
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. X, NO. X, SEPTEMBER 2009 1

Cloud Models: Their Construction and Employment
in Automatic MRI Segmentation of the Brain

Paulo A. V. Miranda, Alexandre X. Falcão, and Jayaram K. Udupa, Fellow, IEEE

Abstract—A cloud is a triple consisting of a fuzzy object
model, a delineation algorithm, and a criterion function for
evaluating delineations. It employs recognition and delineation
in a tightly coupled manner to accomplish image segmentation.
It captures shape variations of a given object/object assembly
to form an uncertainty region for its boundary. For any image
position, delineation is executed in the uncertainty region to
obtain a candidate object/object assembly, and the criterion
function assigns a score to it. Image segmentation is defined
by the candidate with the highest score. This work presents
and compares three cloud models in automatic MR-T1 image
segmentation of the cerebrum, the cerebellum, and cerebral
hemispheres. These structures are connected in several parts,
imposing serious segmentation challenges. The results show
that the methods are fast, accurate, and can eliminate user
intervention or, at least, reduce it to simple corrections.Their
applications go beyond medical imaging to new vistas in various
areas served by image segmentation.

Index Terms—MR-image segmentation of the brain, image
foresting transform, model-based and image-based segmentation,
graph-cut measures, and medical image analysis.

I. I NTRODUCTION

I MAGE segmentation involves objectrecognition and de-
lineation [1]. Recognition is the task of determining an

object’s approximate location in the image. Delineation com-
pletes segmentation by defining the exact spatial extent of
the object. Humans usually outperform computers in object
recognition, but the reverse is true for delineation. Whilethe
user can often solve the recognition problem by simple point
(seed) selection or by an effective initialization action,precise
delineation is challenging due to the intra and inter operator
subjectivity. On the other hand, computers can be very precise,
even when they are not accurate, but the absence of global
information (e.g., an object model) makes object recognition
a difficult task for them. This explains why some successful
interactive approaches combine recognition by the user with
delineation by the computer in a synergistic way, for effective
and foolproof segmentation [2], [3], [4].

Segmentation methods can be roughly divided intomodel-
based and image-based approaches. Model-based methods
create statistical models by employing supervised learning. A
training set of object’s instances is provided with appropriate
human interaction and these data are registered into a common
reference space to form the model. Active shape models [5]
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(ASM) and atlas-based approaches [6], [7], [8] are examples
of model-based methods that have been used for MR-image
segmentation of anatomic structures in the brain [9], [10].
Accurate registration is a separate problem in these meth-
ods which is also required during segmentation. In ASM,
landmarks have to be selected on the surface of the training
objects and their correspondence provides a statistical model
of possible variations in shape. The registration between the
image and the model during segmentation also sometimes
ignores important image information, by the act of forcing
the results to fit with the model. Brain atlases are usually
created by registration of training images based on certain
landmarks (e.g., anterior and posterior comissures) and defor-
mation fields. In the reference space, image structures suffer
from different degrees of distortion, making the matching
among corresponding voxels inexact. Image-based methods in
turn exploit image properties for more effective delineation,
but their lapses in global information makes object recognition
an insurmountable problem.

In view of these dilemmas, some recent methods have
addressed automatic segmentation by combining model-based
approaches for recognition with image-based approaches for
delineation [11], [12], [13], [14]. Essentially, the modelplays
the role of the human operator while an image-based algorithm
performs delineation, and both operate in a synergistic way
until an optimum state is reached. In this paper, we pursue
our previous work onobject cloud models [13], [14] which
present the following advantages: the cloud models dismiss
registration during training and segmentation; they take into
account the entire object’s boundary during delineation and
recognition rather than only somecontrol points, as in [5];
and they can be easily extended to multidimensional images.

An object cloud model (OCM) was introduced in [13] as a
triple comprising a fuzzy object, a delineation algorithm,and
a criterion function. It captures shape variations of a given
object to form an uncertainty region for its boundary. For
any image position, delineation is executed in the uncertainty
region to obtain a candidate object and the criterion function
assigns a score to it. Image segmentation is defined by the
candidate with the highest score. In order to capture more
shape differences, we proposed thecloud bank model (CBM)
in [14], which uses multiple clouds per object. In some appli-
cations, however, multiple objects may define acloud system
by adding their relative position into the model. This is the
case of MR-T1 images of the brain and several other medical
imaging applications. Therefore, we propose in this paper
the cloud system model (CSM) to handle multiple objects
simultaneously. The methods are compared for the automatic
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MR-T1 image segmentation of: (S1) the brain (without stem),
(S2) the cerebral hemispheres, (S3) the cerebellum, and (S4
and S5) the right and left hemispheres.

In the literature, most approaches to segment S1-S5 are
based on atlas registration or surface-extraction techniques.
CSM does not require registration and segments S1-S5 simul-
taneously, precisely and accurately. Besides, a quick evaluation
of several other tools revealed that CSM is much simpler and
faster. For example, it is about 5 times faster than Brain-
Visa [15], with no need for manual landmark specification.
As compared with the recent work in [16], which takes about
3 hours using deformable registration and 17 atlases, the pro-
posed approach is much simpler, faster and produces similar
Dice measures for S3. Other examples are SurfRelax [17],
which takes about 6 minutes and requires image warping onto
a template, CLASP1 and FreeSurfer [18], which take hours to
complete segmentation of S1-S5.

We present the general definitions of all object cloud models
- OCM, CBM, and CSM - in Section II; instantiate them
for brain MR-T1 image segmentation in Section III; discuss
experimental results in Section IV; and state conclusions in
Section V. The experiments show the advantages of CSM and
improvements over our previous works [13], [14] for this
particular application.

II. OBJECT CLOUD MODELS

For a given object of interest (e.g., brain, cerebellum), a
set of training images with the object’s instances must be
provided. These instances should capture among them shape
variations of that object in order to teach the computer how to
recognize it in the image. In atlas-based approaches [6], the
images are registered to a chosen reference image by finding
a geometric transformation that best matches them according
to a criterion of similarity. During the registration process, the
reference image remains fixed while the others are deformed
into its geometric space. Following this, the model is obtained
as the averaged image template together with the tissue dis-
tribution maps obtained by averaging segmentations over all
subjects. Suitable reference selection is itself a problem, since
the atlas can be biased towards the anatomy of the chosen
image. Hence, this image should be the one that best represents
the anatomy of a population under study [7].

Suppose, instead of registering the training instances, we
only translate their binary segmentations on to a common
reference point (geometric center) and compute their average.
This results in an image with a fuzzy appearance that resem-
bles acloud (Figure 1a). From it we may obtain relevant shape
informations such as prior boundary knowledge (see Figure 1b
and Section II-C). Eachcloud image also defines (i) an interior
region consisting of voxels that belong to all training instances,
(ii) an exterior region with voxels that do not belong to any
instance, and (iii) an uncertainty region composed of voxels
that belong to some but not to all instances (Figure 1c).

The cloud model (OCM) is a triple that consists of a
fuzzy object (cloud image), a delineation algorithmA (this
may be any algorithm, but, for the reasons mentioned earlier,

1URL: http://www.bic.mni.mcgill.ca/

preferably an image-based approach), and a functionalF . To
segment a new image, thecloud moves over the image and, for
each position, algorithmA is executed inside the uncertainty
region to obtain a candidate segmentation. The functional is
evaluated on this segmentation to obtain a matching score for
recognition, by taking into account local and global object
properties (e.g., shape and texture). The desired segmentation
is expected to be the one with maximum score [13] (Fig-
ures 2a-c). However, when the variability in the training set is
too high the shape information within thecloud image tends
to degenerate and the method loses precision. To circumvent
this problem, we may separate the training instances into
groups (clusters) of high similarity in shape, rotation and size
(texture may be used as well). Each group defines its own
cloud image resulting in a bank of clouds, and the desired
segmentation is expected to be the one with maximum score
among segmentations obtained from all individualclouds from
this cloud bank model (CBM) [14]. In this manner, the need
to define a reference image is completely obviated. As new
images are added to the training set, they start new groups
or are inserted in some existing group (the groups may have
overlap). In medical imaging and other applications (e.g.,
license plate recognition), it is possible to acquire images as
per a disciplined regimen so that a small number of groups in
the bank will suffice. Preprocessing, that depends only on the
image being processed, can also help in reducing the number
of groups.

Note that delineation is constrained in the uncertainty
region, and it also exploits prior shape information (see
Section II-C) which are defined by the model. Recognition
is based on the functional, but it is applied to the delineated
objects. Thus, the model employs recognition and delineation
in a tightly coupled manner [11].

Fig. 1. (a) A coronal slice of the 3D cloud image of the cerebellum. (b) The
shape-based weight image. (c) Example of an uncertainty region over a slice
of a test image.

In the case of multiple objects, each object has its own
OCM (or CBM), separately, and the segmentation can follow
independently, or in a hierarchical search. In this last case,
the search spaces for the internal objects are constrained
by the larger objects that subsume them (e.g., Figure 3,
used in [13], [14]). However, in some applications (such as
medical), the arrangement among objects does not change, so
it is possible to make better use of contextual information,
by computing their mean relative positions with respect to
a common reference point (centroid of all objects). As a
result, we have acloud system (Figure 4a). To segment a
new image, we consider the prior displacement knowledge in
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Fig. 2. (a) An input image. (b) The recognition score for all positions. (c)
The final segmentation at the best location.

Fig. 3. Hierarchical search for the brain structures S1-S5:S1 is the brain
without the brain stem, S2 represents the cerebrum, S3 is thecerebellum, and
S4 and S5 are the right and left cerebral hemispheres.

order to fix the position of each object cloud relative to the
moving reference point. For each search position, delineation
is done inside the uncertainty regions of all object clouds,and
a combined score for recognition is obtained by the functional
F . This simultaneous treatment of multiple objects makes it
less likely to miss the right position, due to the better use of
contextual information (Figures 4b-c) [12].

Fig. 4. (a) A cloud system forc = 3 objects shown in RGB color space. (b)
The recognition score for all positions and (c) the final segmentation handling
multiple objects simultaneously.

Again, when the variability of the training instances is
too large, we can separate the instances intogroups of high
similarity, but now we must also consider possible correlations
among the objects in terms of relative position, rotation,
and size. This leads to acloud system model (CSM), which
is formally presented below. The previous cloud models
(OCM,CBM) are subsumed by CSM as particular cases.

An image Î is a pair (I, ~I) where I ⊂ Zn is the
image domain and~I(p) assigns a set ofb scalarsIi(p),
i = 1, 2, . . . , b, to each voxelp ∈ I. This definition applies
to multi-dimensional and multi-parametric images. We are
interested inn = 3 and b ≥ 1. The indexi is removed when

b = 1. For c objectsl = 1, 2, . . . , c, a segmentation instance
is represented by a labeled imageL̂ = (I, L), in which each
label1 ≤ L(p) ≤ c assigns a voxelp ∈ I to one object out ofc
objects, andL(p) = 0 is used to designate background voxels.
A binary imageB̂ = (I, B) may be used to represent each
object such thatB(p) = 1 for object voxels andB(p) = 0 for
background voxels.

Training instances are given as a set of labeled images
L̂i = (Ii, Li), i = 1, 2, . . . , N . Suppose these instances are
separated intom groups of high similarity, as to be discussed
in Section II-A. Each group is represented by a setGg of
images,g = 1, 2, . . . , m, such that̂Li ∈ Gg if the imageL̂i is
in the gth group. LetB̂i,l = (Ii, Bi,l) be the binary image of
the lth object in theith image (i.e.,Bi,l(p) = 1 if Li(p) = l,
andBi,l(p) = 0 otherwise). For any given object labell and
groupg, the average of the binary imageŝBi,l for all i in Gg,
after translating them to a fixed reference point, creates acloud
image Ĉg,l = (C, Cg,l), whereCg,l(p) ∈ [0, 1]. For any cloud,
Cg,l(p) = 1 in its interior,0 < Cg,l(p) < 1 in its uncertainty
region, andCg,l(p) = 0 in its exterior. In the single object case
(i.e., c = 1), the method becomes the same as in CBM [14],
and it becomes a single OCM [13] whenc = 1 andm = 1. But
in the case of multiple objects (i.e.,c > 1), it also exploits the
relative positions among the objects within each group. Fora
given groupg, the arrangement of the object clouds is captured
by the displacement vectors~Dg,l, l = 1, 2, . . . , c, which store
the average positions of the object’s centroids in relationto
their joint centroid for all images inGg.

~Dg,l =
1

|Gg|

∑

∀i|L̂i∈Gg

(

~Pi,l − ~Pi

)

, (1)

where |Gg| is the cardinality of the setGg, ~Pi,l is the cen-
troid’s coordinates of the objectl in the binary imageB̂i,l,
l = 1, 2, . . . , c, and ~Pi is the centroid’s coordinates of their
union in the label imagêLi. Note that this formulation also
includes the single object case since~Dg,l becomes the null
vector whenc = 1.

The following subsections provide more details about all
relevant parts of the CSM, such as the grouping strategy, the
object search, the graph assembly, the delineation algorithmA,
and the functionalF . The model components and parameters
are then customized for the specific application of MR-T1
image segmentation of the brain as described in Section III.

A. Grouping

The grouping can be done by representing the training
instanceŝLi as nodes of a complete graph; the arcs betweenL̂i

andL̂j are weighted by a metric that valuates their similarity.
In the single object case (c = 1), we may consider the Dice
similarity as this metric after centralizing the training instances
by their centroid vectors~Pi,l (Figure 5a). In the case of
multiple objects (c > 1), we centralize the label imageŝLi,
i = 1, 2, . . . , N , by ~Pi and consider a combined similarity
value (e.g., the mean Dice similarity among corresponding
object’s instances). The groups are then selected as maximal
cliques [19], wherein all pairs of training instances have sim-
ilarity above a threshold. Thresholding helps us to assure that
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only compatible data are used within the same cloud system,
and the size of the uncertainty regions can be controlled by
the threshold (Figure 5b). On the other hand, we must keep
the number of groups as low as possible in order to make the
method computationally efficient. We start withN maximal
cliques, such that each contains one training image. Since these
cliques may have overlap, we select only a minimal subset of
them that comprises all the images. In most cases this can
be accomplished by successively applying three simple rules:
eliminate repeated cliques (or cliques having all unselected
nodes contained in some other clique), select all cliques with
at least one exclusive element, and ignore remaining cliques
that have all elements already selected. When this fails, there
is a cycle of dependencies that may be broken by arbitrarily
selecting one of the remaining cliques, and then resuming the
three rules.

Fig. 5. (a) The training instances (c = 1) are mapped as nodes of a complete
graph, (b) the groups are selected as maximal cliques.

If there are only a few training images available, they may
be complemented with images created by random transfor-
mations (within acceptable limits) of the given images which
capture variations that are likely to happen in the application.

B. Locating objects

Let Î = (I, I) be an image to be segmented. For each search
position with coordinates given by~p, each cloud imagêCg,l is
positioned with its center at~q = ~p + ~Dg,l, and its uncertainty
region is projected over a set of voxelsU ⊂ I. That is, the
displacement vectors~Dg,l are used to fix the cloud’s position
for each object relative to the moving search point~p. Then,
for each position~p of a search region, a scoreFl is obtained
for each labell = 1, 2, . . . , c, by analyzing the candidate
segmentations computed by the delineation algorithm for
each cloud in a given cloud system. A combined score for
recognition is obtained by the functionalF , such as the mean
value (

∑c

l=1 Fl) /c. This process is repeated for all groups,
and the best location among all groups is selected as the final
result.

A multiscale search can be used to speed up this recognition
task, by starting the search at the lowest resolution and refining
the best detected locations in the higher resolutions. During
this refinement in the higher resolutions, we may also allow
each cloud of a cloud system to move independently from the
others in order to have more flexibility.

C. Arc-weight estimation for delineation

Image-based delineation algorithms usually make di-
rect/indirect use of some image-graph concept, and their

success strongly depends on a suitable arc-weight estimation,
which usually takes into account image attributes and/or object
information obtained by supervised learning [1]. For the given
image Î = (I, I) to be segmented, we associate a weight
image Ŵ = (I, W ) which is in turn associated with a
graph (I,A). The graph’s nodes are the voxelsp ∈ I
and arcs(p, q) ∈ A are defined between 6-neighbors. For
convenience, we store the weights in voxel resolution and
use their interpolated values during execution for the graph.
That is, each arc(p, q) ∈ A is weighted by the mean value
w(p, q) = W (p)+W (q)

2 . The weightW (p) assigned to each
voxel p ∈ I is a linear combination of an image-based weight
Wi(p), an object-based weightWo(p), and a shape-based
weight Ws(p) provided by the cloud model.

W (p) = λiWi(p) + λoWo(p) + λsWs(p), (2)

whereλi +λo + λs = 1. The weightWi(p) aims at capturing
discontinuities that may exist between homogeneous regions
and is taken as the magnitude of an image gradient. The
weightsWo(p) take into account prior knowledge about the
intensities of the objects under consideration in order to
characterize the discontinuities that exist between them and the
rest of the image. This weight is usually application-dependent
(see Section III-B), although some general techniques exist
to estimate them [1]. The weightWs(p) encodes prior shape
information obtained from eachcloud imageĈg,l (Figure 1a)
by computing its gradient magnitude for all groups and labels
(Figure 1b). It is combined with the other weights as each
cloud moves over the image (i.e., each cloud has its own
Ws(p)), usually with a lowλs value since its major role is
only to discriminate regions with poorly defined borders.

D. Delineation algorithm

For delineation, we use an algorithm called IFT-SC (IFT
segmentation by Seed Competition) which is based on the
image foresting transform [20] (IFT) and is supported by the
theoretical foundations given in [21].

For each search position, each cloud imageĈg,l defines an
uncertainty region as a setU ⊂ I of voxels (Figure 1c). The
interior and exterior regions contain boundary voxels, which
have at least one voxel inU as a 6-neighbor. These boundary
voxels form one internal setSi and one external setSe of
seeds for the IFT-SC. Apath π in the image graph(I,A) is
a sequence of adjacent voxels〈p1, p2, . . . , pn〉. For the given
set of seedsS = Si ∪Se, the cost of a pathπ is defined by a
path-cost function. The considered cost functions are:

f1(π) =

{

maxi=1,2,...,n−1 w(pi, pi+1) if p1 ∈ S
+∞ otherwise

(3)

f2(π) =

{ ∑

i=1,2,...,n−1 [w(pi, pi+1)]
η if p1 ∈ S

+∞ otherwise
(4)

When U contains the object’s boundary (Figure 1c), it is
expected that the arc weights withinU are higher on the
object’s boundary than inside and outside it. The seed sets
Si andSe compete for voxels inU , such that a voxel receives
labelL(p) = 0 if the minimum-cost path comes fromSe, and
label L(p) = l otherwise. The object is then defined as the
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union between the interior of thecloud and the voxels with
labelsL(p) = l in U .

The IFT solves this minimization problem by computing
an optimum-path forest — a function P which contains no
cycles and assigns to each nodeq ∈ I either its predecessor
node P (q) ∈ I in the optimum path with terminusq or a
distinctive markerP (q) = nil 6∈ I, when 〈q〉 is optimum
(i.e., q is said to be aroot of the forest). The cost functions
by Eq. 3 and 4 force the roots to be inS (Figure 6). As
we change the parameterη > 0 in f2, we obtain a whole
family of solutions that includesf1 as a special case in the
limit when η → ∞. This is noticeable from the empirical
results shown in [14]. We note that,f2 usually imposes
more regularization to the object’s boundary thanf1, but on
the other hand,f1 fits to the protrusions and indentations
of the boundary better thanf2. The IFT-SC is especially
important, because our model is being projected to allow
user’s intervention for small corrections if necessary, and it
was shown in [21] that the boundaries obtained by the IFT-
SC with path-cost functionf1 are also piecewise optimal. This
property is essential to conserve user control during interactive
corrections as discussed in [21], and these corrections canbe
quickly performed by using the DIFT algorithm [3].
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(a) (b)

Fig. 6. IFT-SC example: (a) A4-neighborhood graph, where the numbers
indicate the arc weights. Three seeds are selected, one is internal (white dot)
and two are external (black dots). (b) An optimum-path forest for the path-cost
function f1. The numbers inside the nodes indicate the costs of the optimum
paths, which are stored in a predecessor mapP . The labelL(q) = 0 (black),
or L(q) = l (white) of each seedq is propagated to all pixels within its
respective optimum-path tree.

E. Functional for recognition

The functionalF should be the one that best discrim-
inates the objects under consideration, being consequently
application-dependent. Several delineation algorithms are al-
ready based on some sort of functional, like for example
a graph-cut measure [4]. Indeed, the IFT-SC with path-cost
function f1 also optimizes a graph-cut measure according
to [21]. A question may be raised concerning the use of the
same functional for both delineation and recognition score.
This is usually not the best option, because the functionalsfor
delineation are in general designed to best match boundary
properties, while the recognition functional could be far more
complex, taking into account more global information, such
as the shape details and internal information. The functional
used for brain segmentation is discussed in Section III-C.

III. A PPLICATION TO BRAIN SEGMENTATION

In this work, we consider the segmentation of the brain
structures S1-S5 as summarized in Figure 3. The segmenta-
tion of the left and right cerebral hemispheres enables the
investigation of asymmetries in shape and texture which may
be related to several degenerative diseases. The separation of
the cerebellum makes its analysis possible independently of
the rest of the brain, which is important in understanding
the relationships between aging and the decline in cognitive
functioning [16]. The hemispheres are connected through the
corpus callosum. The cerebellum is connected to the rest of
the brain through the brain stem and through its top due to
partial volume. The absence of a clear boundary between these
structures poses a challenge for segmentation (Figure 7).

(a) (b)

Fig. 7. (a) The cerebellum is connected to the cerebrum through the
brain stem. (b) The cerebral hemispheres are connected through the corpus
callosum.

This application of MR brain image segmentation perfectly
fits the requirements for the CSM model. The images are
acquired in a well controlled environment, where the patient
remains lying in a horizontal position without moving. In
extreme cases (e.g., Claustrophobia) even mild sedation may
be adopted. Hence, only a small number of clouds will suffice
as desired.

A. Preprocessing & grouping

As stated in Section II, preprocessing that depends only on
the image being processed can help in reducing the total num-
ber of groups required. The MR-T1 images are interpolated
to the same cubic dimensions (0.98mm3) and aligned by the
mid-sagittal plane [22] (MSP). This approach is fast (a few
seconds), free of parameters, and independent of templates.
Interpolation and alignment reduces the number of groups by
reducing the data variability, and the MSP also reduces the
search region. Note that, the MSP alignment operation does
not depend on any reference image. For grouping, we used
the methodology of Section II-A, with the combined similarity
threshold of0.8.

B. Arc-weight estimation

In this application, we may take advantage of the fact that
most of the brain structures are surrounded by CSF in order to
emphasize their boundaries. However, owing to the intensity
non-standardness among images, and also the inhomogeneity,
the partial volume effects, and their interplay [23], it is
difficult to characterize the exact intensity profile of the CSF
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in advance. But we may still enforce a more specific intensity
interval which is more likely to contain the transition from
CSF to GM. Considert1 as a lower bound of the CSF
intensity, andt2 as a lower bound for the white matter. We
can accentuate the intensity slope in the interval[t1, t2] by
considering the filtered imagêI ′ = (I, I ′) as follows.

I ′(p) =







I(p) if I(p) < t1
(1− γ)t1 + γ · I(p) if I(p) ∈ [t1, t2]
(t2 − t1)(γ − 1) + I(p) otherwise

(5)

whereγ > 1 defines the new slope value (e.g.,γ = 5), such
that differences within[t1, t2] in the original imagêI become
higher in Î ′. Subsequently, we consider a simple application-
specific weightWo(p) that emphasizes dark voxels close to
bright areas in the filtered imagêI ′. For all voxelsp ∈ I,
Wo(p) is computed as the sum of differencesI ′(q) − I ′(p)
for all brighter voxelsq (i.e., I ′(q) > I ′(p)) in a small
neighbourhood aroundp. Thus, a suitable emphasis is obtained
in the superior part of the cerebellum, and the transitions from
GM to WM become weakened (Figure 8). In the experiments
we consideredt1 as the Otsu’s optimal threshold (which gave a
good lower bound for the CSF in all cases), and we considered
t2 as the mean intensity in̂I considering only values above
t1. The other weightsWi(p) and Ws(p) are computed as
discussed in Section II-C,Ws(p) being especially important
to complete poorly defined borders (Figure 7).

(a) (b)

Fig. 8. (a) The image-based weightWi, (b) the object-based weightWo.

C. Recognition functional & delineation algorithm

The previous versions [13], [14] used the mean-cut mea-
sure [24] as the functionalFl, since it provides a good sum-
mary of the object’s boundaries, being free of any undesirable
bias. In this work, we improve on this functional by including
a penalty factor based on our application-specific knowledge.
The likelihood of having image intensities belowt1 inside
the brain structures is supposed to be very low. Therefore, if
the proportion of voxels belowt1 is high, among all voxels
achieved for the object fromU , then this is a strong indication
that the cloud is poorly positioned.

With respect to the delineation algorithm, some works [25]
propose the use of a graph-cut algorithm with an increas-
ing transformation (i.e., the exponential function). But since
we have a potent arc-weight estimation strategy which also
includes prior shape information (filling any gaps on the
object’s boundary), a graph-cut algorithm under this scenario

will theoretically lead to an approximation of the IFT-SC
according to [21]. Hence, it is preferable to use the faster
IFT-SC algorithm.

Algorithm 1 below performs the IFT-SC delineation and
functional computationFl simultaneously for any given image
location. It takes time proportional to the number of voxels
in U (sublinear), when the priority queueQ is implemented
properly [2]. For multiple objects, the scoresFl are combined
asF = (

∑c

l=1 Fl) /c, as discussed in Section II-B.

Algorithm 1: – DELINEATION ALGORITHM FOR f1

INPUT: Image Î , weight image Ŵ , adjacency A, seed sets
Si and Se, and uncertainty region U .

OUTPUT: Label map L initially zeroed, an optimum-path
forest stored in a predecessor map P initially with
nil and functional Fl = 0 initially.

AUXILIARY : Cost map c initially zeroed, variables cst, object
acquisitions oa = 0, penalty acquisitions pa = 0
and cut size sz = 0 initially, priority queue Q
initially empty, and status map s to indicate when
a voxel has been inserted in Q (1), has never been
inserted in Q (0), or has been removed from Q (2).

1. For all p ∈ U , setc(p)← +∞ ands(p)← 0.
2. For all p ∈ Si, setL(p)← l, s(p)← 1, and insertp in Q.
3. For all p ∈ Se, setL(p)← 0, s(p)← 1, and insertp in Q.
4. While Q is not empty,do
5. Remove fromQ a voxelp such thatc(p) is minimum.
6. Sets(p)← 2.
7. For each q such that(p, q) ∈ A, do
8. If c(q) > c(p), then
9. Computecst← max{c(p), W (p)+W (q)

2
}.

10. If cst < c(q), then
11. If s(q) = 1, removeq from Q.
12. Setc(q)← cst, L(q)← L(p).
13. SetP (q)← p.
14. Insertq in Q ands(q)← 1.
15. Else
16. If s(q) = 2 andL(q) 6= L(p), then
17. SetFl ← Fl + W (p)+W (q)

2
.

18. Setsz ← sz + 1.
19. If L(p) = l, then
20. Setoa← oa + 1.
21. If I(p) < t1, then setpa← pa + 1.
22. SetFl ← (Fl/sz)× (1− pa/oa).

Lines 1–3 initialize maps and insert seed voxels inQ. Lines
4–14 compute the mapsL, c ands during the IFT. The main
loop computes an optimum path cost from the seeds to every
nodep in a non-decreasing order of values (Lines 4–14). At
each iteration, a path of minimum costc(p) is obtained inP
when we remove its last voxelp from Q (Line 5). Lines 7–14
evaluate if the path that reaches an adjacent voxelq through
p is cheaper than the current path with terminusq and update
Q, c(q), s(q), L(q) andP (q) accordingly. The remaining lines
compute the functionalFl on-the-fly.

Note that, before changing position ofU , the maps and
auxiliary variables can be reinitialized in sublinear time,
such that the search for a desired object can be done more
efficiently. The above algorithm can be easily modified forf2

if we substiture line 9 bycst← c(p) +
[

W (p)+W (q)
2

]η

.
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D. Multiple object search

Instead of making a hierarchical search (i.e., the pipeline
of Figure 3) as in [13], [14], we made the search simulta-
neously for the three objects S3, S4 and S5, as described in
Section II-B. Later, object S2 is obtained as S4∪S5, and S1
as S3∪S4∪S5. The search was constrained only inside the
MSP, and we also used a multiscale strategy to speed up the
recognition task by using a three-level Gaussian pyramid.

IV. RESULTS

We have first evaluated the method on the MRI datasets of
40 normal subjects from both genders, in the age range from
16 to 49 years. The images were acquired with a 2T Elscint
scanner and voxel size of0.98× 0.98× 1.00 mm3. We used
the leave-one-out approach to compute the mean and standard
deviation of the Dice similarity measure between the ground
truth and the automatic segmentation (Figures 10 and 9). Ta-
ble I shows the results for different methods. The CSM model
was executed with four groups, using path-cost functionf1,
and with arc weights computed usingλi = 0.15, λo = 0.75,
andλs = 0.10. The obtained results are considerably superior
to those of OCM [13], especially for the cerebellum; and
are also much more precise (i.e., lower standard deviation)
than the previous CBM [14]. The simultaneous search of
multiple objects is also faster than the hierarchical search used
in [13], [14]. The mean execution time per group using a 3GHz
Pentium IV PC was 27.5 sec, while the hierarchical search
took 41 sec. Therefore, the total mean execution time per data
set to segment all objects is 110 sec. We also note that our
results for brain segmentation S1 are considerably superior to
those reported in [26] fortree pruning [26] and SPM2 [27]
(mean errors of 9.4% and 14.1%, respectively), the latter being
a widely used template-based approach for medical research.
This is especially notable concerning the removal of the brain
stem.

We also conducted experiments with 40 patient images
which were acquired post-surgery, some of which had strong
morphological changes (Figure 11). In this case, some special
care has been taken. After training on the 40 controls, we
considered a greater degree of contingency in the size of
U , and we also applied a post-processing operation to clear
peripheral voxels belowt1. For 38 images the results were
similar to those for controls, and their worst 5 images had
the mean and standard deviation of Dice similarity for S3, S4
and S5, respectively of94.52% ± 0.68%, 96.84% ± 0.38%,
and 96.21% ± 0.87%. The other two remaining images had
larger errors and required interactive repairing by the DIFT
algorithm [3].

V. CONCLUSION

We have presented model-based approaches for automatic
image segmentation, which employ recognition and delin-
eation in a tightly coupled manner. The previous approaches,
called OCM [13] and CBM [14], are particular cases of the
proposed method, named Cloud System Model (CSM). The
three methods were compared for automatic MR-T1 image
segmentation of several brain structures. The results indicated

OCM [13] CBM [14] CSM
Obj. Mean S.dev Mean S.dev Mean S.dev
S1 96.49 0.51 97.06 1.06 97.37 0.46
S2 96.60 0.51 97.20 1.21 97.59 0.48
S3 92.31 1.22 94.39 0.95 94.97 0.84
S4 95.47 0.44 96.66 1.36 97.16 0.48
S5 95.37 0.60 96.43 1.16 97.05 0.55

TABLE I
MEAN (%) AND STANDARD DEVIATION (%) OF THE DICE SIMILARITY.

Fig. 10. Sample slices from control subjects with segmentation results.

Fig. 11. Sample slices from patients with segmentation results.

that CSM is more precise and more accurate than OCM and
CBM for this particular application. CSM is simpler and faster
than other approaches commonly used in the literature in brain
research. It can also be easily implemented in parallel, taking
advantage of machines with multiple processors and cores.

Our future work will include evaluation of CSM using
other medical imaging modalities, employing better quality
images from a 3T MRI scanner, segmenting sub-cortical brain
structures, and other image analysis applications.
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