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Abstract

This paper presents two shape descriptors, multiscale fractal dimension and contour saliences, using a graph-based
approach— the image foresting transform. It introduces a robust approach to locate contour saliences from the relation
between contour and skeleton. The contour salience descriptor consists of a vector, with salience location and value along
the contour, and a matching algorithm. We compare both descriptors with fractal dimension, Fourier descriptors, moment
invariants, Curvature Scale Space and Beam Angle Statistics regarding to their invariance to object characteristics that belong

to a same class (compact-ability) and to their ability to separate objects of distinct classes (separability).
© 2003 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

In pattern recognition and related areas, shape is an im-
portant characteristic to identify and distinguish objects [1].
The shape variations expressed with respect to a given scale,
named multiscale shape representation, provide even more
information about the objects. In this context, shape descrip-
tors have been used to encode such representations into sig-
natures (i.e. feature vectors). In practice, objects belong to
certain semantic categories, each category defines a class,
and the problem consists of grouping the objects that be-
long to a same class. The main challenge here is to find out
“good signatures” to perform such a task successfully.

This paper presents the advantages of computing two re-
cently proposed shape descriptors, multiscale fractal dimen-
sion and contour saliences [2,3], using the image foresting
transform (IFT )— a graph-based approach to the design of
image processing operators [4—8]. In this case, the shape
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descriptors are obtained from the multiscale shape repre-
sentations created by the IFT. The multiscale fractal dimen-
sion [2,9] is a new concept, which copes with many serious
drawbacks in current methods [10,11] for numerical esti-
mation of fractal dimension. The multiscale fractal dimen-
sion of a shape is computed based on the Euclidean distance
transform (EDT) of its pixels. The EDT of these pixels is
also related to their geometric Voronoi diagram [12], where
each pixel defines an influence zone (discrete Voronoi re-
gion) composed by its closest image pixels. The saliences
of a shape are computed based on the areas of the discrete
Voronoi regions of its higher curvature pixels within a nar-
row band around the shape [2]. This approach allows the
quantification of the curvature values at points (center of
pixels) where the analytical curvature would be infinite. The
IFT provides the simultaneous computation of the EDT and
the discrete Voronoi regions in time usually proportional
to the number of pixels [7], being more efficient than the
method proposed in Ref. [2]. The present paper also intro-
duces improvements in the multiscale fractal dimension and
contour saliences computations. The original approach for
multiscale fractal dimension suffers from undesirable oscil-
lations on the fractal curve, and the location of higher cur-
vature points along the contour for saliences computation
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is very sensitive in the case of intricate and complex shapes.
The oscillation problem is solved using polynomial regres-
sion. The relation between the salience points of the contour
and of its internal and external skeletons— an important con-
cept introduced in Ref. [13]— is used to locate the higher
curvature points along the contour, considerably improving
the robustness of the contour saliences computation. This re-
lation is obtained in a direct way using the IFT framework.
The contour saliences descriptor is also redefined to include
point location and salience value along the contour and a
special distance metric, which make it possible to reach high
effectiveness in shape recognition.

The proposed descriptors are compared with single
fractal dimension, two classical (Fourier descriptors [14]
and moment invariants [15]), and two recently published
shape descriptors (curvature scale space (CSS) [16,17] and
beam angle statistics (BAS) [18,19]) in regarding to the
following aspects: compact-ability and separability. The
compact-ability of a descriptor indicates its invariance to
the object variations within a same class, while the sepa-
rability indicates its discriminatory ability between objects
that belong to distinct classes. In other words, a descriptor
is considered “good” when it creates compact clusters far
away from each other, for all classes in the corresponding
feature space. This condition should be sufficient for the
success of any suitable classification method.

This article starts by presenting an overview of the IFT
in Section 2. The IFT is used to obtain two types of shape
representation: multiscale contours by exact dilations and
multiscale skeletons by label propagation, as described in
Section 3. We use the former to estimate multiscale fractal
dimension and the later to locate the salience points along
the contour in Section 4. Section 5 gives a formal defini-
tion of compact-ability and separability, evaluates the pro-
posed shape descriptors, and discusses the main results of
this work. We present the conclusion and our current re-
search on shape descriptors in Section 6.

2. Image foresting transform

The image foresting transform (IFT) is a recent approach
to the design of image processing operators based on connec-
tivity [4-8]. The IFT reduces image partition problems based
on a given seed set to the computation of a minimum-cost
path forest in a directed graph, whose nodes are the pixels
and whose arcs are defined by an adjacency relation between
pixels. A path in this graph is a sequence of adjacent pix-
els. The cost of a path is determined by a suitable path-cost
function, which usually depends on local image properties
along the path— such as color, gradient, and pixel position.
For suitable path-cost functions, the IFT assigns to each im-
age pixel a minimum-cost path from the seed set, such that
the union of those optimum paths form an oriented forest
spanning the whole image. The nodes of each rooted tree
in the forest are composed by pixels that are “more closely

connected” to its root pixel than to any other seed in some
appropriate sense. The IFT assigns to each pixel three at-
tributes: its predecessor in the optimum path (predecessor
map P), the cost of that path (cost map C), and the corre-
sponding root (root map R) or some label associated with it
(label map L).

For given set S of seed pixels, the IFT can provide the
simultaneous computation of the Euclidean distance trans-
form in the cost map C and of the discrete Voronoi regions
in the root map R [4]. This operator asks for an Euclidean
adjacency relation 4 and a path-cost function f.. defined
for any path @ = {p1, p2, ..., pa) in the graph as

qu(P)i(xq_xp)z"‘(yq_J’p)z <P2, (1)
. py = xp) + (o — )" if P1ES,
Sfeue(m) = )
+00 otherwise,
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where p is the adjacency radius and (x,,, y,,) are the (x, y)
coordinates of a pixel p; in the image. Note that, the main
idea is to find for every image pixel p, a path P*(p,) from a
seed pixel p; €S, such that fou.(P*(py)) is minimum. The
exact Euclidean distance transform will depend on the ap-
propriate choice of p, as demonstrated in Ref. [4]. However,
for most practical situations involving 8-connected curves,
such as contours and skeletons, p = v/2 is enough [7]. Al-
gorithm 1 below presents an IFT procedure with f .

Algorithm 1.

Input: An image /, a set S of seed pixels in /, and
an Euclidean adjacency relation 4;
Output: An optimum-path forest P, and the corres-
ponding cost map C and root map R.
Auxiliary Data structures: A priority queue Q.
(1) For all pixels p of the image /, set C(p) «— +0o0;
(2) For all pe S, set P(p) < nil, R(p) < p,
C(p) < 0, and insert p in Q;
(3) While Q is not empty, do
3.1 Remove from Q a pixel p = (x,,y,) such
that C(p) is minimum;
3.2 For each pixel ¢ = (x4, y4) such
that g € A(p) and C(g) > C(p), do
3.2.1 Set C' « (x4 — Xr(p))*
+(¥g — Yrp))’> where R(p) = (Xk(p)» Yr(p))
is the root pixel of p;
3221f C" < C(q), then
3.2.2.1. If C(q) # +o0,
then remove ¢ from Q.
3.2.2.2. Set P(q) «+ p, C(q) — C’,
R(q) < R(p), and insert g in Q.

Note that, the IFT algorithm is essentially Dijkstra’s
shortest-path algorithm [20-23], slightly modified to multi-
ple sources and general path-cost functions. Its correctness
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for weaker conditions that are applied to only optimum paths
in the graph is presented in [4].

3. Multiscale shape representation

A shape can be represented along a range of scales span-
ning from coarse to fine. If the shape is to be used as an
invariant indicator of an object in a scene in which the view-
ing distance is variable, a multiscale structure is necessary
to relate various views, thereby making the representation
invariant with respect to the viewing distance [24]. The IFT
with fe. allows efficient computation of multiscale con-
tours by exact dilations and multiscale skeletons by label
propagation [7].

3.1. Multiscale contours by exact dilations

Given a set S of points, represented in terms of their
Cartesian coordinates (x, ), its exact Euclidean dilation by
a radius 7, henceforth represented as S,, is defined as being
the union of all disks of radius » centered at each of the
points in S. Observe that, this definition is valid for both
discrete and continuous objects. Subsequent dilations of a
given shape by increasing values of » create a family of
progressively simplified instances of the original shape, as
illustrated in Fig. 1 for a contour.

Multiscale contours by exact dilation result from Algo-
rithm 1, where the pixels of the original shape (contour) are
taken as the seed set S. Each instance of the multiscale shape
is obtained by thresholding the cost map C at a given squared
Euclidean distance value. The higher the threshold value,
the more simplified the shapes become, with smaller details
being progressively removed as the threshold increases.

3.2. Multiscale skeletons by label propagation

Given a contour with N pixels, its internal skeleton is
defined as the geometric location of the centers of maximal

() (b)

Fig. 1. (a) A contour of a fish and (b) multiscale contours by exact
dilation.

disks contained in the contour [25]. A similar definition is
valid for the external skeleton.

Algorithm 1 applied to the contour creates a root map R.
Multiscale skeletons can be computed from R if each con-
tour pixel p (root) is assigned to a subsequent label value
A(p), varying from 1 to N, while circumscribing the con-
tour (Fig. 2a). A label map L can be created by computing
L(R(p)) to each image pixel p (Fig. 2b). A more efficient
way, however, is to propagate the labels of the contour pix-
els during Algorithm 1. In this case, the labeling function A
is used in step (2), when the contour pixels are inserted in
0, and the label map L is created similarly and simultane-
ously to the root map R. A difference image D results from
the label map L by computing the following for each pixel
p inside and outside the contour (Fig. 2c):

D(p)= Jmax {min{d(p,q), N — é(p,q)}}, (3)

where d(p,q) = L(q) — L(p) and A4( p) is the set of pixels
¢ that are 4-neighbors of p. The difference image represents
the multiscale internal and external skeletons by label prop-
agation [7,8,26]. One-pixel wide and connected skeletons
can be obtained by thresholding the difference image at sub-
sequent integer values (Fig. 2d—f). The higher the thresh-
old value, the more simplified the skeletons become, with
smaller details being progressively removed as the threshold
increases.

It is important to observe that Eq. (3) corrects the original
equation, reported in Refs. [7,8], as pointed out in Ref. [27].

4. Shape descriptors

This section presents the process of creating shape de-
scriptors from the multiscale shape representations presented
in Section 3.

4.1. Multiscale fractal dimension

While the topological dimension is restricted to integer
values, fractal dimension allows fractionary values. Dissem-
inated by Mandelbrot [28], fractal dimension provides an
interesting means for characterizing the self-similarity (or
self-affinity) of abstract and real objects, being closely re-
lated to the concept of power-laws. A particularly intuitive
and useful definition of fractal dimension is the Minkowski—
Bouligand dimension [29], which is here introduced in terms
of the following example. Let the shape under analysis be
represented in terms of the set S of the Cartesian coordinates
of each of its elements, and let S, be its dilation by  (see
Section 3.1). Let A(r) be the area of the respective dilated
version of the shape, i.e. S,. The Minkowski—Bouligand frac-
tal dimension, hence F, is defined as
F =2 lim 2240 )

r—0 log(r)
In other words, the fractal dimension descriptor in this case
(i.e. considering a two-dimensional space) is a number



1166 R. da S. Torres et al. | Pattern Recognition 37 (2004) 1163—1174

i
!
5 | o :
H‘\._n . \}
f : l
| / /
@ L/ (©

(d) (O] ()

Fig. 2. Multiscale skeletonization by label propagation. (a) Labeled contour, (b) label map, (¢) difference image, and (d—f) skeletons at

three different scales.
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Fig. 3. (a) An object similar to the Koch star, whose fractal dimension is known as about 1.26 (=log4/log3). (b) The logarithmic area
function. By taking 2 minus the inclination of the fitted straight line, the fractal dimension obtained is about 1.23.

within [0,2]. It should be borne in mind that ' assumes
perfect self-similarity of the shape for small spatial scales,
i.e. for r close to 0, which is never verified for real data.
Indeed, while shapes in nature can exhibit an infinite de-
gree of detail as one moves into the microscopic scales,
the self-similarity along these scales is not preserved for
an infinite interval. For instance, a fern leaf presents just a
few orders (3 or 4) of self-similarity. The situation is even
more complicated for experimental data, where the finite
resolution of the acquisition device contributes further to
limit the small scale detail.

In spite of such limited fractality observed for real ob-
jects, the standard numerical procedure for estimating frac-
tal dimensions involves linear interpolating the logarithm
curve of the area (4(r)) in terms of dilating radius, comput-
ing the angular coefficient (4'(7)) of this line and taking F
as F(r) =2 — A'(r) (see Figs. 3a and b). Observe that the
area values A(r) for each logarithm of the dilation radius r

can be simply obtained by computing the accumulated his-
togram of the cost map of the IFT with f,.. Therefore, it
is obtained from the multiscale contours by exact dilations
(Section 3.1).

Although the deviations of shapes from perfect
self-similarity seriously undermine the aforementioned ex-
perimental method, several practical applications of the
fractal dimension have been reported in the literature (e.g.
Ref. [30]). Fractal dimensions have been considered as fea-
tures useful for expressing the area coverage and the “com-
plexity” of shapes ranging from neurons [9] to heartbeat
dynamics [31]. In the particular case of the Minkowski—
Bouligand dimension, the value of F provides an interesting
indication of how much the shape constrains its own di-
lation. Therefore, simple shapes, such as the point or the
straight line impose relatively less constraints to their own
dilation and consequently have smaller fractal dimension
values than those of an intricate curve in the plane.
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In order to address the subjectivity implied by the choice
of the interval over which the logarithmic curve is interpo-
lated and to fully take into account the limited self-similarity
exhibited by the geometry of real shapes, the concept of
multiscale fractal dimension was recently reported [2]. This
approach involves taking into the infinitesimal limit the
previous concept of linear interpolation [10,11], which
naturally leads to the estimation of the derivative of the
logarithmic area function. Therefore, the multiscale fractal
dimension becomes a function of the spatial scale rather
than a single scalar global value. By expressing the fractal-
ity explicitly in terms of the spatial scale, this new measure
provides a richer description of the self-similarity of the
analyzed shapes along the spatial scales. The derivative
function therefore becomes completely independent of the
choice of the spatial scale interval adopted for interpolation.

The approach presented here fits a polynomial curve by
regression to the logarithmic area function from which the
sought derivatives can be immediately obtained. One im-
portant advantage of this approach is to be free of the unde-
sirable oscillations often found in the derivative estimation
of sampled curves. Note that, the commonly used fractal di-
mension can be understood as a particular case of the mul-
tiscale dimension when the adjusting polynomial is linear.
The multiscale fractal dimension is obtained whenever the
degree of the polynomial is greater than one. In the exam-
ples of this paper, the multiscale fractal dimension is rep-
resented by a polynomial of degree nine. In this work the
multiscale fractal dimension descriptor is represented by a
vector of 50 sample points of this polynomial. The polyno-
mial degree and the vector size were determined through a
set of experiments. These experiments showed that vectors
containing more than 50 sample points do not improve the
results. Two multiscale fractal vectors are compared using
the L, metric.

Fig. 4 illustrates the concept of multiscale fractal dimen-
sion with respect to the contour in Fig. 3a. Observe that the
maximum value of the curve in Fig. 4b is close to 1.26,

13 T T

" observed values A+
polynomial regressiong#--------

125

Log (A)

@ Log (1)

which is the actual fractal dimension of the Koch triadic
curve (up to three digits).

4.2. Shape saliences

The storage of the area evolution for each point of the
shape also provides perspectives for shape descriptions. The
influence areas of higher curvature points, namely salience
points [2], are expected to be greater than the influence
areas of the other points of the shape. Moreover, in the case
of a contour, the influence area of a convex point (point
A) is greater outside the contour than inside, and the other
way around for a concave point (point B, see Fig. 5). The
influence area A of each salience point relates to the aperture
angle 6, illustrated in Fig. 5, by the formula:

0 x r*

Area = ,
rea 5

(5)

where 7 is a dilation radius. Costa et al. [2] proposed to
estimate the salience points by thresholding the influence
areas, computed for low values of » (e.g. » = 10). The in-
fluence area A4 of each pixel belonging to a shape (contour
or skeleton) can be simply obtained from the histogram of
the root map R created by Algorithm 1, restricted to pixels
p where C(p) < r*. This approach, however, misses im-
portant salience points in opposite parts of the shape which
come close to each other. It has otherwise been particularly
effective for skeletons and for simple contours, such as con-
vex polygons, but it fails in finding the salience points of
more complex and intricate contours. A robust approach to
solve this problem for contours is described next.

For a given contour, multiscale internal and external
skeletons are first obtained by label propagation as de-
scribed in Section 3.2. For small scales (e.g. 5% of the
maximum label difference N — 1), each salience point of
the internal skeleton corresponds to one convex point of
the contour and each salience point of the external skele-
ton corresponds to one concave point of the contour [13]

13 T T T T T T T T
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Fig. 4. (a) The log X log curve of the areas of each exact dilation radius for Fig. 3a. (b) The multiscale fractal dimension of its contour.
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Fig. 5. Internal and external influence areas of a convex (A) and
a concave (B) point.

(see Fig. 6). Let L, R;, R. be the label and root maps re-
sulting from Algorithm 1 applied to the contour with la-
bel propagation, to the internal skeleton, and to the external
skeleton, respectively. The influence areas of each point of
the skeletons are determined based on the histogram of R;
and R., restricted to pixels within a narrow band around the
skeletons (e.g. » = 10). The salience points of the skeletons
are those with influence area greater than an area threshold
obtained by setting § = 70 in Eq. (5). In order to locate the
salience points along the contour from the salience points
of the skeletons, the algorithm uses the label map L as fol-
lows. Note that, Eq. (3) essentially assigns to each pixel
inside and outside the contour the maximum length of the
shortest contour segment between two roots equidistant to
the pixel. Fig. 7 illustrates this situation for a salience point
c in the skeleton, which is related to a salience point a in
the contour. The difference value D(c) is the length of the
segment dab. Suppose the root pixel of ¢ is b, the point a
can be reached from the point ¢ by skipping dab/2 pixels
in the anti-clockwise orientation along the contour starting
from b. Similarly, the point a can be found from ¢ through
d following the clockwise orientation, when d is the root
pixel of ¢. The method needs only to determine which is the

\‘7/

3 R

& S
_%I\E’“’

Fig. 7. Relation between skeleton and contour saliences.

root pixel, either b or d. If the contour pixels are labeled in
clockwise orientation, the root pixel of ¢ will be » whenever
o(p,q) > (N — 6(p,q)) in Eq. (3) for L(¢) = L(d) and
L(p) = L(b). Otherwise, the root pixel of ¢ will be d for
L(g)=L(b) and L(p) = L(d). The same rule is applied for
the external skeleton.

The location and the influence area of the salience points
along the contour represent important local and global in-
formation for shape analysis. The influence areas (salience
values) are obtained from the histogram of L restricted to
a narrow band around the contour (e.g. » = 10). They are
signed negative for concave points and positive for convex
points. An arbitrary point of the contour is taken as refer-
ence point and the algorithm computes the relative position
of each salience point with respect to the reference point
along the contour. Finally, a contour saliences descriptor
is defined as two vectors of the same size: one with the
salience values and the other with the relative position of
the salience points along the contour. Note that the dimen-
sion of these vectors may be different for different contours
as well as the reference points. A special algorithm has been
designed for matching this descriptor between two contours
taking into account these differences. This algorithm is de-
scribed in Section 5.3.

Fig. 6. (a) Saliences of the contour of a leaf and (b—c) saliences of its internal and external skeletons.
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Fig. 8. (a) Contour and skeletons of a polygon, where salience points are indicated by dots. (b) The salience values of the vertices of the

polygon by their relative position along the contour.

Fig. 8 illustrates the contour saliences descriptor for a
polygon. The contour of the polygon, its reference point
(A), the internal and external skeletons, and the respective
salience points are indicated in Fig. 8a. Fig. 8b indicates
the salience values of the vertices of the polygon by their
relative position along the contour.

5. Evaluation

For classification purposes, a descriptor is considered
more effective than another one when it increases the
number of correctly classified objects. These objects are
organized into classes according to some semantic crite-
rion. A “good” shape descriptor should represent different
classes of objects by compact clusters of points separated
from each other in the corresponding feature space. These
aspects ask for two concepts: compact-ability and sepa-
rability. The compact-ability of a descriptor indicates its
invariance to the object characteristics that belong to a
same class, while the separability indicates its discrimina-
tory ability between objects that belong to distinct classes.
They evaluate the “goodness” of a description independent
of the classification method. Moreover, the separability de-
termines the effectiveness of the descriptor independent of
the compact-ability. However, the compact-ability gives an
idea of how the separability may be affected if the number
of classes increases.

The shape descriptors presented in this paper are evalu-
ated with respect to compact-ability and separability in the
context of a specific application. This application aims at
designing and implementing an architecture for integrating
image and spatial data for biodiversity information manage-
ment. This architecture has been specified in a generic way,
but its implementation is being carried throughout for the
specific case of fish species.

One thousand and one hundred fish contours were
obtained from the database available at [32] for the ex-
periments. Fig. 9 shows some examples of fish contours
and their respective skeletons together with the respective
salience points.

Since there is no semantic definition of classes for the fish
contours in this database, each class is defined as consist-
ing of 10 different manifestations of each contour by rota-
tion and scaling. Then, the problem consists of 1100 classes
with 10 shapes each, totalizing 11,000 contours. In this case,
compact-ability becomes the invariance to possible rotation
and scaling of a given shape, and separability becomes the
discriminatory ability of a descriptor among the 1100 classes
of the database.

A precise definition of compact-ability and separability,
the matching algorithm for contour saliences, and the ex-
periments are presented in the next sections.

5.1. Compact-ability

Let 2 be a set (database) of x shapes organized in classes.
The compact-ability ¢p(C) of a descriptor D for a given
class C in X is defined as

ZVi,jEC Ap(i,j)

|C[*maxvi jec{4p(i, j)}
where |C| is the number of shapes in the class C, 4p(i, j) =
Distance(D;, D;) and D; is the value of D for shape i. Note
that this measure is normalized with respect to the maximum
distance between a pair of shapes, considering all shapes in
the class C.

The compact-ability of a given descriptor is the average
of the normalized compact-abilities of this descriptor over
all classes in DB, i.e.:

_ Zvegz ¢D(C)
1] |

$p(C)=1 (6)

®p (7

where |X| is the number of classes in the set 2.
5.2. Separability

Let 2 be a set (database) of x shapes organized in classes.
The separability yp(C) of a descriptor D for a given class

C is defined as follows. An arbitrary shape r¢ is taken
as reference for the class C and the distances Ap(rc,i) =
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Fig. 9. Fish images used for descriptor evaluation. The concave points were determined through the salience points of the external skeleton,

not shown in the figure.

Ap(re,i)/M, where M = maxvics, vr. {4p(rc,i)}, is com-
puted for all shapes 7 in 2.

The distance range is quantized in a certain number of
values from x to 1.0 with intervals of dx (e.g. x = 0.02
and dx = 0.02). Let #,.(x) be the number of shapes, whose
distance from the reference shape is less than or equal to x
(4(rc,i) < x) and do not belong to the class C (i ¢ C). For
each distance value from x to 1.0, the separability yp(C) of
a descriptor D with respect to class C is defined as

() =1 1), (®)

These separability values define a multiscale curve of sepa-
rability for the class C along x. The separability of a descrip-
tor D is defined as the average of the multiscale separability
over all classes, i.e.:

_ Secer W(C)

¥p
|2]

)

5.3. Matching algorithm for contour saliences

Whenever two contours of a same object appear in dif-
ferent positions, they should be represented by the same
salience points along the contour. Therefore the pairwise
comparison between objects using contour saliences requires
matching between contours.

The contour saliences descriptor considered in the current
work preserves the salience values of the points along the
contour and their relative position regarding to a reference
point. These characteristics encode a lot of information about
the shape. The reference point is used only for correction
of the relative positions after the matching. The matching
algorithm proposed in this paper is based on the matching
algorithm proposed to match CSS images presented in Refs.
[16,17].

Let Sy = {(va1,841),- .-, (Uan,54n)} and Sz = {(us1,551),
.., (Um,Sam)} be two salience descriptors of contours A
and B, where (u4;,54;) stands for the i salience value s4; at
the position u4; € [0, 1] along A.

(1) Create S = {(&y1,841)s--»(UynsSy)} and Sz =
{(up1,5%1 ) - - - > (U S ) } by sorting Sy and Sp accord-
ing to the decreasing order of salience values.

(2) Create a list L containing a pair of matching candidates
points from Sj and Sp. A pair ((ul;, %), (up;.55;))
belongs to the list L if |si; — sp] <02sh. A
pair ((up;.s5;), (U, s4;)) belongs to the list L if
|SlBj — s < 0.255.

(3) For each pair of matching candidates in the form P;; =
((ulyi»s4i), (up;.53;)) in L, find the shift parameter o as
o = uy; — up;. Shift Sy salience points by o, yielding
Si = {(ugl’sgl ), (U2, S%), - ,(u;,'n,s;,',,)}.

(4) The distance d between S/ and Sp is given as

min{n,m}

d= Z dr,
k=1

where

Ve — ) + e — 5w iF [y — um
di = <0.2,

Sk 4 Sais otherwise.
Finally, if n # m, it is added to d the height s of the
not matched points.
(5) Repeat the steps 3 and 4 by considering matching can-
didate pair in the form Pi; = ((up;, s3,), (uy;, %)) in L.
(6) Select the lowest distance d as the distance between Sy
and Sp.
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5.4. Experiments

Clearly, the multiscale fractal dimension is not scale in-
variant. In order to reduce this problem the contours have
been first normalized according to their diameter. Even
though the area thresholding method can be applied to
locate the salience points of an external skeleton. These
points may not correspond to relevant concave salience
points along the contour. The reason is that the external
skeleton may present spurious branches due to rotation and
scaling of the contour, and the salience points of those
branches should not be considered. In fact, they can be elim-
inated for distinct contours by varying the area threshold in
Eq. (5) (see Fig. 9). However, a fixed area threshold
(i.e. 6 =70 and r = 10 in Eq. (5)) may affect the perfor-
mance of the contour saliences descriptor with the concave
points are considered. Therefore, the experiments used only
the convex salience points along the contour.

Table 1 shows the set of implemented shape descriptors.
The proposed descriptors (D2 and D3) are compared with
the single fractal dimension (D1), two classical descriptors
(Fourier descriptors (D4) and moment invariants (D5)) and
two recently published shape descriptors (CSS (D6) and
BAS (D7)). Many versions of these methods have been
presented, but this work considers their conventional imple-
mentations.

Fourier descriptors: The Fourier descriptors of a contour
consist of a feature vector with the 126 most significant coef-
ficients of its Fourier Transform using the method described
in Refs. [33,34]. The Euclidean distance was used to mea-
sure the similarity between two Fourier-descriptors vectors.

Moment invariants: For Moment Invariants, each object
was represented by a 14-dimensional feature vector, includ-
ing two sets of normalized Moment Invariants [15,35], one
from the object contour and another from its solid silhou-
ette. Again, the Euclidean distance was used to measure the
similarity between different shapes represented by their Mo-
ment Invariants.

CSS descriptor: The CSS descriptor is a shape descrip-
tor, adopted in MPEG-7 standard [36], which represents a
multiscale organization of the curvature zero-crossing points
of a planar curve. The extraction algorithm of the CSS

Table 1
List of evaluated descriptors

Descriptor id Descriptor name

DI Fractal dimension

D2 Multiscale fractal dimension
D3 Contour saliences

D4 Fourier descriptors

D5 Moment invariants

D6 Curvature scale space (CSS)
D7 Beam angle statistics (BAS)

descriptor is described in Refs. [16,17]. A special matching
algorithm is necessary to compare two CSS descriptors (e.g.
the algorithm presented in Section 5.3). The experiments
used a C version of the Matlab prototype presented in
Ref. [37].

BAS: The BAS [18,19] is a novel shape descriptor which
has been compared with several others [17,38-42]. In Ref.
[18], it is shown that BAS functions with 40 and 60 sam-
ples outperform all of them. The experiments of the present
paper used the BAS descriptor with 60 samples. Basically,
the BAS descriptor is based on the beams originated from
a contour pixel. A beam is defined as the set of lines con-
necting a contour pixel to the rest of the pixels along the
contour. At each contour pixel, the angle between a pair of
lines is calculated, and then the shape descriptor is defined
by using the third-order statistics of all the beam angles in
a set of neighborhood systems. The BAS algorithm is pre-
sented in Refs. [18,19]. The similarity between two BAS
moment functions is measured by an optimal correspondent
subsequence (OCS) algorithm as shown in Ref. [18].

5.5. Experimental results

Initially, the multiscale fractal dimension of a contour
(D2) was compared with its single fractal dimension (D1).
Fig. 10 shows that the multiscale version of the fractal di-
mension descriptor presents the best separability curve.

Fig. 11 shows the separability curves of the proposed
descriptors (D2 and D3), against the Fourier descriptors
(D4), the moment invariants (DJ), the CSS (D6) and the
BAS (D7). Observe that the Contour Saliences (D3), CSS
(D6) and BAS (D7) present equivalent performance for
search radii less than 18% of their maximum distance. From
this point on, the BAS’s separability curve (D7) decreases
quickly, being worse than the separability of the Multiscale
Fractal Dimension (D2) and of the Fourier descriptors (D4)
for search radii above 25%. This behavior indicates that

D1 ——
[y —
>
:
3
0 1 1 2 %
0 02 04 06 08 1

Search Radius

Fig. 10. Multiscale separability diagrams for the shape descriptors
based on fractal dimension.
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Fig. 11. Comparison of the proposed descriptors with the Fourier
descriptors, invariant moments, CSS, and BAS.

Table 2
Compact-ability values of the evaluated descriptors

Descriptor id Compact-ability

DI 0.93
D2 0.97
D3 0.70
D4 0.77
D5 0.97
D6 0.73
D7 0.95

the BAS descriptor is neither robust nor effective for search
radii greater than 25%. The Multiscale Fractal Dimension
(D2) has a better separability curve than Fourier descriptors
(D4), moment invariants (D5) and BAS (D7) for search
radii between 25% and 40%. Its performance, however, de-
creases, being lower than Fourier descriptors (D4) for search
radii greater than 40%. The most relevant result is that the
Contour Saliences descriptor (D3) has the best separability
curve considering all search radii. Although its performance
is equivalent to the famous CSS descriptor (D6) for search
radii less than 30%, it is more robust and more effective for
higher search radii.

Table 2 presents the compact-ability values of the eval-
uated shape descriptors. The higher values were found for
single fractal dimension (D1), multiscale fractal dimension
(D2), moment invariants (D5), and BAS (D7), while the
contour saliences (D3) presented the lowest value. Fortu-
nately, the compact-ability 0.70 of D3 cannot be considered
sufficiently low to interfere in its separability, even consid-
ering a database with 1100 classes. According to these ex-
periments, D3 is more effective than the others.

6. Conclusion

This paper has presented two effective shape descriptors,
multiscale fractal dimension and contour saliences, using the

framework of the IFT. The presented method to compute
multiscale fractal dimension is more efficient [7] and robust
than the one published in Ref. [2], since the undesirable
oscillations commonly found in Fourier-based approaches
have been eliminated here by the use of polynomial regres-
sion. The location of salience points along a contour was
computed in a direct way using the IFT framework to ex-
ploit the relation between the contour and its skeletons [13].
This method is more robust and efficient than the approach
presented in Ref. [2]. Moreover, the paper redefines the con-
tour salience descriptor to include point location and salience
value along the contour and a special distance metric.

The multiscale fractal dimension and the contour saliences
were also extensively evaluated for the first time, using
a database with 1100 classes and 11,000 contours. Their
“goodness” (compact-ability and separability) have been
showed by using as references the single fractal dimension,
two classical (Fourier descriptors [14,33] and moment in-
variants [15,35]) and two recently proposed shape descrip-
tors (CSS [16,17] and BAS [18,19]). The underlying ideas
of compact-ability and separability may not be totally new
concepts, however this paper has presented an original way
to compute them, especially the multiscale separability.

The experiments showed that the contour saliences de-
scriptor was the most effective (with the best separability
curve). This is certainly a breakthrough result considering
that the experiments have taken into account recent descrip-
tors and a database with 1100 classes. The Multiscale Fractal
Dimension is competitive with BAS and Fourier Descriptors
in terms of separability and compact-ability, but it is less
effective than the CSS and the Contour Saliences. This may
indicate that the normalization procedure was not effective
to make the Multiscale Fractal Dimension totally scale in-
dependent. In Ref. [18], the BAS descriptor was shown to
be more effective than CSS for the MPEG-7 Core Exper-
iments shape-1. The experiments with separability showed
the opposite result. Note that one cannot say that a descrip-
tor is better than another without taking into account several
application domains.

Current work concerns to solve the scale-dependency
problem of the multiscale fractal dimension and to incor-
porate concave points in the composition of the contour
saliences descriptor. In view of that, we are investigating
a special distance metric for the multiscale fractal dimen-
sion and an automatic area thresholding method to avoid
salience points of the spurious branches of the external
skeleton. We are also interested in validating the proposed
descriptors for other application domains. In special, we are
currently considering applications in content-based image
retrieval.
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