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Why Unsupervised Feature Learning?

I Labels are expensive and time-consuming.

I Most real-world data is unlabeled.

I Manual annotation does not scale.

Solution: Learn meaningful representations from data structure.

Statement of the problem

Transform high-dimensional input x ∈ Rn into compact, meaningful
representations z ∈ Rd (where d � n) using an encoder function:

fθ : Rn → Rd

.
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Agenda

Generative approaches

Autoencoders

I Encoder: x→ z

I Decoder: z→ x̂

I Loss: ‖x− x̂‖2

Discriminative approaches

Self-supervised learning methods

I Create artificial tasks from data.

I Contrastive: SimCLR.

I Non-contrastive: BYOL, DINO.
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Simple Autoencoder (dense layers only): Strategy

I Encoder fφ : Rn → Rd (compression).

I Latent space z ∈ Rd where d � n.

I Decoder gθ : Rd → Rn (reconstruction).

Minimize BYOL loss

L(φ, θ) =
1

N

N∑
i=1

‖xi − x̂i‖2

where x̂i = gθ(fφ(xi )).

Encoder learns to store the most essential features in the latent z.
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Simple Autoencoder: Architecture overview

x 784→128 128→64 64→d d→64 64→128 128→784 x̂

z

ENCODER DECODER

BYOL Loss

ReLU ReLU ReLU ReLU Tanh

Bottleneck design: Input dimension (784) → Latent dimension
(d) → Output dimension (784). The latent space z contains
compressed representations.



Simple Autoencoder: Reconstruction

Even with very low latent dimension (e.g., d = 3), the network can
produce reasonable results (code1-simple autoencoder.py).
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Simple Autoencoder: Problems

However, it presents the following problems:

I By flattening images to vectors, it destroys neighborhood
relationships.

I It suffers from parameter explosion: 224× 224× 3 = 150,528
inputs → millions of parameters in dense layers.

I Same object at different positions 6= similar encoding.

Convolutional autoencoders can address those problems.
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Convolutional Autoencoder: Strategy

I Addresses limitations of simple autoencoders by using
convolutional layers to preserve spatial relationships in
images.

I Encoder: Convolutions + pooling progressively reduce spatial
dimensions while extracting hierarchical features.

I Decoder: Transpose convolutions + upsampling restore
spatial dimensions from compressed feature maps.

I Learns translation-invariant features through shared
convolutional filters.

I Dramatically reduces parameters compared to dense layers for
image data.



Convolutional Autoencoder: Strategy

I Encoder fφ: Transforms input x ∈ Rh×w×c into a latent
z ∈ Rh′×w ′×c ′ , h′ < h, w ′ < w , c ′ > c .

I Latent space z ∈ Rh′×w ′×c ′ preserves spatial structure.

I Decoder gθ: Transforms z ∈ Rh′×w ′×c ′ into x̂ ∈ Rh×w×c .

Minimize pixel-wise reconstruction loss

L(φ, θ) =
1

N

N∑
i=1

‖xi − x̂i‖2
F

where x̂i = gθ(fφ(xi )).

Encoder learns local patterns at multiple scales while preserving
spatial relationships ⇒ meaningful latent representations.
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Conv vs Simple Autoencoder: Key differences

Aspect Simple Autoencoder Conv Autoencoder
Input processing Flatten to 784D vector Keep 28×28×1 structure
Feature extraction Dense layers Convolutional layers
Spatial awareness Lost after flattening Preserved throughout
Translation invariance None Built-in via convolutions
Parameter count Millions for large images Much fewer (shared filters)
Latent representation 1D vector 3D feature maps

Convolutional advantages

I Spatial structure: 2D relationships preserved in feature
maps.

I Hierarchical learning: Early layers detect edges, later layers
detect objects.

I Efficiency: Shared convolution kernels dramatically reduce
parameters.
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Convolutional Autoencoder: Architecture overview

x 1→32 32→64

z

64→32 32→16 16→1 x̂

ENCODER DECODER

MSE
ReLU ReLU ReLU ReLU Tanh

Spatial preservation: Input x, output x̂, and feature maps
maintain 2D structure. Latent space z (64× 2× 2) contains
spatial feature maps, not flattened vectors.



Conv Autoencoder (code2-conv autoencoder.py)

For this simple problem, both autoencoders can create accurate
predictions and improve data representation, depending on the
latent dimension.

While autoencoders learn useful representations through
reconstruction, can discriminative approaches do better?
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Self-supervised learning
I Creating a pretext task from unlabeled data enables learning

meaningful data representations without manual annotations.

I The resulting encoder can then transfer knowledge to solve
downstream target tasks.

I The network solving the target task requires considerably less
labeled data for training.
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Self-supervised learning

The pretext tasks became more abstract (e.g., maximize
agreement between augmented views) after 2020:

I SimCLR: Simple Framework for Contrastive Learning of Visual
Representations [3].

I BYOL: Bootstrap Your Own Latent [4].

I DINO: Self-Distillation with No Labels [5].

Focus is shifted to learning good general representations rather
than solving auxiliary tasks.
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SimCLR: Strategy

I The method trains an encoder followed by a projector by
contrastive learning.

I It creates augmented pairs from unlabeled images and learns
to distinguish between similar and dissimilar pairs by using a
contrastive loss.

I Representations of augmented versions of a same image
should be similar, while different images should have dissimilar
representations.



SimCLR: Architecture overview

x

t1(x)

t2(x)

f (·)

f (·)

g(·)

g(·)

z1

z2

Augment. Encoder Projection

maximize similarity

Shared weights: Both augmented views use the same encoder f
and projection head g .



SimCLR: Data augmentation

Diverse views of the same image are created through random
transformations.

I RandomRotation(20°) - Rotational invariance.

I RandomAffine with translation (±10%) and scaling
(0.9-1.1×).

I RandomHorizontalFlip - Spatial invariance.

I Gaussian noise addition - Robustness to noise.

Critical insight.

Strong augmentation is essential for SimCLR success. Weak
augmentations lead to trivial solutions where the model learns
shortcuts rather than meaningful representations.



SimCLR: Data augmentation

Example of data augmentations.



SimCLR: Encoder architecture

CNN-based feature extractor:

h = fθ(x) ∈ Rd

Implementation details for MNIST:
I Convolutional layers: Extract spatial features.

I Conv2d(1→32) + BatchNorm + ReLU + MaxPool.
I Conv2d(32→64) + BatchNorm + ReLU + MaxPool.

I Feature dimension: 64× 2× 2 = 256 features.

I Parameter sharing: Same encoder processes both
augmented views.

Key principle: The encoder learns to extract features that are
invariant to the augmentations but discriminative between different
images.



SimCLR: Projection head

Nonlinear projection for contrastive learning

z = gφ(h) = W2σ(W1h) ∈ R128

I Two-layer MLP: 256→ 256→ 128.

I ReLU activation: Nonlinear transformation.

I Lower dimensionality: Projects to contrastive learning space.

Why a projection head?

I Contrastive learning works better in lower-dimensional spaces.

I Separates representation learning from contrastive
optimization.

I Key insight: Use h for downstream tasks, not z.



SimCLR: InfoNCE loss (NT-Xent)

Contrastive learning objective For a batch of N images, create
2N augmented views. The loss for positive pair (i , j) is:

`i ,j = − log
exp(sim(zi , zj)/τ)∑2N

k=1 1k 6=i exp(sim(zi , zk)/τ)

where:

I sim(zi , zj) = zTi zj/(‖zi‖‖zj‖) (cosine similarity).

I τ = temperature parameter (0.5 in implementation).

I 1k 6=i excludes self-similarity.

Intuition:

I Numerator: Similarity to positive pair (augmented version).

I Denominator: Similarities to all negatives (other images).



Why SimCLR works?

Contrastive objective interpretation The InfoNCE loss can be
viewed as:

L = −E

[
log

exp(zTi zj/τ)

exp(zTi zj/τ) +
∑

k 6=i ,j exp(zTi zk/τ)

]

This encourages:

I Alignment: Positive pairs have high cosine similarity

zTi zj → ‖zi‖‖zj‖ cos(0) = 1

I Uniformity: Features spread uniformly on unit hypersphere

Ei 6=j [z
T
i zj ]→ 0

Result: Learned representations capture semantic similarity while
preserving discriminative power (code3-simclr unsupfeatlearn.py).



BYOL: Strategy

I The method trains online and target networks.
I Online: Encoder + Projector + Predictor.
I Target: Encoder + Projector.

I Two augmented views of the same image are passed
through both networks (4 forward passes total).

I The online predicts target network’s representations.

I While the online’s parameters are updated using BYOL loss,
the target uses momentum updates to prevent collapse by
creating a moving target that evolves slowly.

θtarget ← τθtarget + (1− τ)θonline



BYOL vs SimCLR: Fundamental differences

Aspect SimCLR BYOL
Negative samples Required (large batches) Not needed
Loss function InfoNCE (contrastive) Cosine-based
Architecture Symmetric Asymmetric
Batch dependency Strong (more negatives = better) Weak
Key mechanism Contrast positive/negative Momentum target updates

BYOL may use the same data augmentation operations as
SimCLR.

BYOL’s advantages.

I Simpler training: No need to manage negative samples.

I Batch size flexibility: Performance less sensitive to batch
size.

I Stable training: Momentum updates provide stability.
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BYOL: Architecture overview

x

t1(x)

t2(x)

fθ gθ qθ

fξ gξ

q1

z2

BYOL Loss

Augm. Enc. Proj. Pred.

O
n

lin
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T
ar

g
et

EMA τ = 0.996

Key Asymmetry: Only online network has predictor qθ. Target
network ξ updated via exponential moving average (EMA). Disable
target gradients to prevent backpropagation.



BYOL: Asymmetric network design

Online network (trainable):

q1 = qθ(gθ(fθ(x1)))

I Encoder: fθ - extracts features.

I Projector: gθ - maps to representation space.

I Predictor: qθ - predicts target representations.

Target network (momentum updated):

z2 = gξ(fξ(x2))

I Encoder: fξ - same architecture as online.

I Projector: gξ - same architecture as online.

I No predictor - key architectural difference.



BYOL: Implementation

For MNIST: Encoders:

I Conv2d(1→32) + BatchNorm + ReLU + MaxPool.

I Conv2d(32→64) + BatchNorm + ReLU + MaxPool.

I Feature dimension: 256 (64× 2× 2).

Projectors: MLP(256 → 256 → 64) + BatchNorm + ReLU.

Predictor: MLP(64 → 32 → 64) + BatchNorm + ReLU.



BYOL: Momentum update mechanism

Exponential Moving Average (EMA) Target network
parameters are updated as:

ξ ← τξ + (1− τ)θ

where τ ∈ [0, 1] is the momentum coefficient.

Implementation details:

I Initialization: ξ0 = θ0 (target = online at start).

I Momentum schedule: τ increases from 0.99 to 0.999 during
training.

I Update frequency: Every training step (after gradient
update of the online network).



BYOL: Loss function

Symmetric cosine-based loss: For augmented pair (x1, x2),

LBYOL = 2− q1 · z2

‖q1‖‖z2‖
− q2 · z1

‖q2‖‖z1‖

where:

I q1 = qθ(gθ(fθ(x1))) - online prediction for view 1.

I q2 = qθ(gθ(fθ(x2))) - online prediction for view 2.

I z1 = gξ(fξ(x1)) - target projection for view 1.

I z2 = gξ(fξ(x2)) - target projection for view 2.



Why BYOL works?

Without negatives, why does not the model learn trivial constant
representations (i.e., does not collapse)?

1. Asymmetric architecture: Target has no predictor.

I Online network learns to predict target representations.
I Creates learning pressure without direct target optimization.

2. Momentum updates: ξ ← τξ + (1− τ)θ

I Target evolves slowly, preventing immediate trivial alignment.
I Provides stable learning targets that gradually improve.

3. Data augmentation: Forces invariance learning.

I Different augmentations create non-trivial prediction task.
I Must learn meaningful features to predict across transforms.

see code4-byol unsupfeatlearn.py



DINO: Strategy

I The method trains student and teacher networks.
I Student: Encoder + Projector + Softmax.
I Teacher: Encoder + Projector + Softmax + Centering.

I The networks receive augmented pairs of the same image (or
multi-crop: local crops for student, global crops for teacher).

I The student learns to predict the teacher’s softmax outputs
via self-distillation.

I The teacher provides stable targets via centering mechanism
and temperature scaling.

I While the student’s parameters are updated using
cross-entropy loss, the teacher uses EMA updates from
student parameters.



DINO vs SimCLR vs BYOL: Key differences

Aspect SimCLR BYOL DINO
Negative samples Required Not needed Not needed
Loss function InfoNCE Cosine-based Cross-entropy
Architecture Symmetric Asymmetric Asymmetric
Networks Single Online + Target Student + Teacher
Key mechanism Contrastive Momentum + Predictor Centering + EMA
Collapse prevention Negatives Asymmetric predictor Centering
Multi-crop support No No Yes (core innovation)

DINO’s advantages

I Stable training: Centering prevents collapse without
negatives.

I Multi-crop learning: Student learns global context from
local patches.

I Better representations: Self-distillation creates rich features.
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DINO: Architecture overview
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τs = 0.1τt = 0.04

Encorder and Projector with the same architecture (required for
EMA updates).



DINO: Symmetric network design
Student network (trainable):

ps = softmax

(
g s
θ (f sθ (x1))

τs

)

I Encoder: f sθ - extracts features.

I Projector: g s
θ - maps to representation space.

I Temperature: τs = 0.1 - controls sharpness.

Teacher network (EMA updated):

pt = softmax

(
g t
ξ (f tξ (x2))− c

τt

)

I Encoder: f tξ - same architecture as student.

I Projector: g t
ξ - same architecture as student.

I Centering: c - prevents collapse.

I Temperature: τt = 0.04 - sharper than student.



DINO: Implementation for MNIST
Student encoder:

I Conv2d(1→32) + BatchNorm + ReLU + MaxPool

I Conv2d(32→64) + BatchNorm + ReLU + MaxPool

I Feature dimension: 256

Student projection head:

I MLP(256 → 512 → 512 → 256) + BatchNorm + GELU

I Output dimension: 256 (for softmax)

Teacher network:

I Identical architecture to student (encoder + projector).

I No gradients - updated only via EMA.



DINO: EMA update mechanism
Exponential Moving Average for entire network: Teacher
parameters updated as:

ξ ← τξ + (1− τ)θ

where τ ∈ [0.996, 0.999] is the momentum coefficient.

Both encoder and projector updated:

f tξ ← τ f tξ + (1− τ)f sθ

g t
ξ ← τg t

ξ + (1− τ)g s
θ

Implementation details:
I Initialization: ξ0 = θ0 (teacher = student at start).

I Momentum schedule: τ increases from 0.996 to 0.999
during training.

I Update frequency: Every training step (after student
gradient update).



DINO: Loss function

Cross-entropy loss with centering: For augmented pair (x1, x2),

LDINO =
1

2

[
H(P

(2)
t ,P

(1)
s ) + H(P

(1)
t ,P

(2)
s )
]

where H(P,Q) = −
∑

k Pk logQk is the cross-entropy between

distributions P and Q.

I P
(1)
s = softmax

(
g s
θ(f sθ (x1))
τs

)
- student distribution for view 1.

I P
(2)
t = softmax

(
g t
ξ(f tξ (x2))−c

τt

)
- teacher distribution for view 2.

I Centering: c← 0.9c + 0.1 1
B

∑B
b=1 g

t
ξ (f tθ (xb)), where xb is a

batch image and c starts at 0.

Intuition: Student distribution should match teacher distribution
for different views (code5-dino unsupfeatlearn.py).



Comparison among representations using projections

Comparison among representations using projections may be
misleading; it is better to evaluate them on a target task.



DINO: Multi-crop strategy (Advanced)
True DINO innovation: Asymmetric multi-crop processing

Student receives local crops:

I 6-8 small crops (96×96 patches)

I Learns from partial information

I Forced to understand global context from local details

Teacher receives global crops:

I 2 large crops (224×224 views)

I Provides global semantic context

I Full image understanding

Loss: Student (local) → Teacher (global)

L =
∑
local

∑
global

CrossEntropy(studentlocal, teacherglobal)

This local-to-global learning is DINO’s key advantage for natural
images!



DINO: Multicrop examples

See code6-dino multicrop unsupfeatlearn.py.



DINO: Final data representation



Why DINO works?

Without negatives, why does the model not collapse to trivial
representations?

1. Centering mechanism:

I Prevents teacher from outputting uniform distributions.
I Forces teacher to maintain meaningful output diversity.

2. Temperature scaling: Different τs and τt

I Teacher outputs (τt = 0.04) are sharper than student
(τs = 0.1).

I Creates informative, peaked target distributions.

3. EMA updates: Teacher evolves slowly

I Provides stable targets that gradually improve.
I Student cannot immediately ”game” the teacher.

Centering + temperature scaling + EMA = stable self-distillation!



DINO: Why better than BYOL?
Theoretical advantages:

I Probabilistic targets: Cross-entropy loss more principled
than MSE.

I No predictor asymmetry: Softmax is cleaner.

I Multi-crop capability: Local-to-global learning impossible in
BYOL.

I Better collapse prevention: Centering more reliable than
predictor asymmetry.

Empirical benefits:

I Better downstream performance: Especially on dense
prediction tasks.

I More stable training: Less sensitive to hyperparameters.

I Richer representations: Self-distillation creates more
informative features.

DINO represents the evolution from contrastive (SimCLR) →
asymmetric (BYOL) → self-distillation approaches.
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