K such
that f(m - (s,t)) — f(m) < K and f({t)) — f({t')) < K
(excluding +oo values). The cost of pixels in @ will be
integers in the range [C..C' + K], for some cost C that
varies during the algorithm. Then () can be a circular
gueue of K + 1 entries; and the algorithm will run in
O(m +n+ K) time and O(n + K) storage.

For small adjacency relations (sparse graphs), m < n, the

Lalgorithm will run in linear time O(n). J
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Circular priority gueue




Detection of regional minima

o .

A regional minimum is a maximal connected set X C 7 of
same gray value, such that I(s) < I(t) for any arc (s,t) € A
where se XY andt ¢ X.




Cost function for regional minima

o .

fini((t)) = 1I(¢), forallt e Z,

fmi(ﬂ.<87t>) _ { fini(ﬂ'), If ](s) g[(t),

+00 otherwise.

# All image pixels are root candidates.

# Any optimum path starts at a regional minimum and
never goes downhill.



Regional minima with FIFO

o .

o

N N DD N N DN
N TN DN NI DN
N N DN NN
©c O O O |o O
o O O O O O

OOOOIOO
o
o

N O DD DD NN DN

> O O O

(a) Image graph (b) Optimum forest

The regional minima form the root set of the forest and each

minimum X’ is a connected component of this set.
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Regional minima with LIFO

o .

> O O O O O

(a) Image graph (b) Optimum forest

The number of minima is the number of roots, and their ex-

tent is detected by selecting the pixels t where I(t) = I(R(t)).

o -
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Seed pixels

fIn some applications, we would like to use a smooth cost T
function f but constrain the search to paths that start in a
given set S C 7 of seed pixels. This constraint can be

modeled by defining

s, ) f(m), ifrstartsinS,
Fom { +oo  otherwise.

# Itis valid for any Ml function, but not for all smooth cost
functions— in which case the IFT algorithm outputs a

non-optimum spanning forest.

#® A seed t may not become root, because there may be
another path from S cheaper than (t).

o -
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Region-based image segmentation

o .

Consider an MR image I = (Z, I) of a brain, where the
object of interest is the left caudate nucleus.

S




The IFT-watershed approach

o .

A gradient image G = (Z, G) obtained from I with the seeds
selected inside and outside the left caudate nucleus.
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Cost function for the caudate nucleus

o .

The path-cost function can be the maximum pixel intensity
along the path.

freak((t)) = 1(t),Ift €S, and +oo otherwise.
fpeak(ﬂ ) <87 t>) — maX{fpeak(W)a ](t)}'




|_eft caudate nucleus

o .

Result of the IFT with FIFO policy and 8-neighborhood,
where the object was obtained from the root map £.
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|_eft caudate nucleus

o .

Result of the IFT with LIFO policy and 8-neighborhood,
where the object was obtained from the root map £.
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Differential IFT

o .

# The differential IFT (DIFT) allows to compute
sequences of IFTs in a differential way.

# At each iteration, trees may be marked for deletion and
seeds added for a new dispute among the remaining
roots.

# The optimum forest, costs, and roots are updated,
without running the algorithm from the beginning.

The DIFT algorithm takes time proportional to the number
of pixels whose optimum values need to be updated.

o -
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Differential IFT

An optimum forest with trees T, T;, and T, rooted at pixels a, b, and
c (left). T, is marked for removal and d is added as seed (center).
The dispute involves b, ¢, and d, where b and ¢ are represented by
pixels of T, and T, along the bold and dashed lines (i.e. frontier

Lpixels between T, and these trees). The new optimum forest (right)J
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3D Interactive segmentation

o .

# The DIFT algorithm has been used for multiple-object
Interactive 3D segmentation of MR-brain images using
the watershed and fuzzy-connected approaches.

# |t has provided efficiency gains from 10 to 17 with
respect to our IFT implementations of these technigues.

# It has reduced the user’s waiting time from 19-36
seconds to 2—3 seconds to visualize in 3D the results of
each iteration, using data sets of sizes 5-9Mvoxels and
an 1.1GHz Athlon PC with 384MB RAM.

o -
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2D example of DIFT-watershed

Seed selection for ventricles and caudate nuclei (left). First result

shows part of the ventricles missing and part of the background as

Lcaudate nuclei (right). J
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2D example of DIFT-watershed

Seed selection for correction. The green region shows a single tree

marked for removal (left). Corrected segmentation (right).

: .



Segmentation from the cost map C

o .

In some situations, objects are darker/brighter than their
nearby background.

An MR image of a wrist where the bigger bone is the object of inter-

Lest for segmentation. J
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Cost function for the wrist

o .

First, suppose that the object was darker than its nearby
background.

® freqr(m) assigns to 7 the maximum pixel intensity along
it (.,e. once 7 starts in a certain gray level, its cost can
never go down).

# If a single seed was selected inside the object, the
resulting cost map using f,eqx Would be darker inside

and brighter outside fit.

# Then, the object could be segmented by simple
thresholding.

o -

A.X. Falcéo — p.72/12:



Cost function for the wrist

o .

The dual operation applies to the case of the wrist bone
and results from the complement of the cost map obtained
by using a cost function

fpeak(<t>) = K —1I(t),Ift €S, and oo otherwise.
Fpear(m - (5,8)) = max{fpear(r), K — I1(1)},

where K Is the maximum of 1.



Bone of the wrist

Seed selection (left) and the complement of the cost map obtained

by using fpeqr COSt function (right).

o -
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Bone of the wrist

o .

The holes within the bone (left) can be closed if we apply
the same strategy using f,.qx cost function and one pixel of

the image border as seed (right).

o -
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Bone of the wrist

o .

The bone is segmented by thresholding the last image.
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Filtering by reconstruction

-

It is known that holes may appear in 3D renditions
whenever we use one-voxel to one-pixel projection.

o -
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Filtering by reconstruction

o .

A simple morphological closing operation using a disk of

radius v/2 (Euclidean adjacency) as structuring element
closes the holes, but also looses detalls.




Cost function for the skull

(A) (B)

(A) The original image in blue and the closed image in (red). The
closed image Is taken as a handicap cost image in the f,..x function.

(B) The resulting cost map is shown in red.

o -
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Cost function for the skull

o .

The cost function becomes a simple variation of f,...

fsrec(<t>) — h(t)v
fsrec(ﬂ- ' <37t>) — maX{fS’rec(ﬂ-)v ](t)}v

where h(t) > I(t), for all t € Z. The cost map C'is the result

of the morphological superior reconstruction of I from h.
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Filtering by reconstruction

The operation is called closing by reconstruction.
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Filtering by reconstruction

=

Function f,... has also a dual function, which provides
In C the inferior reconstruction of I from A, when
h(t) < I(t) forallt e I.

Together they provide many other image operators,
such as area closing/opening,leveling, closing of
basins, opening of domes, h-basins, h-domes, etc.

The root map R obtained from f,... function is the
catchment basins of the watershed transform of C' from
a grayscale marker h, when I(t) < h(t) for all t € Z.

If we use seed pixels, the root map R is the catchment
basins of the watershed from markers, and marker
Imposition is obtained whenever h(t) < I(t) for LIFO
policy and h(t) < I(t) for FIFO policy.

-
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Segmentation by local reconstruction

| .

A CT image of a knee where one seed ¢ is selected inside the femur
with handicap h(t) > I(t), but less than the brightness of the femur’s

border (left). The interior of the bone can be extracted from the root

~ map R (right). .
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_ocal superior reconstruction

o .

The local superior reconstruction is a variant which fills up
one or more basins, selected by a seed set S, up to levels

specified by given handicaps h(t) > I(t) fort € S. Its cost
function is

fisrec({t)) = h(t), Ift € S, and +oo otherwise,
o fl?“ec(ﬂ-)a If fl?"ec(ﬂ-) > [(t),
fisree(m - {s,8)) = { +00, otherwise.

It has been used for image filtering by area closing and im-

age segmentation.

o -

A.X. Falcdo — p.84/12.



Boundary tracking

o .

Consider the problem of finding an optimum curve that is
constrained to pass through a given sequence

(T1, T2, ..., Tr) of k landmarks (pixel sets) on the object’s
boundary, in that order, starting in 7; and ending in 7.

il"-.-.-I-

MR-image where the talus is the object of interest.

o -
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Boundary tracking

=

If fis MI, the curve consists of k¥ — 1 segments
T, M, ..., Tk—1, Where m; IS an f-optimum path
connecting 7; to 7;.1.

The problem can be solved by £ — 1 executions of the
IFT, where each stage can be terminated as soon as
the last pixel of the target set 7,1 iIs removed from the
gueue.

The curve is obtained from the predecessor maps
Py—1, Px—2,..., 1.

The curve can be closed by making 77 = T, and
computing an extra path from the last to the first pixel of
the opened curve.
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Cost function for the talus

o .

(0, ifi=1andteT,
fbtrack(<t>) = 4 Ci(t)a ifi >1andt e 13,
| Fo0, otherwise.
fbtrack(ﬂ' ' <57t>) — fbtrack(ﬂ') + w(s,t),

where w(s,t) = K —max{G(s,t) -n(s,t),0}, where G(s,t) IS a
gradient vector estimated at the midpoint of arc (s, t); a(s,t)

IS the arc (s, t) rotated 90 degrees counter-clockwise; and K

IS an upper bound for |G(s,t) - a(s,1)|.

-
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Boundary orientation

Gst)  ash! /Gst
A - ® Py
| alst)

Figure on the left shows when the cost assignment will not favor (s, ¢)

orientation and the other way around is shown on the right.

o -
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Optimum boundary of the talus

Result of the IFTs with FIFO policy and 8-neighborhood.

|



_1ve wire

-

Live wire becomes a particular case of this optimum
formulation for boundary tracking, where the sets 7T; are
chosen by the user during image segmentation.
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_1ve wire




Live-wire-on-the-fly

o .

Note that its most recent variant, called live-wire-on-the-fly,
IS another example of IFT being computed in a differential
way.

o -
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Euclidean distance transform (EDT)

o .

The EDT of a given seed set S € 7 assigns to each image
pixel t € 7 a value C(t), which is the minimum Euclidean
distance from ¢ to S.

LA fish contour (left) and its EDT (right). J
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Cost function for the EDT
- -
S ((t)) = 0, ifteS, and +oo otherwise.

fowem-{s,8)) = (x4 — )+ (g — yr)*,

where r Is the Initial pixel of = (or better, R(s) during the
execution of the algorithm). The EDT can be obtained by

computing the IFT with FIFO policy and the squared root of
Its resulting cost map C.

-
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Example of the EDT
-

Consider a directed graph whose nodes are the image T
pixels of a binary image I and whose arcs are defined by an
8-neighborhood relation. The seed set S is composed by
contour pixels.

o 0 0 0 0O 0O 0O 0O O O




The Euclidean distance map

o .

2 1 1 1 1 1 1 1 1 2
" /

~,o0 ,0 ;0 ,0 ,0 ,0 ,0 ,00 1

1 0 /1 {1 1 /1 1 |1 O 1
o—@ Qo

1 0 1 |4 4 |4 4 1 0 1
e »@« o e »»@« o

1 0 1 4 4 4 4 1 0 1
@00 o—ro——>@«—o

1 0 1 1 1 /1 1 1 0 1
o »@« o o »@P<« o

1 o0 o0,0 ,0,0,0 O O 1
(2: 1 Il 1 (1 |1 |1 fl 12 2

The cost map C shows the squared Euclidean distance values.

LC can be used to compute the multiscale fractal dimension of S. J
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Discrete Voronol regions

o .

#® The influence zones of the contour pixels define
discrete Voronoi regions in the root map R.

# Each contour pixel t € S can be associated with a
subsequent integer number L(t) from 1 to N, while
circumscribing the contour.

# A label map L may be created from the root map R by
setting L(t) « L(R(t)), or the labels may be propagated
during the algorithm.

The label map L can be used to compute multiscale skele-

Ltons and salience points along the contour. J
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Discrete Voronol regions

24 241 2 3 4 5 6 7 7
.\

24 I24 1 ,2 ,3 ,4 ,5 ,6 l? I
23 23|11 (2 |3 |4 |5 |[6 8 8
o—@ Qo
22 22 2212 |3 |4 |5 9 9 9
e »@« o e »»@« o
21 21 21 21 16 15 10 10 10 10
@00 o—ro——>@«—o
20 20 20 17 |16 (15 14 11 11 11
o »@« o o »@P<« o

19 19 18 ,17 ,16 ,15 ,14 13 12 12

19 119 I18 17 116 |15 |14 IlB 12 12
o o

The label map L shows the influence zone of each contour

-
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Some observations

» Although f¢ . is not smooth for some combinations of S

and A, 8-neighborhood seems to be enough for most
practical situations.

» Even when f¢ . is not smooth, and the IFT can not
output exact distance values, 8-connected regions are
essential to obtain one-pixel-wide and connected
skeletons.

-
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Multiscale skeletons

-

Internal and external multiscale skeletons of a close curve T
S C 7 can be obtained from the label map L by assigning to
each pixel s € 7 a difference value

D(s) = max {min{L(t) ~ L(s). N = (L(t) ~ L())}}

where N is the number of contour pixels and A is the 4-

neighborhood relation.

o -
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Example of MS-skeletons
- -

24 241 2 3 4 5 6 7 7 O 0 0O 0O 0O OO O O O
. . Ve
24.24.1 2 ,3 ,4 ,5 |6 /7 o,0.,12 /1,1 .1 .,1 .1 .1 0
23 2311 (2 3 |4 |5 |6 8 8 o 1 /2 |1 |1 |1 1 |3 1 O
o—@ @«—o —@ @«—o
22 22 2212 |3 |4 /5 9 9 9 O 1 0 (4 10/12/5 1 1 O
o »@« o o »@« o o »@« o o »@« o
21 21 21 21 16 15 10 10 10 10 O 11 0 5 1 5 1 1 O
o >@+—0+—0 o—>0—>@«——o o—>@«——eo«—o

20 20 20 17 |16 |15 14 11 11 11 o 1 1 4.1 .1 1 3 1 O
o »@<«—o o »@<« o o »>@« o o »>@<« o
19 19 18 ,17 |16 15 14 13 12 12 o1 2/1.,1.,1.,1 1 1 O
19 |19 518 17 |16 |15 |14 le 1212 0° |0 fO O |0 |0 |0 IO O\.O
s e 4

The label map L (left) and the skeleton scale map D inside the object

only (right).

o -
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Example of MS-skeletons

O 0 0O 0O OO O 0O 0O O O 0 0O 0O 0O OO O O O
. . Y
c,0,1 ,1 ;1.1 .1 .1 1 O o.,0 ,0 ,0 ,0 ,0 ,0 ,0 0
o 1 2 1 1 1 1 3 1 O O 01 0 |0 |OO|1 O O
o—@ @«—o —@ @«—o
O 1 0 |4 10/11/5 1 1 O O 0 01 {1 |1 /1 0 O O
o »@« o o »@« o o »@« o o »@« o
O 1 1 0 5 1 5 1 1 O O 0 0O 01 01 O O O
o >@+—0+—0 o >@«—0<—0

o 1 1 411 1 3 1 O O 0 0 1,00 O 1 O O
o »@<«—o o »@<« o o »>@« o o »>@<« o
O 1 2 }1 1 .1 }1 1 1 O O 0 1 ;O 0,0 }O O 0 O
{O’ 0 fO O [0 |0 |0 fO O\.O {O’ o) fO O |0 |0 |0 IO O\.O

One-pixel wide and connected skeletons (right) can be obtained by

thresholding D (left) at various scales.

o -
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M S-skeletons for the fish contour

| .

|_Labeled contour (left) and label map L (right). J



Multiscale skeletons

LMS-skeletons (left) and a skeleton obtained by thresholding (right). J



Multiscale skeletons

LThe skeletons become more simplified as the threshold increases. J
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Salience points

| .

The salience points of a curve can be informally defined as
Its higher curvature points.

‘ Convex points are shown in blue and concave points in red.
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Salience values

o .

Consider a small radius r forming a narrow band B of size 2r
around a curve S.

® Each salience point has two influence areas within 5, one
outside and one inside S.

® Convex points have higher influence areas outside than inside,
and the other way around is true for concave points.

LThe salience value of a point is its highest influence area. J
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Detection of salience points

=

#® The salience value A of a point relates to the aperture
angle 6 by the formula A = %

# A can be coomputed from the histogram of the label
map L.

# Salience points can be detected by thresholding 6.

# Small values of r reduce cross-influence in this method
from opposite parts of the contour which come close to
each other.

The method works fine for skeletons, but not for contours

which are usually more intricate shapes.

o -
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Detection of salience points on contours

o .

Salience points of the contour can be related to salience points of
its internal and external skeletons by means of the skeleton scale
map D and root map R.

N
LN \C d
[ ____>/‘

For a clockwise labeled contour: if R(c) = b, a is reached by skipping

M pixels in anti-clockwise from b (left); and if R(c) = d, a is reached

from d by skipping ( ) pixels in clockwise (right). But, how do we
Lknow If the root of cis b or d? J
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Detection of salience points on contours

o .

The skeleton scale value at a pixel s € Z Is

D(s) = max {min{L(¢) — L(s), N — (L(t) — L(s))}},
V(s,t)eA
where N is the number of contour pixels and A is the
4-neighborhood relation.

® The root of ¢ will be b whenever
L(t) — L(s) > N — (L(t) — L(s)), where L(t) = L(d) and
L(s) = L(b).

® The root of ¢ will be d whenever
L(t) — L(s) < N — (L(t) — L(s)), where L(t) = L(b) and



Signed ms-skeletons

-

The solution is to sign the ms-skeletons D.
1. For all pixels s € Z, do
2. Set 4,,4, < —00.
3. For all pixels ¢, such that (s,t) € A, do

4. Set y «+ min{L(t) — L(s), N — (L(t) — L(s))} and
o+ +1.

5. If 6 =[N — (L(t) — L(s))], then set ¢ < —1.

6. If 0 > 0z, then set 6,40 < 0 and sign + o.

7. Set D(s) < sign X dmag-

o -
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Salience points of a contour

o .
7

F
/b }k\

My
o

Salience points on the internal (left) and external (center) skeletons.

LSalience points on the contour (right). J



Contour salience descriptor

o .

The contour salience descriptor consists of the relative
position of each salience point along the contour with
respect to a starting point, the salience values for these
points, and a matching algorithm.
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I Contour point
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Fractal dimension

o -

The Fractal dimension of a set S by Minkowski-Bouligand is
a number F within [0, 2].

_ . In(A(r))
b= 2_}1—%(1) In(r)

where A(r) Is the area of S dilated by a radius r. It represents
the self-similarity of S for r close to 0. Note that, A Is simply
the cummulative histogram of the Euclidean distance map

which can be obtained from the cost map C.

o -
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Euclidean distance map




Standard approach for computing F
- -

" observed values /- P
fitted straight ling#/~——"

125

115

Log(A)

105

A shape similar to the Koch star, which has F' ~ 1.26 (left). A

line is fitted to the curve (right), and its first derivative is used

Lto estimate F' (F' =~ 1.23). J
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Multiscale fractal dimension

o .

We use polynomial regression for fitting (left) and ' becomes a
polynomial curve, called multiscale fractal dimension (right).

13

T T 1-3
observed values S~
125 | polynomial regression/f-------- | 125

12+ 12

115 |
115 | °

11 ¢
105

Log(A)

105 |

Fractal Dimension (F)

0.95

09 r

9 | 1 0.85

8.5 ; ; : ! 0.8

Log(r) Log(r)

Note that, the maximum value of the curve is close to 1.26, providing

Lmuch richer description of the self-similarity of S. J
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Shape analysis

o .

#® Multiscale Fractal Dimention (MFD) and Contour
Salience Descriptor (CSD) have been compared to
Curvature Scale Space (CSS), Bean Angle Statistics
(BAS), Moment Invariants (MIV), Fourier Descriptors
(FD), and Simple Fractal Dimension (SFD) for shape
classification using a database of 11,000 fish contours
and 1,100 classes.

# CSD was the most effective among them, for this
particular application, and MFD was competitive with
FD and BAS, and superior to SFD and MIV.

o -
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Combining Image operators
B -
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Image of blood cells (left). Area opening by IFT (center). Threshold-

iIng and morphological opening (right).
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Combining Image operators

Distance transform by IFT (left). Regional maxima by IFT (center).

Local reconstruction by IFT (right).
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o o

Current work

=

Procedures for automatic seed selection during
Interactive 3D segmentation.

More effective path-cost functions for 3D segmentation
of MR-images of the brain and the evaluation of the
methods.

Methods that combine boundary tracking and active
contours for image segmentation.

Automatic image operators based on the DIFT.
3D multiscale skeletonization.

Further improvements on multiscale fractal dimension
and contour salience descriptor.

-
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Conclusion

o .

#® The IFT provides a different way to look at image
processing operations.

# To develop an image operator based on the IFT, one
needs to

s relate the operator to an optimum image partition
problem with connectivity restriction,

s find suitable adjacency relation and smooth
path-cost function, and

s apply some local processing to the output of the IFT
algorithm.

o -
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