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Introduction

Mathematical morphology offers a variety of image
transformations to eliminate dark (bright) regions from binary
and grayscale images I = (DI , I ).
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Introduction

Mathematical morphology offers a variety of image
transformations to eliminate dark (bright) regions from binary
and grayscale images I = (DI , I ).

The adjacency relation A plays the role of a planar structuring
element. For example, the ball shape defined by

Ar : ∀t ∈ N = DI , t ∈ Ar (s) when ‖t − s‖2 ≤ r2, r ≥ 1,

is very useful in several cases.
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Introduction

Two basic transformations are exact dilation ΨD(I,Ar ) and
erosion ΨE (I,Ar ).
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Introduction

Two basic transformations are exact dilation ΨD(I,Ar ) and
erosion ΨE (I,Ar ).

They create filtered images V0 = (DI ,V0), whose values
V0(t) will constitute our initial connectivity map.
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Introduction

Two basic transformations are exact dilation ΨD(I,Ar ) and
erosion ΨE (I,Ar ).

They create filtered images V0 = (DI ,V0), whose values
V0(t) will constitute our initial connectivity map.

Dilation and erosion are defined by

V0(s) = max
∀t∈Ar (s)

{I (t)}

V0(s) = min
∀t∈Ar (s)

{I (t)}

respectively.
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Introduction

Dilation and erosion can also be combined into other
transformations, such as
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Introduction

Dilation and erosion can also be combined into other
transformations, such as

Closing ΨC

ΨC (I,Ar ) = ΨE (ΨD(I,Ar ),Ar )
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Introduction

Dilation and erosion can also be combined into other
transformations, such as

Closing ΨC

ΨC (I,Ar ) = ΨE (ΨD(I,Ar ),Ar )

Opening ΨO

ΨO(I,Ar ) = ΨD(ΨE (I,Ar ),Ar )
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Introduction

Dilation and erosion can also be combined into other
transformations, such as

Closing ΨC

ΨC (I,Ar ) = ΨE (ΨD(I,Ar ),Ar )

Opening ΨO

ΨO(I,Ar ) = ΨD(ΨE (I,Ar ),Ar )

Close-opening ΨCO

ΨCO(I,Ar ) = ΨO(ΨC (I,Ar ),Ar )
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Introduction

Dilation and erosion can also be combined into other
transformations, such as

Closing ΨC

ΨC (I,Ar ) = ΨE (ΨD(I,Ar ),Ar )

Opening ΨO

ΨO(I,Ar ) = ΨD(ΨE (I,Ar ),Ar )

Close-opening ΨCO

ΨCO(I,Ar ) = ΨO(ΨC (I,Ar ),Ar )

Open-closing ΨOC

ΨOC (I,Ar ) = ΨC (ΨO(I,Ar ),Ar )
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Introduction

However, they may create undesirable “side effects”.

Binary image with an undesired
hole.
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Introduction

However, they may create undesirable “side effects”.

Binary image with an undesired
hole.

Closing it by A15.
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Introduction

However, they may create undesirable “side effects”.

Binary image with an undesired
hole.

Closing it by A15.

Close-opening it using A15.
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Introduction

Connected filters can correct those side effects by reconstructing
the original shapes from V0 without bringing back the dark
(bright) regions eliminated from I in the first operation.

Image I (mask).

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Introduction

Connected filters can correct those side effects by reconstructing
the original shapes from V0 without bringing back the dark
(bright) regions eliminated from I in the first operation.

Image I (mask).

Image V0 = ΨC (I,A15) (marker).
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Introduction

Connected filters can correct those side effects by reconstructing
the original shapes from V0 without bringing back the dark
(bright) regions eliminated from I in the first operation.

Image I (mask).

Image V0 = ΨC (I,A15) (marker).

Image V (our optimum
connectivity map) after
reconstruction of I from V0.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Organization of this lecture

Basic definitions.
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Organization of this lecture

Basic definitions.

Superior and inferior reconstructions [1, 2].
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Organization of this lecture

Basic definitions.

Superior and inferior reconstructions [1, 2].

Their relation with watershed-based segmentation [2, 3, 4].
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Organization of this lecture

Basic definitions.

Superior and inferior reconstructions [1, 2].

Their relation with watershed-based segmentation [2, 3, 4].

Fast binary filtering [5].
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Flat zones

An image I = (DI , I ) may be interpreted as a discrete surface
whose points have coordinates (xt , yt , I (t)) ∈ Z

3.
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Flat zones

An image I = (DI , I ) may be interpreted as a discrete surface
whose points have coordinates (xt , yt , I (t)) ∈ Z

3.

This surface contains
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Flat zones

An image I = (DI , I ) may be interpreted as a discrete surface
whose points have coordinates (xt , yt , I (t)) ∈ Z

3.

This surface contains

domes — bright regions,
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Flat zones

An image I = (DI , I ) may be interpreted as a discrete surface
whose points have coordinates (xt , yt , I (t)) ∈ Z

3.

This surface contains

domes — bright regions,
basins — dark regions, and
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Flat zones

An image I = (DI , I ) may be interpreted as a discrete surface
whose points have coordinates (xt , yt , I (t)) ∈ Z

3.

This surface contains

domes — bright regions,
basins — dark regions, and
flat zones or plateaus — connected components with the same
value and maximum area.
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Flat zones and connected filters

Connected filters essentially remove domes and/or basins,
increasing the flat zones, such that any pair of spels in a given flat
zone of the input image must belong to a same flat zone of the
filtered image.
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Regional minima and maxima

Regional minima (maxima) are flat zones whose values are strictly
lower (higher) than the values of the adjacent spels. Considering a
4-neighborhood relation in the image below,
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Regional minima and maxima

Regional minima (maxima) are flat zones whose values are strictly
lower (higher) than the values of the adjacent spels. Considering a
4-neighborhood relation in the image below,
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Regional minima and maxima

Regional minima (maxima) are flat zones whose values are strictly
lower (higher) than the values of the adjacent spels. Considering a
4-neighborhood relation in the image below,
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Superior reconstruction

The superior reconstruction of I from V0 requires

V0(t) ≥ I (t)

for all t ∈ DI .
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Superior reconstruction

The superior reconstruction of I from V0 requires

V0(t) ≥ I (t)

for all t ∈ DI .

It repeats ΨE (V0,A1) ∪ I multiple times up to the
idempotence:

ΨE (ΨE (V0,A1) ∪ I,A1) ∪ I . . .)
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Superior reconstruction by IFT

Instead of that, for every point t, the IFT finds a path from a
regional minimum in V0 (component X ) whose maximum altitude
to reach t along that path is minimum.

1 1
0

1
X

I = (DI , I ) V0 = (DI ,V0) V = (DI ,V )
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Superior reconstruction by IFT

The IFT minimizes

V (t) = min
∀πt∈Π(DI ,A1,t)

{fsrec(πt)}

where fsrec is defined by

fsrec (〈t〉) = V0(t)

fsrec (πs · 〈s, t〉) = max{fsrec (πs), I (t)}.
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Superior reconstruction by IFT

Indeed, the problem could also be easily solved without the closing
operation, by marker imposition

V0(t) =

{

I (t) if t ∈ S,
+∞ otherwise,

where S represents seed spels (e.g., the border of I).

Original image of a carcinoma.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Superior reconstruction by IFT

Indeed, the problem could also be easily solved without the closing
operation, by marker imposition

V0(t) =

{

I (t) if t ∈ S,
+∞ otherwise,

where S represents seed spels (e.g., the border of I).

Original image of a carcinoma.

Its binarization.
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Superior reconstruction by IFT

Indeed, the problem could also be easily solved without the closing
operation, by marker imposition

V0(t) =

{

I (t) if t ∈ S,
+∞ otherwise,

where S represents seed spels (e.g., the border of I).

Original image of a carcinoma.

Its binarization.

A closing of basins (marker
imposition).
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Superior reconstruction by IFT

Indeed, the problem could also be easily solved without the closing
operation, by marker imposition

V0(t) =

{

I (t) if t ∈ S,
+∞ otherwise,

where S represents seed spels (e.g., the border of I).

Original image of a carcinoma.

Its binarization.

A closing of basins (marker
imposition).

Its residue.
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Superior reconstruction by IFT

Indeed, the problem could also be easily solved without the closing
operation, by marker imposition

V0(t) =

{

I (t) if t ∈ S,
+∞ otherwise,

where S represents seed spels (e.g., the border of I).

Original image of a carcinoma.

Its binarization.

A closing of basins (marker
imposition).

Its residue.

An opening by reconstruction.
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Inferior reconstruction by IFT

Similarly, the inferior reconstruction of I from V0 requires

V0(t) ≤ I (t)

for all t ∈ DI in order to eliminate domes rather than basins.
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Inferior reconstruction by IFT

Similarly, the inferior reconstruction of I from V0 requires

V0(t) ≤ I (t)

for all t ∈ DI in order to eliminate domes rather than basins.

In this case, for every point t, the IFT finds a path from a
regional maxima in V0 whose minimum altitude to reach t
along that path is maximum.
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Inferior reconstruction by IFT

The IFT maximizes

V (t) = max
∀πt∈Π(DI ,A1,t)

{firec(πt)}

for path function firec defined by

firec(〈t〉) = V0(t)

firec(πs · 〈s, t〉) = min{firec(πs), I (t)}.
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Inferior reconstruction by IFT

The IFT maximizes

V (t) = max
∀πt∈Π(DI ,A1,t)

{firec(πt)}

for path function firec defined by

firec(〈t〉) = V0(t)

firec(πs · 〈s, t〉) = min{firec(πs), I (t)}.

Marker imposition using a set S of seed spels is also valid.

V0(t) =

{

I (t) if t ∈ S,
−∞ otherwise.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Superior and inferior reconstructions

Therefore, we define

the superior reconstruction by

Ψsrec(I,V0,A1),V0 ≥ I,
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Superior and inferior reconstructions

Therefore, we define

the superior reconstruction by

Ψsrec(I,V0,A1),V0 ≥ I,

the inferior reconstruction by

Ψirec(I,V0,A1),V0 ≤ I.
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Superior and inferior reconstructions

Therefore, we define

the superior reconstruction by

Ψsrec(I,V0,A1),V0 ≥ I,

the inferior reconstruction by

Ψirec(I,V0,A1),V0 ≤ I.

The way V0 is created gives other specific names to them.
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Superior and inferior reconstructions

For instance,

Closing by reconstruction: V0 = ΨC (I,Ar ).
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Superior and inferior reconstructions

For instance,

Closing by reconstruction: V0 = ΨC (I,Ar ).

Opening by reconstruction: V0 = ΨO(I,Ar ).
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Superior and inferior reconstructions

For instance,

Closing by reconstruction: V0 = ΨC (I,Ar ).

Opening by reconstruction: V0 = ΨO(I,Ar ).

h-Basins: residue Ψsrec(I,V0)− I, V0 = I + h, and h ≥ 1.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Superior and inferior reconstructions

For instance,

Closing by reconstruction: V0 = ΨC (I,Ar ).

Opening by reconstruction: V0 = ΨO(I,Ar ).

h-Basins: residue Ψsrec(I,V0)− I, V0 = I + h, and h ≥ 1.

h-domes: residue I−Ψirec(I,V0), V0 = I− h, and h ≥ 1.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Superior and inferior reconstructions

For instance,

Closing by reconstruction: V0 = ΨC (I,Ar ).

Opening by reconstruction: V0 = ΨO(I,Ar ).

h-Basins: residue Ψsrec(I,V0)− I, V0 = I + h, and h ≥ 1.

h-domes: residue I−Ψirec(I,V0), V0 = I− h, and h ≥ 1.

Closing of basins or opening of domes: V0 is created by
marker imposition.
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Levelings

Superior and inferior reconstructions can also be combined into a
leveling transformation to correct edge blurring created by linear
smoothing [6].

Original image.
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Levelings

Superior and inferior reconstructions can also be combined into a
leveling transformation to correct edge blurring created by linear
smoothing [6].

Original image.

Regular
Gaussian
filtering.
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Levelings

Superior and inferior reconstructions can also be combined into a
leveling transformation to correct edge blurring created by linear
smoothing [6].

Original image.

Regular
Gaussian
filtering.

Leveling
transformation.
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Levelings

This leveling operator uses the following sequence of
transformations from I and the impaired image V0.

Algorithm

– Leveling algorithm

1. X← ΨD(V0,A1) ∩ I.
2. IR ← Ψiref (I,X,A1).
3. Y ← ΨE (I,A1) ∪ IR.
4. SR ← Ψsrec(IR,Y,A1).
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Superior reconstruction computation

For superior reconstruction:

First, all nodes t ∈ DI are trivial paths with initial
connectivity values V0(t).
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Superior reconstruction computation

For superior reconstruction:

First, all nodes t ∈ DI are trivial paths with initial
connectivity values V0(t).

The initial roots are identified at the global minima of V0(t).
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Superior reconstruction computation

For superior reconstruction:

First, all nodes t ∈ DI are trivial paths with initial
connectivity values V0(t).

The initial roots are identified at the global minima of V0(t).

They may conquer their adjacent nodes by offering them
better paths.
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Superior reconstruction computation

For superior reconstruction:

First, all nodes t ∈ DI are trivial paths with initial
connectivity values V0(t).

The initial roots are identified at the global minima of V0(t).

They may conquer their adjacent nodes by offering them
better paths.

The process continues from the adjacent nodes in a
non-decreasing order of path values.

if max{fsrec (πs), I (t)} < fsrec (πt) then πt ← πs · 〈s, t〉.
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Superior reconstruction computation

For superior reconstruction:

First, all nodes t ∈ DI are trivial paths with initial
connectivity values V0(t).

The initial roots are identified at the global minima of V0(t).

They may conquer their adjacent nodes by offering them
better paths.

The process continues from the adjacent nodes in a
non-decreasing order of path values.

if max{fsrec (πs), I (t)} < fsrec (πt) then πt ← πs · 〈s, t〉.

Essentially the regional minima in V0(t) compete among
themselves and some of them become roots (i.e., minima in
V (t)).
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Superior reconstruction computation

The optimum-path forest with filtered values V (t) (right) resulting
from the superior reconstruction of I = (DI , I ) (left) from marker
V0 = (DI ,V0) (center) contains unconquered regions (black dots)
and the winner regional minima (red dots) as roots.
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Images I (left), V0 (center), and V (right).
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Superior reconstruction algorithm

Algorithm

– Superior reconstruction algorithm

1. For each t ∈ DI , do
2. Set V (t)← V0(t).
3. If V (t) 6= +∞, then insert t in Q.
4. While Q is not empty, do
5. Remove from Q a spel s such that V (s) is minimum.
6. For each t ∈ A1(s) such that V (t) > V (s), do
7. Compute tmp ← max{V (s), I (t)}.
8. If tmp < V (t), then
9. If V (t) 6= +∞, remove t from Q.
10. Set V (t)← tmp.
11. Insert t in Q.
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Organization of this lecture

Basic definitions.

Superior and inferior reconstructions.

Their relation with watershed-based segmentation.

Fast binary filtering.
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Superior reconstruction and watershed transform

Suppose we make a hole in each minimum of an image I and
submerge its surface in a lake, such that each hole starts a flooding
with water of different color. A watershed segmentation is
obtained by preventing the mix of water from different colors.

Original image I.
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Superior reconstruction and watershed transform

Suppose we make a hole in each minimum of an image I and
submerge its surface in a lake, such that each hole starts a flooding
with water of different color. A watershed segmentation is
obtained by preventing the mix of water from different colors.

Original image I.

IFT-watershed segmentation.
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Superior reconstruction and watershed transform

Suppose we make a hole in each minimum of an image I and
submerge its surface in a lake, such that each hole starts a flooding
with water of different color. A watershed segmentation is
obtained by preventing the mix of water from different colors.

Original image I.

IFT-watershed segmentation.

Classical watershed segmentation requires
to detect and label each minimum before
the flooding process.
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Superior reconstruction and watershed transform

During superior reconstruction, we may force each regional
minimum in I to produce a single optimum-path tree in P
with a distinct label in L.
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Superior reconstruction and watershed transform

During superior reconstruction, we may force each regional
minimum in I to produce a single optimum-path tree in P
with a distinct label in L.

By definition, the resulting optimum-path forest is a
watershed segmentation.
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Superior reconstruction and watershed transform

During superior reconstruction, we may force each regional
minimum in I to produce a single optimum-path tree in P
with a distinct label in L.

By definition, the resulting optimum-path forest is a
watershed segmentation.

Moreover, by choice of V0, we may also eliminate the
influence zones of “irrelevant” minima and considerably
reduce the over-segmentation problem.
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Superior reconstruction and watershed transform

During superior reconstruction, we may force each regional
minimum in I to produce a single optimum-path tree in P
with a distinct label in L.

By definition, the resulting optimum-path forest is a
watershed segmentation.

Moreover, by choice of V0, we may also eliminate the
influence zones of “irrelevant” minima and considerably
reduce the over-segmentation problem.

A change of topology in Ψsrec(I,V0,Ar ) for r > 1 also helps
on that.
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Superior reconstruction and watershed transform

This requires a simple modification in fsrec .

fsrec(〈t〉) =

{

I (t) if t ∈ R,
V0(t) + 1 otherwise,

fsrec(πs · 〈s, t〉) = max{fsrec(πs), I (t)},

where R is found on-the-fly with a single root for each regional
minimum of the filtered image V. The condition V0(t) + 1 > I (t)
guarantees that all spels in DI will be conquered.
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Superior reconstruction and watershed transform

The choice of V0(t) = I (t) + h, h ≥ 0 will preserve all minima of I

whose basins have depth greater than h. For h = 0, all minima will
be preserved.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Superior reconstruction and watershed transform

The choice of V0(t) = I (t) + h, h ≥ 0 will preserve all minima of I

whose basins have depth greater than h. For h = 0, all minima will
be preserved.

(b)(a) (c)

20 2023

5 58
10 1013

18 21 20

(a) Image I. (b) Image V0 + 1 for h = 2. (c) Image
V = Ψsrec (I,V0,A1) with indication of optimum paths in P .
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Superior reconstruction and watershed transform

The choice of V0(t) = I (t) + h, h ≥ 0 will preserve all minima of I

whose basins have depth greater than h. For h = 0, all minima will
be preserved.

20 21

(b)(a) (c)

20

20

5 6 5
10 11 10

18 19 18

(a) Image I. (b) Image V0 + 1 for h = 0. (c) Image
V = Ψsrec (I,V0,A1) with indication of optimum paths in P .
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Watershed from grayscale marker

For grayscale images V0, the simultaneous computation of a
superior reconstruction in V and a watershed segmentation in L is
called watershed from grayscale marker [4].

MR-image of a wrist.
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Watershed from grayscale marker

For grayscale images V0, the simultaneous computation of a
superior reconstruction in V and a watershed segmentation in L is
called watershed from grayscale marker [4].

MR-image of a wrist.

A gradient image I.
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Watershed from grayscale marker

For grayscale images V0, the simultaneous computation of a
superior reconstruction in V and a watershed segmentation in L is
called watershed from grayscale marker [4].

MR-image of a wrist.

A gradient image I.

The closing
V0 = ΨC (I,A2.5).
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Watershed from grayscale marker

For grayscale images V0, the simultaneous computation of a
superior reconstruction in V and a watershed segmentation in L is
called watershed from grayscale marker [4].

MR-image of a wrist.

A gradient image I.

The closing
V0 = ΨC (I,A2.5).

Segmentation in L for
Ψsrec(I,V0,A3.5).
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Watershed from grayscale marker

Algorithm

– Watershed from Grayscale Marker

1. For each t ∈ DI , do
2. Set P(t)← nil , λ← 1, and V (t)← V0(t) + 1.
3. Insert t in Q.
4. While Q is not empty, do
5. Remove from Q a spel s such that V (s) is minimum.
6. If P(s) = nil then set V (s)← I (s), L(s)← λ, and λ← λ + 1.
7. For each t ∈ A(s) such that V (t) > V (s), do
8. Compute tmp ← max{V (s), I (t)}.
9. If tmp < V (t), then
10. Set P(t)← s, V (t)← tmp, L(t)← L(s).
11. Update position of t in Q.
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Organization of this lecture

Basic definitions.

Superior and inferior reconstructions.

Their relation with watershed-based segmentation.

Fast binary filtering.
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Fast binary filtering via IFT

For binary images I and Euclidean relations Ar , it is also possible
to exploit the IFT for fast computation of morphological operators,
which can be decomposed into alternate sequences of erosions and
dilations (or vice-versa). For instance,

ΨC (I,Ar ) = ΨE (ΨD(I,Ar ),Ar ).

ΨCO(I,Ar ) = ΨD(ΨE (ΨE (ΨD(I,Ar ),Ar ),Ar ),Ar )

= ΨD(ΨE (ΨD(I,Ar ),A2r ),Ar ).

ΨCO(ΨCO(I,Ar ),A2r ) = ΨD(ΨE (ΨD(ΨE (ΨD(I,Ar ),A2r ),

A3r ),A4r ),A2r ).
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Fast binary filtering via IFT

The basic idea is

to extract the object’s (background’s) border S,
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Fast binary filtering via IFT

The basic idea is

to extract the object’s (background’s) border S,

compute their propagation in sub-linear time outward (inward)
the object for dilation (erosion), alternately.
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Fast binary filtering via IFT

The basic idea is

to extract the object’s (background’s) border S,

compute their propagation in sub-linear time outward (inward)
the object for dilation (erosion), alternately.

Each border propagation stops at the adjacency radius
specified for dilation (erosion).
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Fast binary filtering via IFT

This requires to constrain the computation of an Euclidean
distance transform (EDT) either outside (dilation) or inside
(erosion) the object up to a distance r from it.

The EDT assigns to every spel in DI its distance to the closest spel
in a given set S ⊂ DI (e.g., the object’s or background’s border).
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Fast binary filtering via IFT

This requires to constrain the computation of an Euclidean
distance transform (EDT) either outside (dilation) or inside
(erosion) the object up to a distance r from it.

r

The EDT assigns to every spel in DI its distance to the closest spel
in a given set S ⊂ DI (e.g., the object’s or background’s border).
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Fast binary filtering via IFT

A spel s ∈ DI belongs to an object’s border S, when I (s) = 1
and ∃t ∈ A1(s), such that I (t) = 0. Similar definition applies
to backgroud’s border.
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Fast binary filtering via IFT

A spel s ∈ DI belongs to an object’s border S, when I (s) = 1
and ∃t ∈ A1(s), such that I (t) = 0. Similar definition applies
to backgroud’s border.

For dilation, the value 1 is propagated to every spel t with
value I (t) = 0 and distance ‖t − R(πt)‖

2 ≤ r2, R(πt) ∈ S.
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Fast binary filtering via IFT

A spel s ∈ DI belongs to an object’s border S, when I (s) = 1
and ∃t ∈ A1(s), such that I (t) = 0. Similar definition applies
to backgroud’s border.

For dilation, the value 1 is propagated to every spel t with
value I (t) = 0 and distance ‖t − R(πt)‖

2 ≤ r2, R(πt) ∈ S.

For erosion, the value 0 is propagated to every spel t with
value I (t) = 1 and distance ‖t − R(πt)‖

2 ≤ r2, R(πt) ∈ S.
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Fast binary filtering via IFT

A spel s ∈ DI belongs to an object’s border S, when I (s) = 1
and ∃t ∈ A1(s), such that I (t) = 0. Similar definition applies
to backgroud’s border.

For dilation, the value 1 is propagated to every spel t with
value I (t) = 0 and distance ‖t − R(πt)‖

2 ≤ r2, R(πt) ∈ S.

For erosion, the value 0 is propagated to every spel t with
value I (t) = 1 and distance ‖t − R(πt)‖

2 ≤ r2, R(πt) ∈ S.

During dilation (erosion), spels t whose distance
‖t − R(πt)‖

2 > r2 but ‖P(t)− R(πt)‖
2 ≤ r2 are stored in a

new set S ′ for a subsequent erosion (dilation) operation.

Alexandre Xavier Falcão Image Processing using Graphs at ASC-SP 2010



Fast binary filtering via IFT

The EDT is propagated in V from a set S ⊂ DI to every spel
t ∈ DI in a non-decreasing order of squared distance using A√

2 in
2D (8-neighbors) [7]. For fast dilation, it uses path function

feuc (〈t〉) =







0 if t ∈ S,
+∞ if I (t) = 0,
−∞ otherwise.

feuc (πs · 〈s, t〉) = ‖t − R(πs)‖
2.
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Fast binary filtering via IFT

For fast erosion, it uses path function

feuc (〈t〉) =







0 if t ∈ S,
+∞ if I (t) = 1,
−∞ otherwise.

feuc (πs · 〈s, t〉) = ‖t − R(πs)‖
2.

A dilated (eroded) binary image J = (DI , J) is created during the
distance propagation process.
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Fast dilation

Algorithm

– Fast Dilation in 2D up to distance r from S

1. For each t ∈ DI , set J(t)← I (t), R(πt)← t and V (t)← feuc (〈t〉).
2. While S 6= ∅, remove t from S and insert t in Q.
3. While Q is not empty, do
4. Remove from Q a spel s such that V (s) is minimum.
5. if V (s) ≤ r2, then
6. Set J(t)← 1.
7. For each t ∈ A√2(s) such that V (t) > V (s), do
8. Compute tmp ← ‖t − R(πs)‖2.
9. If tmp < V (t), then
10. If V (t) 6= +∞, remove t from Q.
11. Set V (t)← tmp and R(πt)← R(πs).
12. Insert t in Q.
13. Else insert s in S.
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,

their dilation,
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,

their dilation,

erosion,
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,

their dilation,

erosion,

closing,
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,

their dilation,

erosion,

closing,

closing by reconstruction,
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,

their dilation,

erosion,

closing,

closing by reconstruction,

opening, and
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Fast binary filtering via IFT

Sets S and S ′ may contain spels from multiple borders.

Multiple borders,

distances outside up to r = 10,

their dilation,

erosion,

closing,

closing by reconstruction,

opening, and

opening by reconstruction.
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3D visualization of cortical dysplastic lesions

Fast 3D closing with r = 20 has been succesfully used in the visual
inspection of focal cortical dysplastic (FCD) lesions — one of the
major causes of refractory epilepsy [8].

axial

sagital

coronal

(a) (b) (c)

(a) 3D image I. (b) Brain after closing. (c) FCD lesion.
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3D visualization of cortical dysplastic lesions

After closing with r = 20, the texture of the 3D brain surface is
presented in curvilinear cuts.
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3D visualization of cortical dysplastic lesions

After closing with r = 20, the texture of the 3D brain surface is
presented in curvilinear cuts.
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3D visualization of cortical dysplastic lesions

After closing with r = 20, the texture of the 3D brain surface is
presented in curvilinear cuts.
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3D visualization of cortical dysplastic lesions

After closing with r = 20, the texture of the 3D brain surface is
presented in curvilinear cuts.
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3D visualization of cortical dysplastic lesions

After closing with r = 20, the texture of the 3D brain surface is
presented in curvilinear cuts.
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Conclusion

The IFT framework has been demonstrated to the design of
connected filters and for understanding the relation between
watershed transform and superior reconstruction.
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Conclusion

The IFT framework has been demonstrated to the design of
connected filters and for understanding the relation between
watershed transform and superior reconstruction.

It should be clear the advantages of a unified framework to
understand the relation between different image operations.
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Conclusion

The IFT framework has been demonstrated to the design of
connected filters and for understanding the relation between
watershed transform and superior reconstruction.

It should be clear the advantages of a unified framework to
understand the relation between different image operations.

We have also demonstrated the decomposition of some binary
operators into alternate sequences of fast dilation and erosion
by Euclidean IFT.
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Conclusion

The IFT framework has been demonstrated to the design of
connected filters and for understanding the relation between
watershed transform and superior reconstruction.

It should be clear the advantages of a unified framework to
understand the relation between different image operations.

We have also demonstrated the decomposition of some binary
operators into alternate sequences of fast dilation and erosion
by Euclidean IFT.

Finally, we have illustrated one application for these fast
binary operators in 3D medical imaging.
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Next lecture

The IFT framework.

Connected filters.

Interactive and automatic segmentation methods.

Shape representation and description.

Clustering and classification.

Thanks for your attention
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