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Fundamentals of Image Processing

Image processing [1] is the area of Computer Science that
transforms images from one representation to another for

quality enhancement,

geometric transformations,

reconstruction from projections,

coding (compression), decoding,

representation, description,

segmentation, ...
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Fundamentals of Image Processing

Most image transformations may be divided into three categories.

point-based transformations: the value of a pixel p in the
ouput image depends only on the value of p in the input
image(s).

adjacency-based transformations: the value of a pixel p in the
ouput image depends on the values of its adjacent pixels in
the input image.

connectivity-based transformations: the value of a pixel p in
the ouput image depends on the values of a sequence of
adjacent pixels in the input image(s) with terminus at p.

The initial lectures will provide concepts and examples from the
above categories that are important for this course.
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Agenda

Digital Images: definition and representation.

Point-based transformations.

Adjacency relations and simple morphological operations.
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Gray-scale image

A gray-scale image may be acquired from an array of sensors that
measure light reflection on visible object points (sampling),
transforming those measures into integer numbers (quantization).
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Sampling and quantization

Sampling: A continuous function f (x , y) of light reflection is
measured on the 2D array of sensors at p = (x , y) positions
(pixels) separated by (dx , dy ) (spatial resolution) to form a
discrete function I (x , y).

I (x , y) = f (x , y)

ny−1∑
j=0

nx−1∑
i=0

δ(x − idx , y − jdy )

δ(x − idx , y − jdy ) =

{
1 if x = idx and y = jdy ,
0 otherwise.

Quantization: The values I (x , y) are quantitized into integer
values I (p) ∈ [0, 2b − 1] of b bits (image depth).
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Digital image

Images may be acquired using multiple filters of distinct
wavelengths, which creates a grayscale image for each channel
(band).

By image processing, the image values can also be
transformed into real values.

Formally, a 2D multi-band image Î is a pair (DI , I) in which
I(p) ∈ <m assigns m scalar values to each pixel p ∈ DI ⊂ Z2.

The image domain DI may also have more than 2 dimensions,
but this is out of the scope of this course.
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Digital image

For m = 3 bands, each pixel p is represented by a point
I(p) = (I1(p), I2(p), I3(p)) ∈ <3.

A color image with its three color components (gray-scale images).
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Representation

A gray-scale image (or each band of a color image) may be stored
in a 2D array I (xp, yp) or a vector I (p),

p = xp + ypnx ,

xp = p%nx ,

yp = bp/nxc.
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Point-based operations

Examples of point-based operations are mathematical operations
between images.

Let Î = (DI , I ) and Ĵ = (DI , J) be two gray-scale images with
the same domain and � be any logical/arithmetical operation.

The resulting image K̂ = (DI ,K ) = Î � Ĵ is obtained by
applying the operation pixel by pixel.

Adition and subtraction: K (p) = I (p) + J(p) and
K (p) = I (p)− J(p).

Union and intersection: K (p) = max{I (p), J(p)} and
K (p) = min{I (p), J(p)}.
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Point-based operations

Mathematical operations might also involve Î and a scalar or a
function to create K̂ .

Square root K̂ =
√
Î : K (p) =

√
I (p).

Logarithm K̂ = log Î : K (p) = log I (p).

Module of the difference K̂ = |Î − Ĵ|: K (p) = |I (p)− J(p)|.
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Point-based operations

Point-based operations may involve color space
transformations for image representation.

From RGB to YCbCr color space, an RGB image Î can be
transformed into a YCbCr image K̂ pixel by pixel as follows.

 K1(p)
K2(p)
K3(p)

 =

 0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

 I1(p)
I2(p)
I3(p)

+

 0
2b

2
2b

2


where b is the depth of image Î .
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Adjacency relation

An adjacency relation A ⊆ DI × DI may be defined in the image
domain and/or feature space as a binary relation.

A1 : {(p, q) ∈ DI × DI | ‖q − p‖ ≤ α1},

A2 : {(p, q) ∈ DI × DI | ‖I(q)− I(p)‖ ≤ α2},

A3 : {(p, q) ∈ DI ×DI | ‖q−p‖ ≤ α1 and ‖I(q)− I(p)‖ ≤ α2},
α1, α2 ∈ <+, such that A(p) is the set of pixels q adjacent to p.

For the image on the right, what
is the adjacency set of p = (2, 3)
for A1,A2, and A3, when
α1 =

√
5 and α2 = 0?
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Adjacency relation

It is said translation-invariant when A : {(p, qk) ∈ DI × DI |
(xqk , yqk )− (xp, yp) = (dxk , dyk), k = 1, 2, . . . ,K}, where
{(dxk , dyk)} is a set of K displacements.

One can store the displacements and generate the set
A(p) = {qk}, qk = (xqk , yqk ) = (xp + dxk , yp + dyk),
k = 1, 2, . . . ,K , for any p ∈ DI .

For fixed displacements {(−2,−1), (0, 2)}, examples of sets
A(p) = {q1, q2} are
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Adjacency relation

Rectangular adjacency relations A are very popular.

A(p) = {q ∈ DI | |xq − xp| ≤
w

2
and |yq − yp| ≤

h

2
}.

Which are the neighbors of p = (2, 3) when w = 3 and h = 5?
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Simple morphological operations

A dilation Ĵ = Î ⊕A is obtained pixel by pixel as

J(p) = max
q∈A(p)

{I (q)}.

It reduces dark regions, increases bright ones, and is also
known as max-pooling.

Compute Ĵ = Î ⊕A when A is a 4-neighborhood relation.
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Dilation algorithm

Input: Î = (DI , I ) and A.
Output: Ĵ = (DI , J).

1 For each p ∈ DI , do

2 J(p)← I (p).

3 For every q ∈ A(p) \ {p}, such that q ∈ DI , do

4 If I (q) > J(p), then

5 J(p)← I (q).

6 Return Ĵ.

When combined with its dual operation, named erosion, they can
create several types of morphological filters.
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When combined with its dual operation, named erosion, they can
create several types of morphological filters.

Alexandre Xavier Falcão MC940/MO445 - Image Analysis



Examples

Let’s see MathMorphology.ipynb in notebooks.tar.gz
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[1] Rafael C. Gonzalez and Richard E. Woods.

Digital Image Processing (4th Edition).

Pearson, 2018.

www.imageprocessingplace.com.
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