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ABSTRACT: We present a supervised classification method which

represents each class by one or more optimum-path trees rooted at
some key samples, called prototypes. The training samples are

nodes of a complete graph, whose arcs are weighted by the distan-

ces between the feature vectors of their nodes. Prototypes are iden-
tified in all classes and the minimization of a connectivity function

by dynamic programming assigns to each training sample a mini-

mum-cost path from its most strongly connected prototype. This

competition among prototypes partitions the graph into an opti-
mum-path forest rooted at them. The class of the samples in an op-

timum-path tree is assumed to be the same of its root. A test sam-

ple is classified similarly, by identifying which tree would contain it,

if the sample were part of the training set. By choice of the graph
model and connectivity function, one can devise other optimum-

path forest classifiers. We present one of them, which is fast, sim-

ple, multiclass, parameter independent, does not make any
assumption about the shapes of the classes, and can handle some

degree of overlapping between classes. We also propose a general

algorithm to learn from errors on an evaluation set without increas-

ing the training set, and show the advantages of our method with
respect to SVM, ANN-MLP, and k-NN classifiers in several experi-

ments with datasets of various types. VVC 2009 Wiley Periodicals, Inc.
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I. INTRODUCTION

Patterns are usually represented by feature vectors (set of measures

or observations) obtained from samples of a dataset (Duda et al.,

2000). Two fundamental problems in pattern recognition are as fol-

lows: (i) the identification of natural groups (clustering) composed

by samples with similar patterns and (ii) the classification of each

sample in one of c possible classes (labels). The dataset is usually

divided in two parts, a training set and a test set, being the first used

to project the classifier and the second used for validation, by meas-

uring its classification errors (accuracy). This process must be also

repeated several times with randomly selected training and test

samples to achieve a conclusion about the statistics of its accuracy

(robustness and precision). While problem (i) has no prior informa-

tion about the labels of the samples, the training in problem (ii) can

count with unlabeled samples (unsupervised learning), labeled sam-

ples (supervised learning) or part of the samples labeled and the

other part unlabeled (semisupervised learning) (Blum and Mitchell,

1998; Joachims, 1999; Zhu, 2006). Our focus is on the supervised

learning approaches.

Figure 1 illustrates three typical cases in 2D feature spaces using

two classes: (a) linearly separable, (b) piecewise linearly separable,

and (c) nonseparable classes with arbitrary shapes. Any reasonable

approach should handle (a) and (b), being (c) the most interesting

challenge. An artificial neural network with multilayer perceptrons

(ANN-MLP), for example, can address (a) and (b), but not (c)

(Haykin, 1994). As an unstable classifier, collections of ANN-MLP

(Kuncheva, 2004) can improve its performance up to some

unknown limit of classifiers (Reyzin and Schapire, 2006). Support

vector machines (SVMs) have been proposed to overcome the prob-

lem, by assuming linearly separable classes in a higher-dimensional

feature space (Boser et al., 1992). Its computational cost rapidly

increases with the training set size and the number of support vec-

tors. As a binary classifier, multiple SVMs are required to solve a

multiclass problem (Duan and Keerthi, 2005). Tang and Mazzoni

(2006) proposed a method to reduce the number of support vectors

in the multiclass problem. Their approach suffers from slow conver-

gence and high computational cost, because they first minimize the

number of support vectors in several binary SVMs, and then share

these vectors among the machines. Panda et al. (2006) presented a

method to reduce the training set size before computing the SVM

algorithm. Their approach aims to identify and remove samples

likely related to nonsupport vectors. However, in all SVM

approaches, the assumption of separability may also not be valid in

any space of finite dimension (Collobert and Bengio, 2004).

We propose a supervised classifier based on optimum-path forest
(OPF), which is fast, simple, multiclass, parameter independent,

does not make any assumption about the shapes of the classes, and

can handle some degree of overlapping between classes. The train-

ing set is thought of as a complete graph, whose nodes are the sam-

ples and arcs link all pairs of nodes. The arcs are weighted by the

A preliminary version of the paper was presented at the 12th International Work-
shop on Combinatorial Image Analysis (Papa et al., 2008a).

Correspondence to: A. X. Falcão; e-mail: afalcao@ic.unicamp.br

Grant sponsors: The authors thank the financial support from CNPq and FAPESP.

' 2009 Wiley Periodicals, Inc.



distances between the feature vectors of their corresponding nodes.

Any sequence of distinct samples forms a path connecting the ter-

minal nodes and a connectivity function assigns a cost to that path

(e.g., the maximum arc-weight along it). The idea is to identify pro-

totypes in each class such that every sample is assigned to the class

of its most strongly connected prototype. That is, the one which

offers to it a minimum-cost path, considering all possible paths

from the prototypes. Figure 1 shows two sets of prototypes, S1 and
S2, in classes 1 and 2. The connection from Si to a sample t is repre-
sented by a path pt

(i) with terminus t and root in some prototype of

Si, i 5 1,2. In all cases, the optimum path (to which the maximum

arc-weight is minimum) comes from a prototype of the same class

of t. Our approach can handle all three cases with the maximum

arc-weight function and prototypes estimated as the closest samples

from distinct classes. In the case of overlapping between classes,

these prototypes work as class defenders in the overlapped regions

of the feature space (Fig. 1c).

The classifier is an optimum-path forest rooted at the prototypes.

That is, each training sample belongs to one optimum-path tree

rooted at its most strongly connected prototype. The classification

of a test sample evaluates the optimum paths from the prototypes to

this sample incrementally, as though it were part of the forest, and

assigns to it the label of the most strongly connected root. Note the

difference between the proposed method with the maximum arc-

weight function and the nearest neighbor approach (Cover and

Hart, 1967). A test/training sample may be assigned to a given

class, even when its closest labeled sample is from another class

(Fig. 1b).

The optimum paths from the prototypes to the other samples are

computed by the algorithm of the image foresting transform

(IFT)—a tool for the design of image processing operators based on

connectivity (Falcão et al., 2004)—which is extended here from the

image domain to the feature space. The IFT algorithm is essentially

Dijkstra’s algorithm (Cormen et al., 1990) modified for multiple

sources and more general path-value functions (Falcão et al., 2004).

It first identifies the minima (maxima) of the path-value function as

source nodes and then propagates optimum paths from those sour-

ces in a nondecreasing (nonincreasing) order of optimum-path val-

ues, partitioning the graph into an optimum-path forest rooted at the

source nodes. It is a dynamic programming strategy in which, by

choice of the path-value function (Eq. 1), we force the prototypes to

be the roots of the forest.

The dataset partition by the proposed classifier in the feature

space is equivalent to an image segmentation by the IFT-watershed

transform from labeled markers (Lotufo and Falcão, 2000; Audigier

and Lotufo, 2007b) in the image domain. Similar important rela-

tions can be obtained with other image operators, such as relative-

fuzzy connected segmentation (Herman and Carvalho, 2001; Saha

and Udupa, 2001; Audigier and Lotufo, 2007a; Miranda et al.,

2008). In our case, the markers are the prototypes and we have a

special way to estimate them. Figure 2 helps to understand this

comparison and why the proposed method works in the feature

space, when prototypes are estimated as the closest samples from

distinct classes. Figure 2a shows an image with one internal marker

(white) and one external marker (black) for an object of interest.

The pixels are the nodes of a graph whose arcs link the 8-neighbors

of each pixel. The arc weights are dissimilarity values between pix-

els, computed based on their image properties. The dissimilarity

function between pixels plays the same role of the distance function

between samples and distinct classes are represented by object and

background. The connectivity function is the maximum arc-weight

along the path. Figure 2b gives an idea of the arc weights by dis-

playing the complement of a gradient-like image, which is created

by assigning to each pixel the maximum among the arc weights

between it and its eight neighbors. By selecting markers around the

weaker parts (lower arc weights) of the boundary (Fig. 2a), we force

the minimum-cost paths from internal and external markers to meet

first at the weaker parts of the object’s boundary, blocking these

passages for paths from the other side. Therefore, possible paths

from one side to the other will have costs higher than paths from

the same side with respect to each marker. The optimum-path prop-

agation from both markers describes an ordered region growing

(flooding) process where the wavefronts from each marker meet at

the object’s boundary (Fig. 2c). The object is defined by the opti-

mum-path forest rooted at the pixels of the internal marker. In the

case of multiple internal and external markers, the object is com-

posed of multiple internal forests. Three frames of this process are

presented in Figures 2d–2f. Note that internal (external) pixels,

which are only reachable by high-cost paths, are initially sur-

rounded by optimum paths from the internal (external) marker and

finally conquered by this marker. We can also exploit other connec-

tivity functions, but this work presents only the results for the maxi-

mum arc-weight function.

Supervised classification based on prototypes is not new. For

example, methods such as the k-nearest neighbors (k-NN) use all

training samples as prototypes (Fukunaga and Narendra, 1975). Its

classification relies on the direct distance between samples. As far

as we know, our approach is the first to consider optimum-path

forests rooted at automatically selected prototypes in the feature

space. Besides, by changing the graph model and path-value func-

tion, one can derive other types of optimum-path forest classifiers,

such as the unsupervised learning approach proposed in (Cappa-

bianco et al., 2008; Rocha et al., 2008), which also relies on a dif-

ferent strategy to estimate prototypes. Most approaches for pattern

classification based on graphs and/or paths in graphs are either

unsupervised (Zahn, 1971; Hubert, 1974; Jain and Dubes, 1988;

Figure 1. Examples of 2D feature spaces using two classes: (a) lin-
early separable, (b) piecewise linearly separable, and (c) nonsepar-

able classes with arbitrary shapes. Prototypes can be identified in

each class, forming the sets S1 and S2. Every sample t can be con-
nected to a prototype in Si, i 5 1,2, by a sequence pt

(i) of distinct sam-

ples. The classification is done based on optimal connections to the

prototypes.
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Shi and Malik, 2000) or semisupervised (Kulis et al., 2005; Zhou

et al., 2005; Callut et al., 2008; Kumar and Kummamuru, 2008).

The proposed method can be easily extended to semisupervised

classification, given that the optimum-path forest can include

unlabeled nonprototype samples. Previous versions of it have also

been published (Papa et al., 2007, 2008a,b; Montoya-Zegarra

et al., 2008; Spadotto et al., 2008). We have simplified the learn-

ing procedure with better results, corrected some mistakes,

improved explanations and added several experiments using more

datasets, baseline classifiers, and image descriptors based on tex-

ture, shape, and color.

Other contribution of this work concerns learning algorithms,

which can teach a classifier from its errors on a third evaluation set

without increasing the size of the training set. As the samples in the

test set cannot be seen during the project, the evaluation set is nec-

essary for this purpose. The basic idea is to randomly interchange

samples of the training set with misclassified samples of the evalua-

tion set, retrain the classifier, and evaluate it again, repeating this

procedure during a few iterations. The effectiveness is measured by

comparing the results on the unseen test set before and after the

learning algorithm. It is expected an improvement in performance

for any stable classifier.

The learning with fixed training set size is usually required in

large datasets with thousands/millions of samples (e.g., pixels/vox-

els in 2D/3D images). It also stems from applications where the

classifier is part of an expert system, which performs a laborious

data analysis (sometimes inviable for human beings) and emits its

opinion to a human expert. The human expert may agree or not

based on other evidences, but the feedback about the classification

errors is important to improve performance in a future analysis. The

diagnosis of parasites from microscopy images of biological slides

is an example (Falcão et al., 2008). The human visual inspection is

very difficult and error prone in several situations due to the amount

of impurities and small sizes of some parasites (e.g., protozoa in

Figure 2. IFT-watershed segmentation. (a) Image with internal (white) and external (black) markers. (b) The complement of a gradient-like

image which gives an idea of the arc weights. The markers are selected around the weaker parts of the boundary (brighter values in b). (c) The

result of segmentation and (d–f) three frames of the IFT flooding process that leads to (c).
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samples of feces). We aim to improve the performance of the expert

system along time of use and we are taking into account the fact

that computers have a limited storage and processing capacity for

the training set.

This article describes the supervised OPF classifier in Section II,

presents a general learning algorithm in Section III, which follows

the same aforementioned strategy for all classifiers, shows results

that compare the OPF classifier with SVM (Boser et al., 1992),

ANN-MLP (Haykin, 1994) and k-NN (Fukunaga and Narendra,

1975) in Section IV, and states conclusions in Section V.

II. OPTIMUM-PATH FOREST CLASSIFIER

Let Z1, Z2, and Z3 be training, evaluation, and test sets with |Z1|,
|Z2|, and |Z3| samples of a given dataset. We use samples as points,

images, voxels, and contours in this article. As already explained,

this division of the dataset is necessary to validate the classifier and

evaluate its learning capacity from the errors. Z1 is used to project

the classifier and Z3 is used to measure its accuracy, being the labels

of Z3 kept unseen during the project. A pseudotest on Z2 is used to

teach the classifier by randomly interchanging samples of Z1 with

misclassified samples of Z2. After learning, it is expected an

improvement in accuracy on Z3.
Let k(s) be the function that assigns the correct label i, i 5

1, 2 , . . . , c, of class i to any sample s [ Z1 | Z2 | Z3, S � Z1 be a
set of prototypes from all classes, and v be an algorithm which

extracts n features (color, shape, texture properties) from any sam-

ple s [ Z1 | Z2 | Z3 and returns a vector ~vðsÞ. The distance d(s,t)
� 0 between two samples, s and t, is the one between their feature

vectors~vðsÞ and~vðtÞ. One can use any distance function suitable for

the extracted features. The most common is the Euclidean norm

k~vðtÞ �~vðsÞk, but some image features require special distance

algorithms (Wang and Pavlidis, 1990). A pair (v, d) then describes

how the samples of a dataset are distributed in the feature space.

Therefore, we call (v, d) a descriptor and the experiments in Section

IV use shape (Arica and Vural, 2003), texture (Montoya-Zegarra

et al., 2008), and color (Stehling et al., 2002) descriptors based on

this definition.

Our problem consists of projecting a classifier which can predict

the correct label k(s) of any sample s [ Z3. Training consists of find-

ing a special set S* � Z1 of prototypes and a discrete optimal parti-

tion of Z1 in the feature space (i.e., an optimum-path forest rooted

in S*). The classification of a sample s [ Z3 (or s [ Z2) is done by

evaluating the optimum paths incrementally, as though it were part

of the forest, and assigning to it the label of the most strongly con-

nected prototype.

A. Training. Let (Z1, A) be a complete graph whose nodes are the

training samples and any pair of samples defines an arc in A 5 Z1
3 Z1 (Fig. 3a). The arcs do not need to be stored and so the graph

does not need to be explicitly represented. A path is a sequence of

distinct samples pt 5 hs1, S2 , . . . , ti with terminus at a sample t. A
path is said trivial if pt 5 hti. We assign to each path pt a cost f(pt)
given by a connectivity function f. A path pt is said optimum if f(pt)
� f(st) for any other path st. We also denote by ps � hs,ti the concate-
nation of a path ps and an arc (s,t).

We will address the connectivity function fmax.

fmax sh ið Þ ¼
0 ifs 2 S;

þ1 otherwise

�

fmax ps � s; th ið Þ ¼ maxffmaxðpsÞ; dðs; tÞg ð1Þ

such that fmax(ps � hs,ti) computes the maximum distance between

adjacent samples along the path ps � hs,ti. The minimization of fmax

assigns to every sample t [ Z1 an optimum path P*(t) from the set

Figure 3. a) Complete weighted graph for a simple training set. (b) Resulting optimum-path forest for fmax and two given prototypes (circled

nodes). The entries (x,y) over the nodes are, respectively, the cost and the label of the samples. The directed arcs indicate the predecessor

nodes in the optimum path. (c) Test sample (gray square) and its connections (dashed lines) with the training nodes. (d) The optimum path from
the most strongly connected prototype, its label 2, and classification cost 0.4 are assigned to the test sample. The test sample is classified in the

class hexagon, although its nearest training sample is from the class circle.

Vol. 19, 120–131 (2009) 123



S � Z1 of prototypes, whose minimum cost C(t) is

CðtÞ ¼ min
8pt2ðZ1 ;AÞ

ffmaxðptÞg: ð2Þ

The minimization of fmax is computed by Algorithm 1, called OPF

algorithm, which is an extension of the general image foresting

transform (IFT) algorithm (Falcão et al., 2004) from the image do-

main to the feature space, here specialized for fmax. As explained in

Section I, this process assigns one optimum path from S to each

training sample t in a nondecreasing order of minimum cost, such

that the graph is partitioned into an optimum-path forest P (a func-

tion with no cycles which assigns to each t [ Z1\ S its predecessor

P(t) in P*(t) or a marker nil when t [ S, as shown in Fig. 3b). The

root R(t) [ S of P*(t) can be obtained from P(t) by following the

predecessors backwards along the path, but its label is propagated

during the algorithm by setting L(t)/k(R(t)).

Lines 1–3 initialize maps and insert prototypes in Q. The main

loop computes an optimum path from S to every sample s in a non-

decreasing order of minimum cost (Lines 4–11). At each iteration,

a path of minimum cost C(s) is obtained in P when we remove its

last node s from Q (Line 5). Ties are broken in Q using first-in-

first-out policy. That is, when two optimum paths reach an ambig-

uous sample s with the same minimum cost, s is assigned to the

first path that reached it. Note that C(t) [ C(s) in Line 6 is false

when t has been removed from Q and, therefore, C(t) = 11 in

Line 9 is true only when t [ Q. Lines 8–11 evaluate if the path that

reaches an adjacent node t through s is cheaper than the current

path with terminus t and update the position of t in Q, C(t), L(t),
and P(t) accordingly.

Algorithm 1—OPF Algorithm

Input: A training set Z1, k-labeled prototypes S � Z1 and the pair

(v,d) for feature vector and distance computations.

Output: Optimum-path forest P, cost map C and label map L.

Auxiliary: Priority queue Q and cost variable cst.

1. For each s [ Z1 \ S, set C(s)/ 11.

2. For each s [ S, do
3. C(s)/; 0, P(s) / nil, L(s) / k(s) and insert s in Q.

4. While Q is not empty, do

5. Remove from Q a sample s such that C(s) is minimum.

6. For each t [ Z1 such that t = s and C(t)[C(s), do
7. Compute cst / max{C(s), d(s,t)}.
8. If cst\C(t), then
9. If C(t)= 11, then remove t from Q.

10. P(t)/ s, L(t)/ L(s), and C(t)/ cst.
11. Insert t in Q.

One can use other smooth connectivity functions, as long as they

group samples with similar properties (Falcão et al., 2004). A func-

tion f is smooth in (Z1, A) when for any sample t [ Z1, there exists

an optimum path pt which either is trivial or has the form ps � hs,ti,
where

1. f(ps) � f(pt),
2. ps is optimum,

3. for any optimum path ss, f(ss � hs,ti)5 f(pt).

We say that S* is an optimum set of prototypes when Algorithm

1 minimizes the classification errors in Z1. S* can be found by

exploiting the theoretical relation between minimum-spanning tree

(MST) (Cormen et al., 1990) and optimum-path tree for fmax

(Allène et al., 2007; Miranda et al., 2008).

By computing a MST in the complete graph (Z1, A), we obtain a

connected acyclic graph whose nodes are all samples of Z1 and the

arcs are undirected and weighted by the distances d between adja-

cent samples (Fig. 3a). The spanning tree is optimum in the sense

that the sum of its arc weights is minimum as compared to any other

spanning tree in the complete graph. In the MST, every pair of sam-

ples is connected by a single path which is optimum according to

fmax. That is, the minimum-spanning tree contains one optimum-

path tree for any selected root node.

The optimum prototypes are the closest elements of the MST

with different labels in Z1. By removing the arcs between different

classes, their adjacent samples become prototypes in S* and Algo-

rithm 1 can compute an optimum-path forest in Z1 (Fig. 3b). Note
that, a given class may be represented by multiple prototypes (i.e.,

optimum-path trees) and there must exist at least one prototype per

class.

It is not difficult to see that the optimum paths between classes

tend to pass through the same removed arcs of the minimum-span-

ning tree. The choice of prototypes as described earlier aims to

block these passages, reducing the chances of samples in any given

class be reached by optimum paths from prototypes of other

classes.

B. Classification. For any sample t [ Z3, we consider all arcs

connecting t with samples s [ Z3, as though t were part of the train-
ing graph (Fig. 3c). Considering all possible paths from S* to t, we
find the optimum path P*(t) from S* and label t with the class

k(R(t)) of its most strongly connected prototype R(t) [ S* (Fig. 3b).

This path can be identified incrementally, by evaluating the opti-

mum cost C(t) as

CðtÞ ¼ minfmaxfCðsÞ; dðs; tÞgg; 8s 2 Zl: ð3Þ

Let the node s* [ Z1 be the one that satisfies Eq. (3) (i.e., the prede-
cessor P(t) in the optimum path P*(t)). Given that L(s*) 5 k(R(t)),
the classification simply assigns L(s*) as the class of t (Fig. 3d). An
error occurs when L(s*)= k(t).

Similar procedure is applied for samples in the evaluation set Z2.
In this case, however, we would like to use misclassified samples of

Z2 to learn the distribution of the classes in the feature space and

improve the classification performance on Z3.

III. LEARNING FROM ERRORS ON THE EVALUATION SET

There are many situations that limit the size of Z1: large datasets,

limited computational resources, and high computational time as

required by some approaches. Mainly in applications with large

datasets, it would be interesting to select for Z1 the most informa-

tive samples, such that the accuracy of the classifier is little affected

by this size limitation. It is also important to show that a classifier

can improve its performance along time of use, when we are able to

teach it from its errors. This section presents a general learning

algorithm which uses a third evaluation set Z2 to improve the com-

position of samples in Z1 without increasing its size.

From an initial choice of Z1 and Z2, the algorithm projects an

instance I of a given classifier from Z1 and evaluates it on Z2. The
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misclassified samples of Z2 are randomly selected and replaced by

samples of Z1 (under certain constraints). This procedure assumes

that the most informative samples can be obtained from the errors.

The new sets Z1 and Z2 are then used to repeat the process during a

few iterations T. The instance of classifier with highest accuracy is

selected along the iterations. The accuracy values L(I) obtained for

each instance I form a learning curve, whose nondecreasing mono-

tonic behavior indicates a positive learning rate for the classifier.

Afterwards, by comparing the accuracies of the classifier on Z3,
before and after the learning process, we can evaluate its learning

capacity from the errors.

The accuracies L(I), I 5 1,2. . .,T, are measured by taking into

account that the classes may have different sizes in Z2 (similar defi-

nition is applied for Z3). If there are two classes, for example, with

very different sizes and a classifier always assigns the label of the

largest class, its accuracy will fall drastically due to the high error

rate on the smallest class.

Let NZ2(i), i 5 1,2. . .,c, be the number of samples in Z2 from

each class i. We define

ei;1 ¼
FPðiÞ

jZ2j �
��NZ2ðiÞ�� and ei;2 ¼

FNðiÞ
jNZ2ðiÞj

; i ¼ 1; . . . ; c ð4Þ

where FP(i) and FN(i) are the false positives and false negatives,

respectively. That is, FP(i) is the number of samples from other

classes that were classified as being from the class i in Z2, and FN(i)
is the number of samples from the class i that were incorrectly clas-

sified as being from other classes in Z2. The errors ei,1 and ei,2 are
used to define

EðiÞ ¼ ei;1 þ ei;2; ð5Þ

where E(i) is the partial sum error of class i. Finally, the accuracies
L(I), I5 1,2. . .,T, are written as

LðIÞ ¼
2c�

Pc
i¼1

EðiÞ

2c
¼ 1�

Pc
i¼1

EðiÞ

2c
: ð6Þ

Algorithm 2 presents this learning procedure which has been used

for OPF, SVM, ANN-MLP, and k-NN, by changing Lines 4 and

19–20.

In OPF, Line 4 is implemented by computing S* � Z1 as

described in Section II.A and the predecessor map P, label map L,

and cost map C by Algorithm 2. The classification is done by set-

ting L(t)L(s*), where s* [ Z1 is the sample that satisfies Eq. (3). The

constraints in Lines 19–20 refer to keep the prototypes out of the

sample interchanging process between Z1 and Z2. We do the same

with the support vectors in SVM. However, they may be selected

for interchanging in future iterations if they are no longer proto-

types or support vectors. For SVM, we use the latest version of the

LibSVM package (Chang and Lin, 2001) with radial basis function

(RBF) kernel, parameter optimization and the one-versus-one strat-

egy for the multiclass problem to implement Line 4.

We use the fast artificial neural network library (FANN) [56] to

implement the ANN-MLP. The network configuration is x : y : z,
where x 5 n (number of features), y 5 |Z1| 2 1, and z 5 c (number

of classes) are the number of neurons in the input, hidden, and out-

put layers, respectively (Huang and Huang, 1991). In Line 4, the

ANN-MLP is trained by back propagation. There is no constraint in

Lines 19–20. However, we keep the weights of the neurons as ini-

tial setting for training in the next iteration. For k-NN, training in

Line 4 involves the computation of the value of k which provides

the highest accuracy on Z1 according to the Leave-One-Out

approach (Kohavi, 2005). Lines 19–20 are implemented without

constraints.

Lines 5–6 initialize the false positive and false negative arrays

for accuracy computation. The classification of each sample is per-

formed in Lines 7–13, updating the false positive and false negative

arrays. Misclassified samples are stored in the list LM (Line 13).

Line 14 computes the accuracy L(I) and Lines 15–16 save the best

instance of classifier so far. The inner loop in Lines 17–20 changes

the misclassified samples of Z2 by randomly selected samples of Z1,
under the aforementioned constraints.

Algorithm 2—General Learning Algorithm

Input: Training and evaluation sets, Z1 and Z2, labeled by k, num-

ber T of iterations, and the pair (v,d) for feature vector and distance

computations.

Output: Learning curve L and the OPF/SVM/ANN-MLP/k-NN
classifier with highest accuracy.

Auxiliary: Arrays FP and FN of sizes c for false positives and false

negatives and list LM of misclassified samples.

1. Set MaxAcc 521.

2. For each iteration I5 1,2,. . .T, do
3. LM 5 Ø

4. Train OPF/SVM/ANN-MLP/k-NN with Z1.

5. For each class i 5 1,2,. . .c, do
6. FP(i)5 0 and FN(i)5 0.

7. For each sample t [ Z2, do
8. Use the classifier obtained in Line 4 to classify

9. t with a label L(t).
10. If L(t)= k(t), then
11. FP(L(t)) 5 FP(L(t)) 1 1.

12. FN(k(t)) 5 FN(k(t)) 1 1.

13. LM 5 LM | t.
14. Compute accuracy L(I) by Eq. (6).
15. If L(I)[MaxAcc then save the current instance

16. of the classifier and set MaxAcc 5 L(I).
17. While LM= Ø;

18. LM 5 LM \t
19. Replace t by a randomly selected sample of the

20. of the same class in Z1, under some constraints.

Figure 4 illustrates the learning curve of each classifier for the

same dataset and descriptor. Oscillations indicate instability of the

classifier (e.g., ANN – MLP) or presence of outliers. The monotonic

behavior of the OPF’s learning curve is usually observed. Neverthe-

less, the choice of the classifier instance with highest accuracy aims

to avoid outliers in Z1.

IV. EVALUATION

This section presents the datasets, descriptors, and experiments that

compare OPF with SVM, ANN-MLP, and k-NN in accuracy and

efficiency (computational time).

Table I presents the 11 datasets used in the experiments, with

diverse types of samples. The dataset MPEG-7 (2002) uses shape

images (Fig. 5), COREL (Corel, 2007) uses color images, and Bro-

datz (1966) uses texture images (Fig. 6). These datasets allow to

evaluate the performance of the classifiers using shape, color, and
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texture descriptors, respectively. The remaining datasets already

provide their feature vectors: WBC—Wisconsin Breast Cancer,

IS—Image Segmentation, and LR—Letter Recognition (Asuncion

and Newman, 2007); Brain (Collins, 1998); and Cone-torus, Saturn,

Petals, and Boat (Kuncheva, 1996). The dataset Brain uses voxels

as samples from gray and white matter in magnetic resonance

images of brain phantoms, with various levels of noise and inhomo-

geneity that produce outliers. The features are the minimum, maxi-

mum, and intensity within a small 3D neighborhood of each voxel.

The last four datasets use the (x, y) coordinates of 2D points as fea-

tures (Fig. 7).

Table II shows 10 different possibilities of combining feature

extraction v and distance function d to form descriptors (v,d). Some

descriptors were designed for shape (D1–D5), color (D6–D7), and

texture (D8) images. Descriptors D1, D2, and D3 use the Fourier

coefficients (FC) (Persoon and Fu, 1977), moment invariants (MI)

(Hu, 1962), and multiscale fractal dimensions (MSF) (Torres et al.,

2004) as shape features, respectively, and Euclidean norm (L2) as

distance function. Descriptors D4 and D5 compute three statistical

measures, called bean angle statistics (BAS), for each sample on a

contour (Arica and Vural, 2003). They use L2 metric and optimal

correspondence subsequence (OCS) (Wang and Pavlidis, 1990),

respectively, for comparison between feature vectors, illustrating

the importance of special distance functions such as OCS. The com-

parison among descriptors from D1 to D5 using a same classifier

illustrates their ability in representing the shapes of a given dataset.

Descriptor D6 classifies pixels into border/interior regions and

computes color histograms for each region (Stehling et al., 2002). It

uses as distance function the L1 metric between the logarithm of

the histograms (dLog). Color images are also represented by color

histograms (CHIST) (Swain and Ballard, 1991) and compared with

L1 metric in the descriptor D7. Descriptor D8 uses steerable pyra-

mid decomposition to create texture features (TEX), which are

compared by a rotation-invariant texture matching (RIM) (Mon-

toya-Zegarra et al., 2008). Descriptor D9 represents all feature vec-

tors (OWN) already available in the datasets from B4 to B7 and D10

represents the 2D-point (XY) features of the datasets from B8 to

B11 (Table I). Their distance function is L2. Finally, the combina-

tions between datasets and descriptors are summarized in Table III.

MLP, and others have the distance function embedded in the

model, as in the radial basis function (RBF) of the SVM. When the

distance function is L2, we use as RBF for SVM

Kðs; tÞ ¼ exp�cjjð~vðsÞ�~vðtÞÞjj2 ; ð7Þ

where s and t are two samples (one is support vector) and ~vðsÞ and
~vðtÞ are their feature vectors. The constant c is found by parameter

optimization. In the case of special distances d, we have observed a

considerable improvement in the SVM’s performance when we

replace its RBF by

K0ðs; tÞ ¼ exp�cd2ðs;tÞ : ð8Þ

This can be observed in Tables IV and V for dataset B1 (MPEG-7)

with D4 (BAS with L2) and D5 (BAS with OCS). Therefore, K0 was

Figure 4. Learning curve of each classifier for the dataset B8 using
descriptor D10 (Tables I and II).

Table I. Description of the datasets.

Dataset Code Dataset Name Objects Number Classes Number

B1 MPEG-7 1,400 70

B2 COREL 1,607 49

B3 Brodatz 208 13

B4 WBC 699 2

B5 IS 2,310 7

B6 LR 5,000 20

B7 Brain 1,578 2

B8 Cone-torus 400 3

B9 Saturn 200 2

B10 Petals 100 4

B11 Boat 100 3

Figure 5. Examples of the MPEG-7 shapes from the classes (a)–(c)
fish and (d)–(f) camel.
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used in all experiments involving SVM and special distance func-

tions d, and K was used for L2.

The experiments evaluate the accuracy on Z3 and the computa-

tional time of each classifier, OPF, SVM, ANN-MLP, and k-NN,
for each pair dataset and descriptor presented in Table III. In all

experiments, the datasets were divided into three parts: a training

set Z1 with 30% of the samples, an evaluation set Z2 with 20% of

the samples, and a test set Z3 with 50% of the samples. These sam-

ples were randomly selected and each experiment was repeated 10

times with different sets Z1, Z2, and Z3 to compute mean (robust-

ness) and standard deviation (precision) of the accuracy values and

mean value of kappa (Cohen, 1960). Section IV.A presents the ac-

curacy results of training on Z1 and testing on Z3. The accuracy

results of training on Z1, with learning from the errors in Z2, and
testing on Z3 are presented in Section IV.B. The average computa-

tional time of each classifier for training and classification is di-

vided by the number of samples and reported in Section IV.C.

A. Accuracy Results on Z3 Without Using Z2. The results in

Table IV are presented as x � y(z)[k], where x, y, z, and k are the

mean accuracy, its standard deviation, mean kappa coefficient

(Cohen, 1960), and the best value of k obtained for k-NN, respec-
tively. Values of kappa below 0.80 indicate the difficulty in classi-

fying some datasets using the respective descriptors. Good descrip-

tors tend to better separate the classes in the feature space, reducing

overlap and so facilitating the classification. The results in B1

(MPEG-7), for example, indicate that D5 outperforms the remaining

descriptors. Besides, D4 and D5 differ only in the distance function

and the results indicate that OCS (Wang and Pavlidis, 1990) outper-

forms the Euclidean metric. Similarly, one may conclude that D6

(BIC in Stehling et al., 2002) outperforms D7, (color histogram in

Swain and Ballard, 1991) in B2 (COREL). Irrespective of that, we

are comparing the relative performance of the classifiers.

Most accuracies of OPF and SVM were clearly higher than those

of ANN-MLP and k-NN. OPF and SVM presented equivalent over-

all performances, being one better than the other depending on the

case. Considering only the cases where the best k is 1 in k-NN, we
can observe that the criterion of OPF to assign the label of the most

strongly connected root to a sample is really more accurate than the

label of the closest sample. The instability of ANN-MLP is reflected

by the standard deviations, which are about 10 times higher than

the standard deviations obtained by the other classifiers. Because of

the overlapping between classes, the accuracies of the classifiers

in B8 and B9 are lower than their accuracies in B10 and B11.

Because of the quality of the descriptors, similar observation

explains the increasing order of accuracy in B1 with D1, D3, D2, D4,

and D5.

B. Accuracy Results on Z3 with Learning on Z2. To evaluate

the ability of each classifier in learning from the errors in Z2 without

Figure 6. Texture images from the Brodatz dataset. Each image, from left to right and from top to bottom, represents a class: bark, brick,
bubbles, grass, leather, pigskin, raffia, sand, straw, water, weave, wood, and wool.

Figure 7. Datasets of 2D points: (a) cone-torus, (b) saturn, (c)

petals, and (d) boat.

Table II. Descriptors used in the experiments.

Descriptor Code Feature Extraction Algorithm Distance Function

D1 FC L2

D2 MI L2

D3 MSF L2

D4 BAS L2

D5 BAS OCS

D6 BIC dLog

D7 CHIST L1

D8 TEX RIM

D9 OWN L2

D10 XY L2
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increasing the size of Z1, we executed Algorithm 2 for T 5 3 itera-

tions. The results are presented in Table V.

We can observe that the conclusions drawn from Table V

remain the same with respect to the overall performance of the

classifiers. In most cases, the general learning algorithm im-

proved the performance of the classifiers with respect to their

results in Table IV.

C. Efficiency Results. Table VI shows the mean execution time

in seconds divided by the number of samples that each classifier

takes for training and classification (without learning on Z2) and for

each dataset and descriptor.

Note that OPF is extremely fast, except when it uses descriptor

D5 (Table II) because of the respective distance function computa-

tion. Similar effect can be observed in SVM and k-NN. Given that

ANN-MLP does not use distance functions, it is free of this prob-

lem. On average, the results indicate that our most recent imple-

mentation of OPF was about 72 times faster than the latest imple-

mentation of SVM (Chang and Lin, 2001), 443 times faster than the

fast ANN-MLP (Nissen, 2003), and 1.3 times faster than our imple-

mentation of a k-NN classifier.

The importance of speed in pattern recognition seems to not

have caught much attention. Most of the computational time is

spent in training, which is done only once in many applications.

However, take the first case of B1 and D1, for example, where OPF

spent 0.0052 s per sample and SVM spent 1.304. For 100,000 sam-

ples, this represents 8.67 min using OPF and 36.22 h using SVM. In

the case of 2D/3D images, for example, the number of pixels/voxels

ranges from thousands to millions, and the time for training

becomes a burden. In medical imaging, it is very likely that a new

training has to be done for every 3D image, because of their varia-

tions in noise, inhomogeneity, and protocols.

V. CONCLUSIONS

We presented a discrete approach for supervised classification

(OPF), which computes an optimum-path forest on a training set

and classifies samples with the label of their most strongly con-

nected root in the forest. We also proposed a general learning algo-

rithm, which usually improves performance of the classifiers with-

out increasing the training set. The source code of the supervised

OPF is available at http://www.ic.unicamp.br/�afalcao/libopf.

We compared OPF with SVM, ANN-MLP, and k-NN using sev-

eral datasets and descriptors. These experiments involved datasets

with shape, color, and texture properties, and datasets commonly

used by the machine learning community. The advantage of OPF

over the others in computational time is notorious and impressive,

which is crucial in the case of large datasets. It can be more or less

accurate than SVM, depending on the case, but its accuracy is usu-

ally superior to those of ANN-MLP and k-NN. OPF also presents

some interesting properties. It is fast, simple, multiclass, parameter

independent, does not make any assumption about the shape of the

classes, and can handle some degree of overlapping between

classes.

The OPF classifiers are being successfully used in some real

applications: the supervised approach is being used for oropharyn-

geal dysphagia identification (Spadotto et al., 2008), laryngeal pa-

thology detection (Papa et al., 2008b), and diagnosis of parasites

from optical microscopy images (Falcão et al., 2008), and the unsu-

pervised approach is being used for the separation of gray-matter

and white-matter in magnetic resonance images of the brain (Cap-

pabianco et al., 2008). In the first three applications, the supervised

OPF outperforms SVM in accuracy and efficiency. In all cases,

there is no human interaction, however, we also intend to evaluate

Table III. Datasets and the respective descriptors used in the experiments.

Dataset Code Descriptor Code

B1 D1, D2, D3, D4, D5

B2 D6, D7

B3 D8

B4 D9

B5 D9

B6 D9

B7 D9

B8 D10

B9 D10

B10 D10

B11 D10

Table IV. Accuracy results x � y(z) on Z3 without using Z2: x—mean accuracy, y—its standard deviation, and z—mean kappa.

Dataset (Descriptor)

Classifiers

OPF SVM ANN-MLP k-NN

B1(D1) 71.71 � 0.01 (0.49) 70.07 � 0.01 (0.40) 57.28 � 0.44 (0.14) 59.38 � 0.01 (0.17) [1]

B1(D2) 79.48 � 0.01 (0.59) 82.15 � 0.01 (0.64) 71.48 � 0.26 (0.46) 72.04 � 0.01 (0.64) [1]

B1(D3) 75.95 � 0.01 (0.51) 74.49 � 0.01 (0.50) 62.98 � 0.39 (0.25) 60.16 � 0.01 (0.19) [1]

B1(D4) 87.37 � 0.01 (0.74) 87.05 � 0.01 (0.75) 77.99 � 0.34 (0.57) 66.55 � 0.01 (0.67) [1]

B1(D5) 95.72 � 0.01 (0.89) 94.92 � 0.01 (0.88) 76.29 � 0.04 (0.55) 50.70 � 0.01 (0.31) [1]

B2(D6) 86.74 � 0.01 (0.75) 90.65 � 0.01 (0.83) 83.07 � 0.10 (0.64) 82.83 � 0.01 (0.70) [1]

B2(D7) 80.25 � 0.01 (0.63) 83.37 � 0.01 (0.70) 80.07 � 0.10 (0.61) 78.03 � 0.01 (0.61) [1]

B3(D8) 88.85 � 0.02 (0.77) 84.27 � 0.01 (0.68) 86.97 � 0.21 (0.73) 84.52 � 0.01 (0.80) [1]

B4(D9) 93.87 � 0.01 (0.88) 95.46 � 0.01 (0.90) 92.83 � 0.20 (0.86) 91.85 � 0.01 (0.81) [3]

B5(D9) 79.37 � 0.01 (0.68) 78.35 � 0.01 (0.59) 73.35 � 0.10 (0.68) 65.89 � 0.01 (0.41) [2]

B6(D9) 90.35 � 0.01 (0.80) 93.35 � 0.01 (0.90) 84.72 � 0.10 (0.73) 87.20 � 0.01 (0.79) [2]

B7(D9) 90.53 � 0.01 (0.81) 93.86 � 0.01 (0.88) 92.94 � 0.09 (0.85) 86.39 � 0.01 (0.73) [1]

B8(D10) 87.29 � 0.01 (0.71) 85.54 � 0.02 (0.71) 85.33 � 0.02 (0.69) 81.34 � 0.01 (0.65) [7]

B9(D10) 88.10 � 0.03 (0.76) 86.90 � 0.05 (0.73) 83.60 � 0.54 (0.67) 81.90 � 0.02 (0.62) [1]

B10(D10) 1.0 � 0.0 (1.0) 1.0 � 0.0 (1.0) 1.0 � 0.0 (1.0) 1.0 � 0.0 (1.0) [21]

B11(D10) 96.76 � 0.01 (0.93) 99.55 � 0.01 (0.99) 97.20 � 0.36 (0.94) 93.19 � 0.01 (0.89) [1]

The best accuracies are indicated in bold and the best value of k is shown in brackets for the k-NN.
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the supervised OPF for interactive segmentation of brain tissues,

where the user selects training markers. In this case the method

becomes similar to an IFT-watershed approach, except for the fact

that it works in the feature space with no spatial connectivity con-

straint, which is important for tissues with disconnected voxels.

Applications with large datasets definitely favor OPF with

respect to SVM. We must say that, as a discrete approach, the per-

formance of OPF may be reduced for small training sets, if the

number of samples are not enough to represent the classes. In SVM,

this may also be a problem, but as it estimates a decision hyper-

plane, it has a chance to divide the feature space with separation

between classes. Too much overlapping between classes may also

represent an advantage for SVM with respect to OPF, because its

transformation to a higher-dimensional space may separate the

classes, solving the problem.

The OPF classifier is an important contribution for pattern rec-

ognition and related fields, which also opens new research prob-

lems. One can investigate the optimum-path forest classification

using incomplete graphs (e.g., graphs where the arcs are between k-
nearest neighbors), different connectivity functions, and other algo-

rithms to estimate prototypes and to learn from the errors in the

evaluation set. The use of genetic programming (Koza, 1992) (GP)

for arc-weight estimation in OPF is also an alternative to deal with

class overlapping, by combining the distances from multiple

descriptors in a nonlinear way (Torres et al., 2008).
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