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Abstract

The image foresting transform (IFT) reduces optimal image partition problems based on seed pixels to a shortest-path
forest problem in a graph, whose solution can be obtained in linear time. Such a strategy has allowed a uni7ed and e8cient
approach to the design of image processing operators, such as edge tracking, region growing, watershed transforms,
distance transforms, and connected 7lters. This paper presents a fast and simple method based on the IFT to compute
multiscale skeletons and shape reconstructions without border shifting. The method also generates one-pixel-wide
connected skeletons and the skeleton by in9uence zones, simultaneously, for objects of arbitrary topologies. The results
of the work are illustrated with respect to skeleton quality, execution time, and its application to neuromorphometry.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In image processing and analysis, many problems can
be interpreted as an optimal image partition problem
based on seed pixels, where each seed de7nes a respec-
tive in9uence zone. Such problems can be reduced to
a shortest-path forest problem in a graph, whose solu-
tion can be obtained in linear time. The method is called
image foresting transform (IFT) and it has been success-
fully applied to image segmentation, distance transform
computation, and connected 7ltering [1–3].
Skeletons generation and shape 7ltering constitute two

of the most challenging issues in computer vision and
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image analysis. The main problems have been to guar-
antee topology preservation, one-pixel-wide connected
skeletons, and shape 7ltering without border shifting, the
latter being a problem typically veri7ed in linear multi-
scale approaches, such as those based on Gaussian 7lters.
Recently, these problems were circumvented in a sin-
gle method based on exact dilations to propagate labels
assigned to the original contour, producing multiscale
skeletons [4]. By varying a threshold value, a family of
multiresolution reconstructions of the original shape can
be obtained that implements a non-linear 7ltering of the
shape. Such a 7ltering is characterized by the progressive
removal of small-scale details while not aGecting more
stable portions of the shape. However, the time taken to
compute the exact dilations and label propagation using
the algorithm described in Ref. [4] is excessive even for
images of modest sizes.
The current paper extends the application of the IFT

to eGectively create multiscale skeletons based on the
aforementioned method. The main advantage of such an
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approach is to integrate yet another practical and im-
portant image analysis tool within the IFT framework.
In addition to retaining all the remarkable properties of
the original approach, the IFT typically allows about
100 times faster multiscale skeletons generation, and
even higher speed-ups can be achieved for larger im-
ages. Other results reported in this work include the
simultaneous computation of the skeleton by in9uence
zones (SKIZ) [5] and the multiscale skeletons for ob-
jects of arbitrary topologies. This involves a simple
change in the IFT-based Euclidean distance transform
to propagate two types of labels, one used to com-
pute the SKIZ and another to obtain the multiscale
skeletons. 1

In addition to presenting the above-outlined approach
to eGective multiscale skeletons generation, the current
article also addresses how the IFT framework can be ap-
plied to solve a series of relevant issues in neuromor-
phometry, namely the analysis of the geometry of neural
cells [7–10]. A growing mass of experimental 7ndings
have indicated that the behavior of neural cells and struc-
tures can be strongly aGected and de7ned by their re-
spective morphology [11–14]. Here, it is shown how the
multiscale skeletonization framework can be eGectively
used not only to de7ne the area of in9uence of chicken
ganglion retinal cells, but also to characterize their hi-
erarchical structure. Indeed, the high velocity of the re-
ported implementation has paved the way to data mining
approaches aimed at investigating general and speci7c
properties of the relationship between the neural shape
and function by taking into account large number of neu-
ral cells.
This paper is organized as follows. It starts by re-

viewing the principles underlying the IFT with an exam-
ple of how it computes the Euclidean distance map. We
then describe how this framework can be used to quickly
compute both multiscale skeletons and SKIZ simultane-
ously, including the respective linear-time algorithm. Ex-
perimental evaluation of quality and speed as well as its
application to neuromorphometry are subsequently cov-
ered. We conclude by outlining the main results and the
possibilities for future work.

2. An overview of the image foresting transform

Consider the problem of partitioning an image based
on seed pixels such that each seed should de7ne a respec-
tive in9uence zone composed of pixels whose “distance”

1 A preliminary version of part of this work is presented in
Ref. [6]. The work presented here further describes an experi-
mental evaluation of the method for a real application (neuro-
morphometry).

to that seed is minimum. A naive method to solve this
problem is to compute and compare the “distance” be-
tween each pixel and each seed. A more eGective method
is to propagate the “distance” values from each seed,
simultaneously, until the in9uence zones of the seeds
collide and leave the above comparison for the pixels
that participate in this collision. Such a strategy is natu-
rally adopted in the IFT.
The IFT maps an image into a graph, computes a

shortest-path forest in the graph, and outputs an anno-
tated image, which basically represents the associated
forest. This process requires to think the image as a graph,
where the pixels are the nodes of the graph and the arcs
are de7ned by an adjacency relation between pixels. A
path in the graph is a sequence of adjacent pixels. The
“distance” from a seed to a pixel is de7ned as the “length”
of the shortest-path from the seed to the pixel in this
graph. Such a “distance” is found by minimizing a suit-
able path-function, pf. The choice of the adjacency re-
lation and the path-function depends on the nature of the
problem. For example, assume that two pixels p and q
are said adjacent if

d(p; q)6R; (1)

where d(p; q) is the Euclidean distance between p and q
and R is a positive number. In a region-based image seg-
mentation problem, for instance, one could choose the
4-neighborhood relation (R=1) and the path-function
as a mapping that assigns to each path in the graph its
highest arc weight, where the weight of an arc is the ab-
solute diGerence between the brightness of its adjacent
pixels.
In addition to the parameters that de7ne a graph, a

label may also be assigned to each seed pixel. Thus, the
IFT grows a shortest-path tree, simultaneously, from each
seed in the graph, propagating the following properties
to each pixel in the annotated image: the label of its
closest seed, the “distance” from its closest seed, and
the parent pixel that leads it back to its closest seed.
At least one of these properties should be relevant for a
given problem. For example, image segmentation based
on region growing and watershed transforms, output the
label image that represents the in9uence zones of all seeds
in the optimal image partition. Distance transforms and
connected operators output the “distance” image, which
represents a distance map in the former and a gray-scale
image in the latter. The parent pixel has been used for
image segmentation based on edge tracking and geodesic
path computation.
To complete this overview about the IFT, let us con-

sider the problem of partitioning an image based on
two seed pixels s and s′ such that the in9uence zone of
each seed is de7ned by the pixels whose Euclidean dis-
tance to that seed is minimum. For simplicity, assume
the 4-neighborhood relation as shown in Fig. 1a. The
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Fig. 1. (a) An image as a graph, where the pixels are the nodes
of the graph and the arcs are de7ned by a 4-neighborhood
relation. (b) A shortest-path forest with trees rooted at pixels
s and s′ of (a) computed based on Eq. (2).

path-function is de7ned as

pf(P)=

(
n−1∑
i=1

|xpi − xpi+1 |
)2

+

(
n−1∑
i=1

|ypi − ypi+1 |
)2

;

(2)

where P= 〈p1; p2; : : : ; pn〉 is a path in the graph and
(xpi ; ypi) are the (x; y) coordinates of a pixel pi in the
image. Fig. 1b presents a shortest-path forest computed
based on Eq. (2) when label 1 is assigned to s and label
2 is assigned to s′. The parent pixel is represented by
the orientation of the arrows and the propagated labels
are written inside the circles. Notice that the “distance”
between each pixel and its closest seed in this example is
the squared Euclidean distance, which is written outside
the circles.
Cuisenaire and Macq use a similar approach to com-

pute the Euclidean distance map [15]. They noticed that
there is a relationship between the minimum value of
R in Eq. (1) and the size of the image to guarantee
exact Euclidean distance values. However, the in9uence
zones of the seeds might not be connected for values of
R¿
√
2, and so the skeletons. The presented approach

uses the 8-neighborhood relation (R=
√
2) to guarantee

connected skeletons, and as illustrated in this paper, it is
also su8cient to obtain exact Euclidean distance maps
in practical situations.
The collision between the in9uence zones of s and

s′ is represented by a label transition shown in Fig. 1b.
Then, if s and s′ are pixels of the same contour in the
image, such a label transition contains the points of the
skeleton. If s and s′ belong to diGerent contours, the label
transition contains the points of the SKIZ. Therefore,
one can conclude that simultaneous SKIZ and multiscale
skeletons generation requires propagation of two types
of labels by the IFT: a contour label and a pixel label.
While the former identi7es the closest connected contour,
the latter indicates the closest pixel in that contour. The
result will show two types of label transitions and the next

section describes how to create multiscale skeletons and
SKIZ from such label transitions.

3. SKIZ and multiscale skeletons generation by IFT

The multiscale skeletonization method described in
this section is based on the method proposed in Ref.
[4]. In addition to the more expedite processing allowed
by the IFT, the currently described approach also in-
corporates the SKIZ concept introduced by Lantuejoul
and Beucher [5] in order to cope with images contain-
ing more than a single connected component or object,
but here the exact distance guarantees a high accuracy
and isotropy in de7ning the frontiers of the obtained
domains.
Fig. 2 illustrates the whole process of creating SKIZ

and multiscale skeletons, and the multiscale shape 7lter-
ing by reconstructing the original shapes from the skele-
tons, SKIZ and the Euclidean distance map. Given a bi-
nary image I with multiple objects (e.g. an image with
two neurons of a chicken ganglion retinal cell as shown
in Fig. 3a), all object pixels that have at least one back-
ground pixel as a 4-neighbor are taken as seeds for the
IFT, since they represent the pixels of all contours in
the image. The strategy for the IFT is to identify and
label each of these contours by consecutive integer val-
ues. More speci7cally, all the pixels in the 7rst contour
are labeled 1, all the pixels in the second are labeled 2,
and so on. Observe that the order in which the contours
are numbered is arbitrary, implying only small displace-
ments of one pixel between the obtained frontiers. Such
labels are the contour labels de7ned in the previous sec-
tion. For each contour, all pixels are also sequentially
labeled by increasing integer values while circumscrib-
ing the shape, for instance by using the contour tracking
algorithm described in Ref. [16]. Observe that the sense
(i.e. clockwise or counterclockwise) adopted during this
labeling process is arbitrary and has minimal eGect over
the 7nal results (i.e. some portions of the skeleton can
be shifted by one pixel). Such labels are the pixel labels
de7ned in the previous section. Now, the IFT propagates
the contour labels, the pixel labels, and the squared Eu-
clidean distance values from each seed as described in
the previous section. This process outputs an annotated
image which consists of contour labels Lc, pixel labels
Lp, and the squared Euclidean distances E (see Fig. 2),
and it can be implemented using the algorithm given
below.

IFT Algorithm
Input: A binary image I(p);
Output: An annotated image consisting of the contour

labels Lc(p), the pixels labels Lp(p) and the squared
Euclidean distances E(p);
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Fig. 2. SKIZ and multiscale skeletons generation by IFT. Shape 7ltering is obtained from the skeletons, SKIZ, and the Euclidean
distance map.

Fig. 3. Images that illustrate the multiscale skeletonization and shape 7ltering processes shown in Fig. 2. (a) Binary image of
two neurons of a chicken ganglion retinal cell. (b)–(d) Contour labels, pixel labels, and Euclidean distances propagated by IFT,
respectively. (e) DiGerence image. (f) SKIZ. (g)–(h) Skeletons and SKIZ inside and outside the shapes, respectively. (i) Filtered
image.
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Auxiliary data structures: Two 2D arrays dx(p) and
dy(p) that accumulate the positive increments along x
and y directions according to Eq. (2). A priority queue
Q. A 2D array s(p) that indicates three possible values
for the status of a pixel p in Q: initial—p was never
inserted in Q; inserted—p has been inserted in Q; and
removed—p has been removed from Q.

begin
(1) for all pixels p∈ I , which are not contour pixels,

set dx(p) to∞, dy(p) to∞, E(p) to∞, Lp(p) to
0, Lc(p) to 0, and s(p) to inicial;

(2) for each contour in I , assign a consecutive integer
label, apply a contour following the algorithm that
visits each pixel p in that contour and do
(a) set a consecutive integer to Lp(p), the current

contour label to Lc(p), E(p) to 0, dx(p) to 0,
and dy(p) to 0;

(b) insert p into Q with priority 0 and set s(p) to
inserted;

(3) while Q 	= ∅ do
(a) remove a pixel p of least priority value from

Q and set s(p) to removed;
(b) for each pixel q adjacent to p such that

s(q) 	= removed do
(i) set tmp to (dx(p) + |xp − xq|)2 + (dy(p) +
|yp − yq|)2, where (xp; yp) and (xq; yq) are
the (x; y) coordinates of p and q in I ;

(ii) if tmp¡E(q), then
(A) set dx(q) to dx(p) + |xp − xq|, dy(q) to

dy(p)+|yp−yq|, Lp(q) to Lp(p), Lc(q)
to Lc(p) and E(q) to tmp;

(B) if s(q) 	= inserted, then insert q in Q with
priority E(q) and set s(q) to inserted,
else update the position of q in Q with
new priority value E(q);

end if;
end for;

end while;
end

The IFT algorithm above is essentially the Dial algo-
rithm [17]. Its linear-time implementation requires a pri-
ority queue Q as described in the Dial implementation of
the Dijkstra algorithm [18,19].
Note that the seeds (contour pixels) are inserted in Q

in the increasing order of contour labels and pixel labels,
respectively (item 2 of the algorithm). As a default of
all previous implementations of the IFT, the algorithm
follows a 9rst-in 9rst-out rule for pixels that have the
same priority in Q. Therefore, whenever a pixel presents
the same Euclidean distance to more than one seed pixel,
it keeps the smallest label and this rule is valid for both
contour and pixel labels. Such a rule is a condition in
Ref. [4] and it is naturally satis7ed here.

Figs. 3b–d present the contour labels Lc, the pixel
labels Lp, and the Euclidean distance map E computed
by the IFT. Continuing the process presented in Fig. 2,
label transitions should be detected in order to de7ne
a diGerence image D (Fig. 3e). Such an image is ob-
tained by the following rules applied over each pixel p
in D. First, intermediate diGerence images D1 and D2 are
computed.

D1(p)← max
∀q∈N4(p)

{Lc(q)− Lc(p)}; (3)

D2(p)← max
∀q∈N4(p)

{Lp(q)− Lp(p)}; (4)

where N4(p) is the set of pixels that are 4-neighbors of
p. If D1(p)¿ 0, then D1(p)← M , where M is the max-
imum label assigned to a pixel in Lp, otherwise D1(p)←
0. If D2(p)¿N=2, where N is the number of pixels of
the contour with label Lc(p), then D2(p)← N −D2(p).
Second, the diGerence image D is computed as

D(p)← max{D1(p); D2(p)}: (5)

Observe that D1 contains the SKIZ (Fig. 3f), while
D2 encodes label diGerences related to the skeletons.
Now a family of multiresolution skeletons together
with the SKIZ can be obtained by thresholding D at
the subsequent integer values, which act as the spatial
scales. It is also important to observe that two types
of skeletons and SKIZ are simultaneously produced
by the above-described procedure: those inside (Fig.
3g) and those outside the shapes (Fig. 3h). The higher
the threshold value, the more simpli7ed the shapes be-
come, with smaller skeleton detail being progressively
removed as the threshold increases. Fig. 4 illustrates this
behavior with the skeletons and SKIZ inside the shapes
shown in black for six diGerent scales, where the lighter
gray shapes are the originals. The obtained skeletons
are guaranteed to be connected (topology preservation).
In addition, the skeleton segments between branching
points and=or extremities are also guaranteed to be
one-pixel wide. Observe that it is also possible to use
the maximum of the absolute value of the diGerences
in Eqs. (3) and (4), leading to two-pixel wide skele-
tons and SKIZ segments, respectively. Therefore, the
obtained skeletons possess all the relevant properties
normally required for medial axis representations. Actu-
ally, by having the skeleton of a shape and the distance
transform value at each pixel of the skeleton, one can
reconstruct the original shape by painting circles cen-
tered at each skeleton=SKIZ pixel with radius equal to
the corresponding distance transform value at that pixel
(see Fig. 3i and the darker gray shapes shown in Fig.
4). Such a reconstruction scheme allows an interesting
possibility for shape 7ltering where its details are re-
moved, as the threshold increases, in such a way that
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Fig. 4. One-pixel-wide connected skeletons and SKIZ inside the shapes are shown in black for six diGerent spatial scales. The
original shapes are shown in lighter gray and the 7ltered shapes without borders shifting are shown in darker gray.

the position of the borders at more stable regions of the
shapes are unaGected, allowing shape 7ltering without
border shifting.
The application of this work with respect to neuro-

morphometry and its advantages over other methods are
presented in the following section.

4. Application to neuromorphometry

The advances of automated imaging veri7ed over the
last decade have paved the way to a number of funda-
mental approaches to the relevant problem of relating
neural shape and function. It is now possible to use pow-
erful hardware and increasingly eGective algorithms in
order to characterize and quantify geometrical aspects
underlying neural cells and structures. Basically, a neu-
ron is a specialized cell exhibiting several rami7cations
(dendrite and axon), which are used for signal transmis-
sion and processing. In order to fully understand how a
neuron interacts with its environment and neighboring
cells, it is necessary to accurately characterize the cell
geometry, especially the spatial relationship between ad-
jacent neural cells, as well as the branching pattern un-
derlying each cell. Given its high speed, the just de-
scribed multiscale skeletonization algorithm, incorporat-
ing the SKIZ partitioning of the image space, provides
a natural and particularly eGective approach to address

these two problems, including the possibility of per-
forming data mining over a large number of cells. The
great potential of the IFT-based multiscale skeletoniza-
tion to neuromorphometry is illustrated in the current
section. 2

Consider the gray-level image in Fig. 5, which was
obtained by optical microscopy from histological slides
of chicken retinal ganglion cells, which are predomi-
nantly planar. Since such cells represent the 7nal pro-
cessing stage in the vertebrate retina, it is important to
study how these cells are spatially distributed and ad-
jacent. In addition, the complexity of the dendritic ar-
borizations exhibited by each cell provides further in-
sight about the integration of aGerent signals by each cell,
which is related to the cell sensitivity. In order to char-
acterize such geometrical issues, each of the neuronal
cells in the original image is 7rstly segmented by using
the live-wire-on-the-9y method described in Ref. [19],
which allowed an eGective, though interactive, means for
properly separating each cell and respective arborizations
from the cluttered background. 3 The segmented image

2 A demo of the IFT-based skeletonization method is
available in www.ic.unicamp.br=˜ afalcao. A demo of the
original method [4] is available in http:==cyvision.if.sc.
usp.br=msskeletons.

3 A demo of the live-wire-on-the-9y method is available in
www.mmorph.com=prontomask.
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Fig. 5. A gray-level image obtained by optical microscopy from histological slides of chicken retinal ganglion cells.

thus obtained is illustrated in gray in Fig. 6, which also
shows the SKIZ partitioning of the considered retinal
surface (the tessellation in black), as well as the inter-
nal and external skeletons of the cells in each of the ar-
eas of in9uence de7ned by the SKIZ. It is evident from
this 7gure that the branching pattern of each neuron is
clearly captured by the respective internal skeletons, al-
lowing the immediate obtention of the respective dendro-
grams [20]—a hierarchical data structure describing the
cell, which is required by most modern neural simulation
approaches.
In addition to the ability to logically partition the reti-

nal space and characterize the branching structures, the
IFT-based multiscale skeletonization approach also al-
lows the 7ltering of each of the neuronal cells in Fig. 6,
which is achieved by varying the diGerence threshold, as
illustrated in Fig. 7. Observe that this procedure allows
small details in the neural shape to be removed while
the borders of the other portions are not shifted, there-
fore illustrating the potential of the considered frame-
work for shape 7ltering without border shifting. Such
a scale-space representation of the neural cells shown
in Fig. 7 allows the identi7cation of the body of each
neuronal cell, which is a particularly important neural
structure.
Other important feature of the presented method is

its robustness to shape rotation and scaling. Such a ro-
bustness is crucial for automatic classi7cation of neuron
shapes. Figs. 8a–c present an example of the skeleton of
a neuron whose shape was rotated to three positions and
Fig. 8d illustrates the skeleton computed after scaling the
original shape. In all the cases, the threshold that sets the
spatial scale was automatically set to 5% of the maxi-

mum value in the diGerence image. Note the high degree
of similarity among them.
In the context of this application, the IFT-based skele-

tonization method was also compared to that proposed by
Ogniewicz and KSubler [21], which is based on Voronoi
Diagrams. Figs. 6 and 9 show that both methods pro-
duce quite similar skeletons and SKIZ. They also run
in about the same time. 4 The superior quality of these
methods becomes evident when the skeletons are com-
pared to those obtained by morphological skeletonization
and morphological thinning [22] (see Fig. 10). Note that
the morphological skeletonization cannot guarantee con-
nectedness and morphological thinning cannot eliminate
spurious branches.
Finally, the speed of the proposed method has also

been compared to that allowed by the original method
[4], indicating a clear advantage for the IFT-based skele-
tonization approach as shown in Table 1. The table shows
the execution mean times (in seconds) of the original
method and of the proposed method (values in parenthe-
ses) to compute the multiscale skeletons of four neurons
in images of various sizes. By increasing the size of the
image, the execution time for distance and label propa-
gation grows very fast in the original method when the
size goes from 240 × 240 to 300 × 300 pixels, while
the execution time of the proposed method remains less
than 1 s. The tests were performed in a PC AMD Athlon,
600 MHz.

4 The program to generate multiscale skeletons
using the Ogniewicz method is available in http:
==hrl.harvard.edu=people=postdocs=rlo=rlo.dir=rlo-soft.html.
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Fig. 6. Segmented image showing skeletons and SKIZ, inside and outside the shapes of some neurons extracted from Fig. 5.

Fig. 7. Scale-space representation of a neural cell. The original shape is shown in lighter gray, the 7ltered shapes are shown in
darker gray, and the skeletons are shown in black.
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Fig. 8. This example shows the robustness of the presented method to shape rotation and scaling.

5. Conclusion and discussion

This paper has described how the multiscale skele-
tonization approach originally proposed in Ref. [4] can be
naturally and e8ciently executed by the IFT, extending
the number of techniques implemented within this versa-
tile framework. In addition, it has shown how the SKIZ
partitioning of images containing multiple contours can
be performed simultaneously with the multiscale skele-
tonization.
The IFT-based multiscale skeletonization approach

has been explained in detail, and the eGectiveness of
the obtained skeletonization technique has been illus-
trated with respect to skeleton quality and execution
time (compared to other traditional skeletonization ap-
proaches). The proposed approach has shown to be
much simpler than that presented by Ogniewicz, which
is based on Voronoi diagrams [21], and able to pro-
duce discrete multiscale skeletons with equivalent high
quality in about the same execution time. The superior
quality of these methods became evident when the skele-
tons were compared to those obtained by morphological

skeletonization and thinning [22]. The application po-
tential of the proposed approach has also been illustrated
in the important and modern problem of neuromor-
phometry, allowing not only the characterization of the
spatial organization of neural structures (such as the
distribution of ganglion cells in the vertebrate retina),
but also the branching hierarchical structure of each
cell.
Currently, the 3D extension of the method is being

investigated together with a series of shape descriptors
that can be extracted from the multiscale skeletons for
object recognition.
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Fig. 9. The same example as shown in Fig. 6, but using the Ogniewicz’s method. Note that the IFT-based skeletonization method
is simpler and provides the same high-quality skeletons.

Fig. 10. Skeletons inside the shape computed by (a) morphological skeletonization, (b) morphological thinning, (c) the Ogniewicz’s
method, and (d) the IFT-based skeletonization method.
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Table 1
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300× 300 142 (0.618) 138 (0.617) 141 (0.632) 073 (0.602)

supply of histological slides from which the neuron im-
ages in this paper were obtained. The work of Bruno S.
da Cunha is supported by FAPESP (Proc. 99=10100-3).

References

[1] R.A. Lotufo, A.X. Falcão, The ordered queue and the
optimality of the watershed approaches, in: J. Goutsias,
L. Vincent, D.S. Bloomberg (Eds.), Mathematical
Morphology and its Applications to Image and Signal
Processing, Vol. 18, Kluwer Academic Publishers, Palo
Alto, USA, June 2000, pp. 341–350.

[2] R.A. Lotufo, A.X. Falcão, F.A. Zampirolli, Fast Euclidean
distance transform using a graph-search algorithm,
XIII Brazilian Symposium on Computer Graphics and
Image Processing, Gramado—RS, Brazil, October 2000,
pp. 269–275.

[3] A.X. Falcão, B.S. da Cunha, R.A. Lotufo, Design of
connected operators using the image foresting transform,
in: M. Sonka, K.M. Hanson, Proceedings of the SPIE on
Medical Imaging, Vol. 4322, San Diego, CA, February
2001, pp. 468–479.

[4] L. da F. Costa, L.F. Estrozi, Multiresolution shape
representation without border shifting, Electron. Lett.
35 (21) (1999) 1829–1830.

[5] Ch. LantuWejoul, S. Beucher, On the use of geodesic metric
in image analysis, J. Microsc. 121 (1981) 39–49.

[6] A.X. Falcão, B.S. da Cunha, Multiscale shape
representation by image foresting transform, in: M. Sonka,
K.M. Hanson, Proceedings of the SPIE on Medical
Imaging, Vol. 4322, San Diego, CA, February 2001,
pp. 1091–1100.

[7] L. da F. Costa, R.C. Coelho, R.M. Cesar Jr., Computer
vision based morphometric characterization of neural
cells, Rev. Sci. Instrum. 66 (7) (1995) 3770–3773.

[8] L. da F. Costa, R.M. Cesar Jr., R.C. Coelho, Analysis and
synthesis of morphologically realistic neural networks, in:
R. Poznanski (Ed.), Modeling in the Neuroscience: From
Ionic to Neuronal Networks, Academic Press, Harwood,
1999, pp. 505–528 (Chapter 18).

[9] L. da F. Costa, T. Velte, Automatic characterization and
classi7cation of ganglion cells from the salamander retina,
J. Comparative Neurol. 404 (1) (1999) 33–51.

[10] R.M. Cesar Jr., L. da F. Costa, Application and
assessment of multiscale bending energy for morpho-
metric characterization of neural cells, Rev. Sci. Instrum.
68 (5) (1997) 2177–2186.

[11] I. Segev, Sound grounds for computing dendrites, Nature
393 (1998) 207–208.

[12] R.R. Poznanski, Modelling the electronic structure of
starbust amacrine cells in the rabbit retina: functional
interpretation of dendritic morphology, Bull. Math. Biol.
54 (1992) 905–928.

[13] D.I. Vaney, Territorial organization of direction selective
ganglion cells in rabbit retina, J. Neurosci. 14 (1994)
6301–6316.

[14] F. Caserta, E.D. Eldred, E. Fernandez, R.E. Hausman,
L.R. Stanford, S.V. Bulderev, S. Schwartzer, H.E. Stanley,
Determination of fractal dimension of physiologically
characterized neurons in two and three dimensions, J.
Neurosci. Methods 56 (1995) 133–144.

[15] O. Cuisenaire, B. Macq, Fast Euclidean distance
transformation by propagation using multiple neighbor-
hoods, Comput. Vision Image Understanding 76 (1)
(1999) 163–172.

[16] L. da F. Costa, R.M. Cesar Jr., Shape Analysis and
Classi7cation: Theory and Practice, CRC Press, Boca
Raton, FL, 2000.

[17] R.B. Dial, Shortest-path forest with topological ordering,
Commun. ACM 12 (11) (1969) 632–633.

[18] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows:
Theory, Algorithms and Applications, Prentice-Hall,
Englewood CliGs, NJ, 1993.

[19] A.X. Falcão, J.K. Udupa, F.K. Miyazawa, An ultra-
fast user-steered image segmentation paradigm: live-wire-
on-the-9y, IEEE Trans. Med. Imaging 19 (1) (2000)
55–62.

[20] L. da F. Costa, A.G. Campos, L.F. Estrozi, L.G.
Rios-Filho, A. Bosco, A Biologically-motivated Approach
to Image Representation and Its Application to
Neuromorphometry, Lecture Notes in Computer Science,
Vol. 1811, Seoul, Korea, May 2000, pp. 407–416.

[21] R.L. Ogniewicz, O. KSubler, Hierarchic Voronoi skeletons,
Pattern Recognition 28 (3) (1996) 343–359.

[22] J. Barrera, G. Banon, R. de A. Lotufo, R. Hirata
Jr., Mmach: a mathematical morphology toolbox for
the khoros system, J. Electron. Imaging 7 (1) (1998)
174–210.



1582 A.X. Falcão et al. / Pattern Recognition 35 (2002) 1571–1582
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