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Cloud Models: Their Construction and Employment
In Automatic MRl Segmentation of the Brain

Paulo A. V. Miranda, Alexandre X. Falcao, and Jayaram K. pajuellow, IEEE

Abstract—A cloud is a triple consisting of a fuzzy object (ASM) and atlas-based approaches [6], [7], [8] are examples
model, a delineation algorithm, and a criterion function for  of model-based methods that have been used for MR-image
evaluating delineations. It employs recognition and delipation segmentation of anatomic structures in the brain [9], [10].

in a tightly coupled manner to accomplish image segmentatio A t istrati . ¢ bl N th th
It captures shape variations of a given object/object asseity ccurate registration 1S a separate probiem In these metn-

to form an uncertainty region for its boundary. For any image ©0ds Which is also required during segmentation. In ASM,
position, delineation is executed in the uncertainty regio to landmarks have to be selected on the surface of the training
obtain a candidate object/object assembly, and the critedn objects and their correspondence provides a statisticaleno
function assigns a score to it. Image segmentation is deflnedof possible variations in shape. The registration betwéen t

by the candidate with the highest score. This work presents . . . .
and compares three cloud models in automatic MR-T1 image 'Mad€ and the model during segmentation also sometimes

segmentation of the cerebrum, the cerebellum, and cerebral ignores important image information, by the act of forcing
hemispheres. These structures are connected in several psr the results to fit with the model. Brain atlases are usually
imposing serious segmentation challenges. The results sho created by registration of training images based on certain
that the methods are fast, accurate, and can eliminate user |anqmarks (e.g., anterior and posterior comissures) afat-de
intervention or, at least, reduce it to simple corrections.Their . . .
applications go beyond medical imaging to new vistas in vaous matlon.flelds. In the referenge space, image structureers_uff
areas served by image segmentation. from different degrees of distortion, making the matching
Index Terms—MR-image segmentation of the brain, image among Cor_re.spondlng voxe_Is Inexact. Image-pased methquI
foresting transform, model-based and image-based segmextion, turn ex_pI0|t Image prope_rtles for_ more effectlye delln_eaI_l
graph-cut measures, and medical image analysis. but their lapses in global information makes object rectigmi
an insurmountable problem.
In view of these dilemmas, some recent methods have
|. INTRODUCTION addressed automatic segmentation by combining modetibase

MAGE segmentation involves objececognition and de- @pproaches for recognition with image-based approactres fo

lineation [1]. Recognition is the task of determining ardelineation [11], [12], [13], [14]. Essentially, the modglays
object’s approximate location in the image. Delineatiomeo the role of the human operator while an image-based algorith
pletes segmentation by defining the exact spatial extent Rffrforms delineation, and both operate in a synergistic way
the object. Humans usually outperform computers in objeéftil an optimum state is reached. In this paper, we pursue
recognition, but the reverse is true for delineation. While ©Our previous work orobject cloud models [13], [14] which
user can often solve the recognition problem by simple poiftesent the following advantages: the cloud models dismiss
(seed) selection or by an effective initialization actiprecise registration during training and segmentation; they take i
delineation is challenging due to the intra and inter opmeratdccount the entire object’s boundary during delineatiod an
subjectivity. On the other hand, computers can be very geecirecognition rather than only sonmntrol points, as in [5];
even when they are not accurate, but the absence of gloBadl they can be easily extended to multidimensional images.
information (e.g., an object model) makes object recogniti An object cloud model (OCM) was introduced in [13] as a
a difficult task for them. This explains why some successftliple comprising a fuzzy object, a delineation algorithend
interactive approaches combine recognition by the user wit criterion function. It captures shape variations of a wive
delineation by the computer in a synergistic way, for effect object to form an uncertainty region for its boundary. For
and foolproof segmentation [2], [3], [4]. any image position, delineation is executed in the unastai

Segmentation methods can be roughly divided imtmiel- region to obtain a candidate object and the criterion fiamcti
based and image-based approaches. Model-based methodassigns a score to it. Image segmentation is defined by the
create statistical models by employing supervised legrnin candidate with the highest score. In order to capture more
training set of object’s instances is provided with appiaer Shape differences, we proposed theud bank model (CBM)
human interaction and these data are registered into a camrifb [14], which uses multiple clouds per object. In some appli

reference space to form the model. Active shape models ?IIOHS, however, multiple objects may defineleud system
y adding their relative position into the model. This is the
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MR-T1 image segmentation of: (S1) the brain (without stempreferably an image-based approach), and a functibndlo
(S2) the cerebral hemispheres, (S3) the cerebellum, and €¢ment a new image, tieboud moves over the image and, for
and S5) the right and left hemispheres. each position, algorithm is executed inside the uncertainty

In the literature, most approaches to segment S1-S5 aggion to obtain a candidate segmentation. The functianal i
based on atlas registration or surface-extraction teciasiq evaluated on this segmentation to obtain a matching score fo
CSM does not require registration and segments S1-S5 sirméleognition, by taking into account local and global object
taneously, precisely and accurately. Besides, a quickiatiah properties (e.g., shape and texture). The desired segtioenta
of several other tools revealed that CSM is much simpler aisgl expected to be the one with maximum score [13] (Fig-
faster. For example, it is about 5 times faster than Brainres 2a-c). However, when the variability in the trainingise
Visa [15], with no need for manual landmark specificatiortoo high the shape information within tleboud image tends
As compared with the recent work in [16], which takes abotd degenerate and the method loses precision. To circumvent
3 hours using deformable registration and 17 atlases, e pthis problem, we may separate the training instances into
posed approach is much simpler, faster and produces simigaoups (clusters) of high similarity in shape, rotation and size
Dice measures for S3. Other examples are SurfRelax [1{tgxture may be used as well). Each group defines its own
which takes about 6 minutes and requires image warping omtoud image resulting in a bank of clouds, and the desired
a template, CLASPand FreeSurfer [18], which take hours tesegmentation is expected to be the one with maximum score
complete segmentation of S1-S5. among segmentations obtained from all individelauds from

We present the general definitions of all object cloud modelsis cloud bank model (CBM) [14]. In this manner, the need
- OCM, CBM, and CSM - in Section IlI; instantiate themto define a reference image is completely obviated. As new
for brain MR-T1 image segmentation in Section lIll; discussnages are added to the training set, they start new groups
experimental results in Section 1V; and state conclusians or are inserted in some existing group (the groups may have
Section V. The experiments show the advantages of CSM amkrlap). In medical imaging and other applications (e.qg.,
improvements over our previous works [13], [14] for thidicense plate recognition), it is possible to acquire insage

particular application. per a disciplined regimen so that a small number of groups in
the bank will suffice. Preprocessing, that depends only en th
Il. OBJECTCLOUD MODELS image being processed, can also help in reducing the number

For a given object of interest (e.g., brain, cerebellum), § 9roups. S _ _ _
set of training images with the object's instances must beNOt€ that delineation is constrained in the uncertainty
provided. These instances should capture among them sh%ﬁ%o_n' and it a_lso epr0|t_s prior shape information _(s_ee
variations of that object in order to teach the computer how pection 1-C) which are defined by the model. Recognition
recognize it in the image. In atlas-based approaches [6], #f Paseéd on the functional, but it is applied to the delingate
images are registered to a chosen reference image by findARCts- Thus, the model employs recognition and delinaati
a geometric transformation that best matches them acaprdifi @ tightly coupled manner [11].
to a criterion of similarity. During the registration pras the
reference image remains fixed while the others are deformed
into its geometric space. Following this, the model is almdi
as the averaged image template together with the tissue dis-
tribution maps obtained by averaging segmentations over al
subjects. Suitable reference selection is itself a propinte
the atlas can be biased towards the anatomy of the chosen
image. Hence, this image should be the one that best repsesen
the anatomy of a population under study [7].

Suppose, instead of registering the training instances, W@ 1. (a) A coronal slice of the 3D cloud image of the cerkivel (b) The
only translate their binary segmentations on to a commehape-based weight image. (c) Example of an uncertainiprreyer a slice
reference point (geometric center) and compute their geeraof a test image.

This results in an image with a fuzzy appearance that resem- ] ) ] )

bles acloud (Figure 1a). From it we may obtain relevant shape !N the case of multiple objects, each object has its own
informations such as prior boundary knowledge (see Fighre CM (or CBM), separately, and the segmentation can follow
and Section 11-C). Eachloud image also defines (i) an interiorindependently, or in a hierarchical search. In this lasecas
region consisting of voxels that belong to all training arstes, the search spaces for the internal objects are constramed
(i) an exterior region with voxels that do not belong to anfy the larger objects that subsume them (e.g., Figure 3,

instance, and (iii) an uncertainty region composed of v@xéfS€d in [13], [14]). However, in some applications (such as
that belong to some but not to all instances (Figure 1c). medical), the arrangement among objects does not change, so
The cloud model (OCM) is a triple that consists of alt is possible to make better use of contextual information,

fuzzy object ¢loud image), a delineation algorithr (this by computing their mean relative positions with respect to

may be any algorithm, but, for the reasons mentioned earligr ©0mmon reference point (centroid of all objects). As a
result, we have aloud system (Figure 4a). To segment a

LURL: http:/Amww.bic.mni.mcgill.ca/ new image, we consider the prior displacement knowledge in
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b = 1. For ¢ objects] = 1,2,...,¢, a segmentation instance
is represented by a labeled imafie= (Z, L), in which each
labell < L(p) < cassigns a voxel € 7 to one object out of
objects, and.(p) = 0 is used to designate background voxels.
A binary imageB = (Z, B) may be used to represent each
object such thaB(p) = 1 for object voxels and3(p) = 0 for
background voxels.

Training instances are given as a set of labeled images
L; = (Z;, L;), i = 1,2,..., N. Suppose these instances are
Fig. 2. (a) An input image. (b) The recognition score for akjions. (c) .SEparat.ed intan. groups of hlgh similarity, as to be discussed
The final segmentation at the best location. in Section II-A. Each group is represented by a ggtof
images,g = 1,2,...,m, such thatl; € G, if the imageL; is
in the gth group. LetBi,l = (Z;, B; ;) be the binary image of
the ith object in theith image (i.e..B; ;(p) = 1 if L;y(p) =1,
and B; ;(p) = 0 otherwise). For any given object labebnd
groupy, the average of the binary imag&,l for all ¢ in G,
after translating them to a fixed reference point, creattsual
image C,; = (C,Cy.1), whereC, (p) € [0,1]. For any cloud,
Cy.(p) = 1in its interior,0 < Cy;(p) < 1 in its uncertainty
region, and”, ;(p) = 0 in its exterior. In the single object case
Fig. 3. Hierarchical search for the brain structures S1&b:is the brain (I.e.,_c = 1), the methOd becomes the same as in CBM [14],
without the brain stem, S2 represents the cerebrum, S3 isetieellum, and @Nnd it becomes a single OCM [13] wher= 1 andm = 1. But
S4 and S5 are the right and left cerebral hemispheres. in the case of multiple objects (i.e:,> 1), it also exploits the

relative positions among the objects within each group.dor
given groupy, the arrangement of the object clouds is captured
order to fix the position of each object cloud relative to thgy the displacement Vecto,gm, l=1,2,..., ¢, which store

moving reference point. For each search position, delioeatthe average positions of the object's centroids in relatmn
is done inside the uncertainty regions of all object clowa&l  their joint centroid for all images i,

a combined score for recognition is obtained by the funetion )
F. Th|s smultqneous treatmen_t _of multiple objects makes it 5971 _ Z (ﬁ” _ ﬁz) 7 (1)
less likely to miss the right position, due to the better uke o

contextual information (Figures 4b-c) [12].

g £
19l VilLi€G,

—

where |G,| is the cardinality of the se§,, P, is the cen-

troid’s coordinates of the objectin the binary imageBiJ,
l=12,...,¢c and P; is the centroid’s coordinates of their

! union in the label imageii. Note that this formulation also

! includes the single object case sinfg; becomes the null
vector whenc = 1.

- - The following subsections provide more details about all
relevant parts of the CSM, such as the grouping strategy, the
@) (b) object search, the graph assembly, the delineation ahgorit,

(c)

and the functionaF'. The model components and parameters
are then customized for the specific application of MR-T1

Fig. 4. (a) A cloud system for = 3 objects shown in RGB color space. (b)jnage segmentation of the brain as described in Section III.

The recognition score for all positions and (c) the final segration handling
multiple objects simultaneously.
A. Grouping

Again, when the variability of the training instances is The grouping can be done by representing the training
too large, we can separate the instances gntups of high instanced.; as nodes of a complete graph; the arcs between
similarity, but now we must also consider possible coriefet and f;j are weighted by a metric that valuates their similarity.
among the objects in terms of relative position, rotationn the single object case: & 1), we may consider the Dice
and size. This leads to eoud system model (CSM), which similarity as this metric after centralizing the trainimgiances
is formally presented below. The previous cloud modelsy their centroid vectorsﬁu (Figure 5a). In the case of
(OCM,CBM) are subsumed by CSM as particular cases. multiple objects ¢ > 1), we centralize the label imagds,

An image [ is a pair (Z,/) whereZ C Z" is the i = 1,2,...,N, by P, and consider a combined similarity
image domain andf(p) assigns a set ob scalarsI;(p), value (e.g., the mean Dice similarity among corresponding
i =1,2,...,b, to each voxeb € Z. This definition applies object’s instances). The groups are then selected as miaxima
to multi-dimensional and multi-parametric images. We amiques [19], wherein all pairs of training instances hawe-s
interested inn = 3 andb > 1. The index: is removed when ilarity above a threshold. Thresholding helps us to assae t
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only compatible data are used within the same cloud systesaccess strongly depends on a suitable arc-weight estimati
and the size of the uncertainty regions can be controlled tich usually takes into account image attributes and/@aib
the threshold (Figure 5b). On the other hand, we must kegfiormation obtained by supervised learning [1]. For theegi
the number of groups as low as possible in order to make tineage / = (Z,I) to be segmented, we associate a weight
method computationally efficient. We start wiffi maximal image W = (Z,W) which is in turn associated with a
cliques, such that each contains one training image. Sireset graph (Z,.A). The graph’s nodes are the voxels € 7
cliques may have overlap, we select only a minimal subsetarid arcs(p,q) € A are defined between 6-neighbors. For
them that comprises all the images. In most cases this @anvenience, we store the weights in voxel resolution and
be accomplished by successively applying three simplesruleise their interpolated values during execution for the lyrap
eliminate repeated cliques (or cliques having all unsetkctThat is, each ar¢p, q) € A is weighted by the mean value
nodes contained in some other clique), select all cliquéls wiv(p, q) = w The weightW(p) assigned to each
at least one exclusive element, and ignore remaining digugxel p € 7 is a linear combination of an image-based weight
that have all elements already selected. When this fakseth W;(p), an object-based weight¥,(p), and a shape-based
is a cycle of dependencies that may be broken by arbitrarilyeight W (p) provided by the cloud model.
selecting one of the remaining cliques, and then resumiag th

W(p) = )\sz(p) + )\oWo(p) + AW (p)7 (2)

three rules.

where)\; + A\, + A = 1. The weightW;(p) aims at capturing
discontinuities that may exist between homogeneous region
and is taken as the magnitude of an image gradient. The
weights W, (p) take into account prior knowledge about the
intensities of the objects under consideration in order to
characterize the discontinuities that exist between thedirtlae
rest of the image. This weight is usually application-defeari
(see Section 111-B), although some general techniquest exis
Fig. 5. (a) The training instances £ 1) are mapped as nodes of a completqg estimate them [1]. The weighit,(p) encodes prior shape
graph, (b) the groups are selected as maximal cliques. information obtained from eactioud imageCA’gyl (Figure 1a)

by computing its gradient magnitude for all groups and label

I there are only a few_training images available, they ma(*igure 1b). It is combined with the other weights as each
be complemented with images created by random transfgfs 4 moves over the image (i.e., each cloud has its own

mations (Wi_thi_n acceptable !imits) of the givgn images_mhicws(p))’ usually with a low), value since its major role is
capture variations that are likely to happen in the appbeat o to discriminate regions with poorly defined borders.

B. Locating objects D. Delineation algorithm

L.eFIA — .(I’ I) be an imagg to b‘i segmented._For each _searcl]zor delineation, we use an algorithm called IFT-SET{
position with coordinates given by each cloud imagé’, ; is segmentation by Seed Competition) which is based on the

positioned with its center af = j'+ D, and its uncertainty 446 foresting transform [20] (IFT) and is supported by the
region is projected over a set of voxésC Z. That is, the theoretical foundations given in [21].

displacemeljt vector§g,l are used to fix the cloud's position .. ooch search position, each cloud imége defines an
for each object relative to the moving search pgintrhen, uncertainty region as a sét C Z of voxels (Figure 1c). The

for each positiory of a search region, a scofg is obtained jnerior and exterior regions contain boundary voxels, athi
for each labell = 1,2,...,c, by analyzing the candidatey, e 4t least one voxel # as a 6-neighbor. These boundary
segmentations computed by the delineation algorithm f%xels form one internal sef; and one external sef, of
each cloud in a given cloud system. A combined score fQLaqs for the IET-SC. Aath 7 in the image graphiZ, A) is
recognition is obtained by the functional such as the mean 4 sequence of adjacent Vox}s;, ps, . .., pn). For the given
value (37,_, F1) /c. This process is repeated for all 9roUPSget of seedss = S; US., the cos"[ of’a p:';\thr is defined by a

and the best location among all groups is selected as the ﬁﬁﬁ'llh—cost function. The considered cost functions are:
result. ' '

A multiscale search can be used to speed up this recognitiony, () _ { maxi=1,2,..n-1W(pi;pit1) if p €8 3)
task, by starting the search at the lowest resolution animefi +oo otherwise
th_e bes_t detecte_d Iocati_ons in the h_igher resolutions. iguri () Yicto o1 Wi pi1)]” i preS @)
this refinement in the higher resolutions, we may also allow-?2 400 otherwise

each cloud of a cloud system to move independently from the, . — . .
others in order to have more flexibility. When i/ contains the object's boundary (Figure 1c), it is

expected that the arc weights withid are higher on the

) o S object’s boundary than inside and outside it. The seed sets

C. Arc-weight estimation for delineation S; andS, compete for voxels i/, such that a voxel receives
Image-based delineation algorithms usually make dabel L(p) = 0 if the minimum-cost path comes fros., and

rect/indirect use of some image-graph concept, and th&ibel L(p) = [ otherwise. The object is then defined as the
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union between the interior of theloud and the voxels with 1. APPLICATION TO BRAIN SEGMENTATION

labelsL(p) =lined. _In this work, we consider the segmentation of the brain
The IFT solves this minimization problem by computingryctures S1-S5 as summarized in Figure 3. The segmenta-
an optimum-path forest — a function P which contains no tjon of the left and right cerebral hemispheres enables the
cycles and assigns to each nagle 7 either its predecessoripyestigation of asymmetries in shape and texture which may
node P(g) € T in the optimum path with terminug or & pe related to several degenerative diseases. The sepavétio
distinctive markerP(q) = nil ¢ I, when (g) is optimum the cerebellum makes its analysis possible independeftly o
(i-e., ¢ is said to be aoot of the forest). The cost functionsihe rest of the brain, which is important in understanding
by EqQ. 3 and 4 force the roots to be & (Figure 6). AS the relationships between aging and the decline in cognitiv
we change the parameter > 0 in f, we obtain a whole fnctioning [16]. The hemispheres are connected through th
family of solutions that includeg’ as a special case in thecorpys callosum. The cerebellum is connected to the rest of
limit when 7 — oo. This is noticeable from the empiricalihe prain through the brain stem and through its top due to
results shown in [14]. We note thay, usually imposes partial volume. The absence of a clear boundary betweeg thes

more regularization to the object’s boundary than but on gy ctures poses a challenge for segmentation (Figure 7).
the other hand,f; fits to the protrusions and indentations

of the boundary better thaif;,. The IFT-SC is especially
important, because our model is being projected to allow
user’s intervention for small corrections if necessaryd @n
was shown in [21] that the boundaries obtained by the IFT-
SC with path-cost functiorf; are also piecewise optimal. This
property is essential to conserve user control during auctire
corrections as discussed in [21], and these correctiondean
quickly performed by using the DIFT algorithm [3].

(b)

Fig. 7. (a) The cerebellum is connected to the cerebrum ¢firotne
brain stem. (b) The cerebral hemispheres are connectedgthrthe corpus
callosum.

This application of MR brain image segmentation perfectly
fits the requirements for the CSM model. The images are
acquired in a well controlled environment, where the patien
remains lying in a horizontal position without moving. In
extreme cases (e.g., Claustrophobia) even mild sedatigh ma
(b) be adopted. Hence, only a small number of clouds will suffice
as desired.

Fig. 6. IFT-SC example: (a) A-neighborhood graph, where the numbers

indicate the arc weights. Three seeds are selected, onteigaah (white dot) ] ]
and two are external (black dots). (b) An optimum-path fofesthe path-cost A. Preprocessing & grouping
function f1. The numbers inside the nodes indicate the costs of the optim

paths, which are stored in a predecessor Rafhe labelL(q) = 0 (black), A_S stated in Section I, preprocessjng that .deljends Only on
or L(q) = I (white) of each seed is propagated to all pixels within its the image being processed can help in reducing the total num-
respective optimum-path tree. ber of groups required. The MR-T1 images are interpolated

to the same cubic dimensions (0:88:3) and aligned by the

mid-sagittal plane [22] (MSP). This approach is fast (a few
E. Functional for recognition seconds), free of parameters, and independent of templates
Interpolation and alignment reduces the number of groups by

The functional F* should be the one that best disCrimieqcing the data variability, and the MSP also reduces the

inates the objects under consideration, being consequertl o region. Note that, the MSP alignment operation does
application-dependent. Several delineation algorithresad- |+ depend on any reference image. For grouping, we used

ready based on some sort of functional, like for examplge methodology of Section II-A, with the combined simitgri
a graph-cut measure [4]. Indeed, the IFT-SC with path-Cqftashold 0f0.8.

function f; also optimizes a graph-cut measure according

to [21]. A question may be raised concerning the use of the . o

same functional for both delineation and recognition scor: Arc-weight estimation

This is usually not the best option, because the functidisals In this application, we may take advantage of the fact that
delineation are in general designed to best match boundargst of the brain structures are surrounded by CSF in order to
properties, while the recognition functional could be fasren emphasize their boundaries. However, owing to the intgnsit
complex, taking into account more global information, suchon-standardness among images, and also the inhomogeneity
as the shape details and internal information. The funatiorthe partial volume effects, and their interplay [23], it is
used for brain segmentation is discussed in Section IlI-C. difficult to characterize the exact intensity profile of th&rC
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in advance. But we may still enforce a more specific intensityill theoretically lead to an approximation of the IFT-SC
interval which is more likely to contain the transition fromaccording to [21]. Hence, it is preferable to use the faster
CSF to GM. Considert; as a lower bound of the CSFIFT-SC algorithm.

intensity, andt, as a lower bound for the white matter. We
can accentuate the intensity slope in the intefvalts] by
considering the filtered imagE = (Z,I") as follows.

Algorithm 1 below performs the IFT-SC delineation and
functional computatior¥; simultaneously for any given image
location. It takes time proportional to the number of voxels
in U (sublinear), when the priority queug is implemented

I(p) if I(p) <ty properly [2]. For multiple objects, the scorés are combined
, :
I'(p) = Et - ’1)31(4— Vi)jf)j( : gtr{gr)\aviese[thb] () asF = (X, Fi)/c, as discussed in Section II-B.
2 — )y — D

wherey > 1 defines the new slope value (e.g.= 5), such Algorithm 1: — DELINEATION ALGORITHM FOR f;

that differences withirjty, ¢2] in the original image/ become _ . .

higher in I. Subsequently, we consider a simple application/NPUT: Image 1, weight image W', adjacency A, seed sets
- . ) S; and S., and uncertainty region /.

specific weightiV, (p) that emphasizes dark voxels close t0 4 ;o1 Label map I initially zeroed, an optimum-path

bright areas in the filtered imagk. Fpr all voxelsp € 7, forest stored in a predecessor map P initially with
W,(p) is computed as the sum of differencE$q) — I'(p) nil and functional F; = 0 initially. _
for all brighter voxelsq (i.e., I'(q) > I'(p)) in a small AUXILIARY: Cost map c initially zeroed, variables cst, object
neighbourhood around Thus, a suitable emphasis is obtained acquisitions oa = 0, penalty acquisitions pa = 0
in the superior part of the cerebellum, and the transitioosf and cut size sz = 0 initially, priority queue Q
In P P N . initially empty, and status map s to indicate when
GM to WM become weakened (Figure 8). In the experiments avoxel has been inserted in Q (1), has never been
we considered; as the Otsu’s optimal threshold (which gave a inserted in Q (0), or has been removed from Q (2).
good lower boun_d for the C_:§F in e_lll c:_;lses), and we considergd . i p €U, sete(p) — +oo ands(p) — 0.

t2 as the mean intensity ifi considering only values above2. Forall p € S;, setL(p) — I, s(p) — 1, and insertp in Q.
t;. The other weights¥;(p) and W,(p) are computed as 3. Forall p € S, setL(p) < 0, s(p) « 1, and insertp in Q.
discussed in Section II-O¥,(p) being especially important g- While @ is not empty,do

: ; Remove fromQ@ a voxelp such thate(p) is minimum.
to complete poorly defined borders (Figure 7). 5 Sets(p) — 2.
7. For each ¢ such that(p,q) € A, do
8 If ¢(q) > c(p), then
9. Computecst «— max{c(p), W}
10. If cst < ¢(q), then
11 If s(¢) = 1, removeq from Q.
12. Setc(q) < cst, L(q) < L(p).
13. SetP(q) « p.
14. L L Insertq in Q ands(q) < 1.
15. Else
. 16. If s(¢) =2 and L(q) # L(p), then
(b) 17. SetFj « F + Y@fW@,
18. L L L Setsz «— sz + 1.
Fig. 8. (a) The image-based weight;, (b) the object-based weight,. ~ 19- If L(p) =, then
20. Setoa «— oa + 1.
21. L If I(p) < t1, then setpa «— pa + 1.

22. SetF, « (F1/sz) x (1 — pa/oa).
C. Recognition functional & delineation algorithm

The previous versions [13], [14] used the mean-cut mea-Lines 1-3 initialize maps and insert seed voxel§irLines
sure [24] as the functional;, since it provides a good sum-4-14 compute the maps, ¢ ands during the IFT. The main
mary of the object’s boundaries, being free of any undefEralloop computes an optimum path cost from the seeds to every
bias. In this work, we improve on this functional by inclugin nodep in a non-decreasing order of values (Lines 4-14). At
a penalty factor based on our application-specific knowdedgeach iteration, a path of minimum cog) is obtained inP
The likelihood of having image intensities below inside when we remove its last voxglfrom @ (Line 5). Lines 7-14
the brain structures is supposed to be very low. Therefbre evaluate if the path that reaches an adjacent vgxéirough
the proportion of voxels below; is high, among all voxels j is cheaper than the current path with termigusnd update
achieved for the object fro@, then this is a strong indication @, ¢(q), s(¢), L(q) andP(q) accordingly. The remaining lines
that the cloud is poorly positioned. compute the functional; on-the-fly.

With respect to the delineation algorithm, some works [25] . .
propose the use of a graph-cut algorithm with an increas-N_O.te that,.before changing position b'f the maps af‘d
ing transformation (i.e., the exponential function). Birce auxiliary variables can be reinitialized in sublinear time

we have a potent arc-weight estimation strategy which als Ch th?t Elt]r? sebarch f?r a gesired Sbject_lcan bde_f_d(()jne more
includes prior shape information (filling any gaps on thgmciently. The above algorithm can be easily modifie Jor

. . ) "
object’'s boundary), a graph-cut algorithm under this sgenaif We substiture line 9 byst — c(p) + {W} :



IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, SEPTEMER 2009 7

; ; OCM [13] CBM [14] CSM
D. Multi ple ObJeCt search Obj. | Mean | S.dev| Mean | S.dev| Mean | S.dev
Instead of making a hierarchical search (i.e., the pipeline S1 | 9649 051 | 97.06| 1.06 | 97.37 | 0.46

; - ; S2 | 96.60 | 0.51 | 97.20 | 1.21 | 97.59 | 0.48
of Figure 3) as in [13], [14], we made the search simulta- a3 | 9231 | 122 | 0439 | 095 | 9497 | 0.84

neously for the three objects S3, S4 and S5, as described in sS4 | 9547 | 044 | 9666 | 1.36 | 97.16 | 0.48
Section II-B. Later, object S2 is obtained as\$85, and S1 S5 | 9537 0.60 | 9643 | 1.16 | 97.05| 0.55
as S3JS4US5. The search was constrained only inside the

MSP, and we also used a multiscale strategy to speed up the., %
recognition task by using a three-level Gaussian pyramid.

TABLE |
) AND STANDARD DEVIATION (%) OF THEDICE SIMILARITY.

IV. RESULTS

We have first evaluated the method on the MRI datasets of
40 normal subjects from both genders, in the age range from
16 to 49 years. The images were acquired with a 2T Elscint
scanner and voxel size 6f98 x 0.98 x 1.00 mm?3. We used
the leave-one-out approach to compute the mean and standaro
deviation of the Dice similarity measure between the ground
truth and the automatic segmentation (Figures 10 and 9). Ta-
ble | shows the results for different methods. The CSM model
was executed with four groups, using path-cost functipn
and with arc weights computed using = 0.15, A, = 0.75,
and\; = 0.10. The obtained results are considerably superior
to those of OCM [13], especially for the cerebellum; and
are also much more precise (i.e., lower standard deviation)
than the previous CBM [14]. The simultaneous search of
multiple objects is also faster than the hierarchical deased
in [13], [14]. The mean execution time per group using a 3GHz
Pentium IV PC was 27.5 sec, while the hierarchical search
took 41 sec. Therefore, the total mean execution time per dat
set to segment all objects is 110 sec. We also note that our
results for brain segmentation S1 are considerably suptrio
those reported in [26] fotree pruning [26] and SPM2 [27]
(mean errors of 9.4% and 14.1%, respectively), the lattergbe Fig. 10. Sample slices from control subjects with segmanmtatesults.
a widely used template-based approach for medical research
This is especially notable concerning the removal of thénbra
stem.

We also conducted experiments with 40 patient images
which were acquired post-surgery, some of which had strong
morphological changes (Figure 11). In this case, some abeci
care has been taken. After training on the 40 controls, we
considered a greater degree of contingency in the size of
U, and we also applied a post-processing operation to clear
peripheral voxels below;. For 38 images the results were_
similar to those for controls, and their worst 5 images had
the mean and standard deviation of Dice similarity for S3, S4
and S5, respectively 094.52% + 0.68%, 96.84% + 0.38%, that CSM is more precise and more accurate than OCM and
and 96.21% = 0.87%. The other two remaining images hadCcBM for this particular application. CSM is simpler and farst
larger errors and required interactive repairing by the DIFthan other approaches commonly used in the literature in bra
algorithm [3]. research. It can also be easily implemented in paralleingak

advantage of machines with multiple processors and cores.
V. CONCLUSION Our future work will include evaluation of CSM using

We have presented model-based approaches for autom@titer medical imaging modalities, employing better gyalit
image segmentation, which employ recognition and deliitages from a 3T MRI scanner, segmenting sub-cortical brain
eation in a tightly coupled manner. The previous approach&§uctures, and other image analysis applications.
called OCM [13] and CBM [14], are particular cases of the
proposed method, named Cloud System Model (CSM). The ACKNOWLEDGMENT
three methods were compared for automatic MR-T1 imageThe authors thank FAPESP (Proc. 05/59808-0 and
segmentation of several brain structures. The resultgdtell Proc. 07/52015-0), and CNPq (Proc. 302617/2007-8) for the fi

. 11. Sample slices from patients with segmentationltesu
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Fig. 9. Segmentation results I§loud System Model and the provided ground truth, shown as 3D renditions.
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