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Image transformations based on optimum connectivity

@ Some image transformations are based on optimum
connectivity (optimum paths).

Alexandre Xavier Falcio MC940/MO445 - Image Analysis



Image transformations based on optimum connectivity

@ Some image transformations are based on optimum
connectivity (optimum paths).

@ These transformations can be reduced to an optimum-path
forest in the image graph followed by a local processing of its
attributes.

Alexandre Xavier Falcio MC940/MO445 - Image Analysis



Image transformations based on optimum connectivity

@ Some image transformations are based on optimum
connectivity (optimum paths).

@ These transformations can be reduced to an optimum-path
forest in the image graph followed by a local processing of its
attributes.

@ The framework to design such transformations is named
Image Foresting Transform [1].

Alexandre Xavier Falcio MC940/MO445 - Image Analysis



Image transformations based on optimum connectivity

@ Some image transformations are based on optimum
connectivity (optimum paths).

@ These transformations can be reduced to an optimum-path
forest in the image graph followed by a local processing of its
attributes.

@ The framework to design such transformations is named
Image Foresting Transform [1].

@ Applications involve segmentation [2, 3, 4, 5, 6, 7, 8],
clustering [9, 10], classification [11, 12, 13, 14], distance
transforms [15, 16], morphological reconstructions [17],
multiscale skeletons [15, 16], shape saliences [18], etc.
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o Image Foresting Transform (IFT).
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o Image Foresting Transform (IFT).

o General IFT algorithm.
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o Image Foresting Transform (IFT).

o General IFT algorithm.

@ Examples and main properties.

«40>» «Fr» «=)» < Q>

it
N



Image Foresting Transform

For a given image graph (N, A, 1), N C Dy,

@ a connectivity (path-cost) function f(mp) assigns a cost to
any path in the set I1 of paths in the graph.
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Image Foresting Transform

For a given image graph (N, A, 1), N C Dy,

@ a connectivity (path-cost) function f(mp) assigns a cost to
any path in the set I1 of paths in the graph.

@ The set 1 contains trivial paths 7, = (p) and paths 7, - (p, q)
that represent the extension of 7, by an arc (p, q) € A.
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Image Foresting Transform

For a given image graph (N, A, 1), N C Dy,

@ a connectivity (path-cost) function f(mp) assigns a cost to
any path in the set [1 of paths in the graph.

@ The set 1 contains trivial paths 7, = (p) and paths 7, - (p, q)
that represent the extension of 7, by an arc (p, q) € A.

@ The IFT algorithm minimizes a path-cost map V/,

V(p) = min{f(mp)},

mpEll

for all p € N, irrespective to its root node.
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Image Foresting Transform

@ The IFT algorithm can always output a rooted spanning forest
in a predecessor map P (see lecture 4).
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Image Foresting Transform

@ The IFT algorithm can always output a rooted spanning forest
in a predecessor map P (see lecture 4).

@ The map P will be optimal (i.e., an optimum-path forest)
whenever f satisfies the conditions stated in [19].
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Image Foresting Transform

@ The IFT algorithm can always output a rooted spanning forest
in a predecessor map P (see lecture 4).

@ The map P will be optimal (i.e., an optimum-path forest)
whenever f satisfies the conditions stated in [19].

@ However, there are applications for the case P is just a rooted
spanning forest [3, 4, 16].
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Image Foresting Transform

The IFT algorithm can always output a rooted spanning forest
in a predecessor map P (see lecture 4).

The map P will be optimal (i.e., an optimum-path forest)
whenever f satisfies the conditions stated in [19].

However, there are applications for the case P is just a rooted
spanning forest [3, 4, 16].

The image transformations derive from attributes of the
forest: paths, costs, root labels, etc.
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The IFT algorithm

o It starts from all nodes p € N as trivial paths with values
V(p) < f(mp) in a priority queue Q. The roots will derive
from the minima of this initial path-cost map.
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The IFT algorithm

o It starts from all nodes p € N as trivial paths with values
V(p) < f(mp) in a priority queue Q. The roots will derive
from the minima of this initial path-cost map.

@ By removing the nodes p in a non-decreasing order of path
values from Q, it verifies for each adjacent g € A(p)

if f(m-(p,q)) < V(q), then
Tq < Tp - (P, q) and
V(q) < f(mp - (p, q))-
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The IFT algorithm

o It starts from all nodes p € N as trivial paths with values
V(p) < f(mp) in a priority queue Q. The roots will derive
from the minima of this initial path-cost map.

@ By removing the nodes p in a non-decreasing order of path
values from Q, it verifies for each adjacent g € A(p)

if f(m-(p,q)) < V(q), then
Tq < Tp - (P, q) and
V(q) < f(mp - (P, q))-

o It stops when Q is empty and the optimum paths 7 for all
p € N can be retrieved from P.
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The General IFT algorithm

Input: Image graph (N, A, 1) and connectivity function f.
Output: Cost map V and predecessor map P.

1 For each g € N, set V(q) < f({q)) and P(q) < nil, and
insert g in Q.

2 While Q@ # 0 do
3 Remove from Q the node p = arg minge{V(q)}.
For each g € A(p), g € Q, do
If V(q) > f(7p - (p,q)), then
update V(q) < f(7p - (p,q)) and P(q) < p.

[©) BN, B
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The Image Foresting Transform

Consider, for example, a max-arc-weight function f,,x that forces
optimum paths to start in a seed set S = {a, b} C N = D;.

fmax((P)) = { 400 otherwise.

fnax(7p - (P @) = max{fmax(mp), [|I(q), 1(p)l|2}-
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The Image Foresting Transform

Consider, for example, a max-arc-weight function f,,x that forces
optimum paths to start in a seed set S = {a,b} C N = D.

0 if pe S,
fmax((P)) = { +00 otﬁerwise.
fnax(7p - (P, @) = max{fnax(7p), [1(q), 1(p)[|2}-

For the graph on the left, the output is the forest on the right.
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Example of optimum path propagation

From iteration 1 to b5, iteration 12, 20, and 25.
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Example of optimum path propagation

From iteration 1 to b, iteration 12, 20, and 25.
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Example of optimum path propagation
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From iteration 1 to b, iteration 12, 20, and 25.
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Example of optimum path propagation
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From iteration 1 to b, iteration 12, 20, and 25.
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Example of optimum path propagation

From iteration 1 to b, iteration 12, 20, and 25.
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Example of optimum path propagation

From iteration 1 to b, iteration 12, 20, and 25.
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Example of optimum path propagation

From iteration 1 to b, iteration 12, 20, and 25.
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Example of optimum path propagation

From iteration 1 to b, iteration 12, 20, and 25.
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Example of seed-based segmentation

Using the same function fax, the roots may be forced to start from
internal and external markers (location) for object delineation.

The object is defined by the optimum-path forest rooted at its
internal markers.
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Example of seed-based segmentation

@ Image with internal and
external markers.
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Example of seed-based segmentation

@ Image with internal and
external markers.

@ Arc-weight image.
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Example of seed-based segmentation

@ Image with internal and
external markers.

@ Arc-weight image.

@ Optimum-paths to
foreground pixels.
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Example of seed-based segmentation

@ Image with internal and
external markers.

@ Arc-weight image.
@ Optimum-paths to
foreground pixels.

@ Optimum-paths to

background pixels.
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Example of seed-based segmentation

@ Image with internal and
external markers.

Arc-weight image.

Optimum-paths to
foreground pixels.

a*

Optimum-paths to
background pixels.

@ Segmentation result.
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Exercise

In the last example, let seeds s € S have labels A(s) € {0,1} to
indicate background and object seeds, respectively.
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Exercise

In the last example, let seeds s € S have labels A(s) € {0,1} to
indicate background and object seeds, respectively.

e Change the general IFT algorithm to receive (S, \) and return
in a label map L with the label L(p) € {0,1} of background
and object pixels.
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Exercise

In the last example, let seeds s € S have labels A(s) € {0,1} to
indicate background and object seeds, respectively.

e Change the general IFT algorithm to receive (S, \) and return
in a label map L with the label L(p) € {0,1} of background
and object pixels.

@ Change it now to output a root map R that assigns to every
p € N the root node R(p) in the optium path .
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o When p is removed from Q,

o If P(p) = nil, then p is a root of the forest and can be saved
in a root set R.
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Main properties

@ When p is removed from Q,

o If P(p) = nil, then p is a root of the forest and can be saved
in a root set R.

o The cost V(p) and path 7 in P are optimal.
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Main properties

@ When p is removed from Q,

o If P(p) = nil, then p is a root of the forest and can be saved
in a root set R.

o The cost V(p) and path 7 in P are optimal.

o The algorithm takes O(]A| + |NV]?).
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Main properties

@ When p is removed from Q,

o If P(p) = nil, then p is a root of the forest and can be saved
in a root set R.

o The cost V(p) and path 7 in P are optimal.

o The algorithm takes O(]A| + |NV]?).

o If |[A] < |NV|? and Q is a binary heap, it takes O(|N|log |N).
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Main properties

@ When p is removed from Q,

o If P(p) = nil, then p is a root of the forest and can be saved
in a root set R.

o The cost V(p) and path 7 in P are optimal.
o The algorithm takes O(]A| + |NV]?).

o If |[A] < |NV|? and Q is a binary heap, it takes O(|N|log |N).

o If |[A| < |N|? and f(7p - (p,q)) — f(mp) € [0,K], K < [N, it
can take O(|N) using bucket sort.
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Priority queue with bucket sort

Nodes p are inserted in and removed from bucket V(p)
mod K + 1 in O(1).
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Exercise

Let | = (Dy, ) be the image on the left, where the numbers
indicate /(t), N'= D; and A is defined by the four neighbors.

a_ b c a b c
o —{6)—{1) 5) (1 (e

d| e/,’_ f ‘ d e f
6 —5—4) 11 (10) 9
9| hl 'l g h
305 8) (5) (0

f((t)) = I(t)+5,
f(ms-(s,t)) = max{f(ms), I(t)}.
Can you tell which nodes will be in the root set R? Change the
algorithm to propagate a distinct label per optimum-path tree.
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After the first iteration (left) and second (right).
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After the third (left) and from 4-9 (right).




Let's see Watershed.ipynb in notebooks.tar.gz
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