
MO433 - Unsupervised Learning
Introduction to Unsupervised Learning

Alexandre Xavier Falcão

Institute of Computing - UNICAMP

afalcao@ic.unicamp.br

Agenda

I What is unsupervised learning?

I The importance of the joint probability density function (pdf,
distribution for simplicity).

I Overview of this course with emphasis on deep generative
models.

I Basic concepts from Probability and Information Theory.

What is unsupervised learning?

Let x = (x1, x2, . . . , xn) ∈ Rn be a random vector, whose variables
xi , i ∈ [1, n], are observations describing different measures of a
phenomenon under study.

Such variables might be:

I age, income, purchase frequency to discover customers with
similar characteristics;

I expression levels of different genes to find co-regulated gene
groups or genes that express together;

I latent features from input images to synthesize new images;
etc.

Unsupervised learning is the process of discovering the underlying
structure (clusters, associations, latent factors) of a joint pdf p(x)
from N observed samples {x(1), x(2), . . . , x(N)}, without access to
labeled target variables.

What is unsupervised learning?

Let x = (x1, x2, . . . , xn) ∈ Rn be a random vector, whose variables
xi , i ∈ [1, n], are observations describing different measures of a
phenomenon under study. Such variables might be:

I age, income, purchase frequency to discover customers with
similar characteristics;

I expression levels of different genes to find co-regulated gene
groups or genes that express together;

I latent features from input images to synthesize new images;
etc.

Unsupervised learning is the process of discovering the underlying
structure (clusters, associations, latent factors) of a joint pdf p(x)
from N observed samples {x(1), x(2), . . . , x(N)}, without access to
labeled target variables.

What is unsupervised learning?

Let x = (x1, x2, . . . , xn) ∈ Rn be a random vector, whose variables
xi , i ∈ [1, n], are observations describing different measures of a
phenomenon under study. Such variables might be:

I age, income, purchase frequency to discover customers with
similar characteristics;

I expression levels of different genes to find co-regulated gene
groups or genes that express together;

I latent features from input images to synthesize new images;
etc.

Unsupervised learning is the process of discovering the underlying
structure (clusters, associations, latent factors) of a joint pdf p(x)
from N observed samples {x(1), x(2), . . . , x(N)}, without access to
labeled target variables.

The importance of p(x)

I Knowledge of p(x) allows data analysis, synthesis, and
efficient annotation by focusing human effort on more
representative samples from high-density regions.

I It enables better classification by utilizing the joint pdf
p(x, y) = P(y | x)p(x) rather than only the conditional
probability P(y | x) represented by standard classifiers.

Samples in regions with low p(x) could remain unclassified.

I This is particularly valuable for handling class imbalance,
outlier detection, and uncertainty quantification.

The importance of p(x)

I Knowledge of p(x) allows data analysis, synthesis, and
efficient annotation by focusing human effort on more
representative samples from high-density regions.

I It enables better classification by utilizing the joint pdf
p(x, y) = P(y | x)p(x) rather than only the conditional
probability P(y | x) represented by standard classifiers.

Samples in regions with low p(x) could remain unclassified.

I This is particularly valuable for handling class imbalance,
outlier detection, and uncertainty quantification.

The importance of p(x)

I Knowledge of p(x) allows data analysis, synthesis, and
efficient annotation by focusing human effort on more
representative samples from high-density regions.

I It enables better classification by utilizing the joint pdf
p(x, y) = P(y | x)p(x) rather than only the conditional
probability P(y | x) represented by standard classifiers.

Samples in regions with low p(x) could remain unclassified.

I This is particularly valuable for handling class imbalance,
outlier detection, and uncertainty quantification.

What will you learn in this course?

I Mathematical Foundations — as needed to support core
models and algorithms.

I Dimensionality Reduction & Visualization — uncover
patterns and structure in high-dimensional data.

I Clustering & Distribution Estimation — learn methods to
group data and model its probability structure.

I Representation Learning — with autoencoders, contrastive
and non-contrastive self-supervised methods.

I Deep Generative Models — create realistic images with
deep neural architectures.

Main Types of Deep Generative Models

Deep generative models aim to estimate the underlying pdf p(x) to
generate new, realistic samples.

I Autoregressive Models
Factorize the joint pdf as a sequence of conditional
distributions: p(x) =

∏n
i=1 p(xi | x<i).

Examples: PixelCNN, GPT.

I Latent Variable Models
Introduce hidden variables z and marginalize them out:
p(x) =

∫ +∞
−∞ p(x | z)p(z) dz

Examples: VAEs, GANs, stable diffusion.

I Flow-based Models
Use invertible bijective vector-valued functions f between

latent space and data: x = f(z), so p(x) = p(z)
∣∣∣det

(
∂f−1

∂x

)∣∣∣.
Examples: RealNVP, Glow.

Other Generative Modeling Approaches

Alternative methods use implicit or non-likelihood-based estimation
techniques to model p(x):

I Energy-Based Models
Assign an energy score E(x) and define distribution as:
p(x) = 1

Z exp(−E(x)), with Z =
∑

x exp{−E(x)}.
Examples: Deep Boltzmann machines.

I Score-Based Models
Estimate the gradient of log-density ∇x log p(x), and use it in
Langevin dynamics or reverse-time stochastic differential
equation to sample data.
Examples: Score-based diffusion models, noise conditional
score network.

Each model type balances tractability, generation speed, training
stability, and sample realism.

More Details About This Course

The course is under preparation and all essential course resources
will be available online, including:

I Lecture slides.

I Student evaluation criteria.

I Downloadable datasets.

I Recommended bibliography.

I Additional reference materials and updates

Visit: www.ic.unicamp.br/~afalcao/mo433

www.ic.unicamp.br/~afalcao/mo433

Random variables
Let x be a continuous random variable, then its mean E [x] and
variance Var[x] are defined by

E [x] = µ =

∫ +∞

−∞
xp(x) dx

Var[x] = E [(x − µ)2] = σ2 =

∫ +∞

−∞
(x − µ)2p(x) dx

where p(x) is the pdf of x .

Let x̄ = x1+x2+...+xn
n be the sample mean of n independent random

variables.
Sample mean properties:

E [x̄] =
E [x1] + E [x2] + . . .+ E [xn]

n

Var[x̄] =
Var[x1] + Var[x2] + . . .+ Var[xn]

n2

Central Limit Theorem
Classical CLT (i.i.d. case): If x1, x2, . . . , xn are independent and
identically distributed with E [xi] = µ and Var[xi] = σ2, then:

x̄ − µ
σ/
√
n

d−→ N(0, 1) as n→∞

where x̄ = x1+x2+...+xn
n and:

E [x̄] = µ

Var[x̄] =
σ2

n

Generalized CLT: Even if xi have different distributions, under
certain regularity conditions (e.g., Lindeberg condition: no single
variance dominates), the standardized sum still converges to a

normal distribution – i.e., x̄ ∼ N(µ, σ
2

n) – with pdf:

p(x̄) =

√
n√

2πσ
exp

(
−n(x̄ − µ)2

2σ2

)

Statistical dependency

For two random variables, x1 and x2, the joint pdf:

p(x1, x2) = p(x1 | x2)p(x2) = p(x2 | x1)p(x1)

Marginalization:

p(x1) =

∫ +∞

−∞
p(x1, x2) dx2 =

∫ +∞

−∞
p(x1 | x2)p(x2) dx2

p(x2) =

∫ +∞

−∞
p(x1, x2) dx1 =

∫ +∞

−∞
p(x2 | x1)p(x1) dx1

Independence: x1 and x2 are independent if and only if:

p(x1, x2) = p(x1)p(x2); p(x1 | x2) = p(x1); and p(x2 | x1) = p(x2)

Dependence: If x1 and x2 are dependent, then knowing one
variable provides information about the other.

Statistical dependency

Covariance:

Cov(x1, x2) = E [(x1 − µ1)(x2 − µ2)]

=

∫ +∞

−∞

∫ +∞

−∞
(x1 − µ1)(x2 − µ2)p(x1, x2) dx1 dx2

where Cov(x1, x2) = 0 when x1 and x2 are independent
(uncorrelated).

Correlation coefficient:

ρx1x2 =
Cov(x1, x2)

σx1σx2

where |ρx1x2 | ≤ 1 and |Cov(x1, x2)| ≤ σx1σx2 (Cauchy-Schwarz
Inequality).

Entropy

Entropy measures uncertainty (how hard it is to predict) in bits
(number of yes/no questions needed to guess the outcome).

H(x1) = −
∫ +∞

−∞
p(x1) log p(x1) dx1

H(x2) = −
∫ +∞

−∞
p(x2) log p(x2) dx2

H(x1, x2) = −
∫ +∞

−∞

∫ +∞

−∞
p(x1, x2) log p(x1, x2) dx1 dx2

H(x2 | x1) = −
∫ +∞

−∞

∫ +∞

−∞
p(x1, x2) log p(x2 | x1) dx1 dx2

H(x1 | x2) = −
∫ +∞

−∞

∫ +∞

−∞
p(x1, x2) log p(x1 | x2) dx1 dx2

If x1 and x2 are independent, a neural network cannot predict one
given the other: H(x2 | x1) = H(x2) and H(x1 | x2) = H(x1).

Kullback-Leibler (KL) Divergence

The KL divergence measures how much one probability distribution
diverges from the other.

DKL(p(x1)||p(x2)) =

∫ +∞

−∞
p(x1) log

p(x1)

p(x2)
dx1

=

∫ +∞

−∞
p(x1) log p(x1) dx1 −∫ +∞

−∞
p(x1) log p(x2) dx1

= −H(x1)− Ex1 [log p(x2)].

Properties:

I DKL(p||q) ≥ 0 with equality iff p = q (Gibbs’ inequality).

I DKL(p||q) 6= DKL(q||p) (asymmetric).

I Measures information lost when approximating p with q.

Mutual Information

Mutual information measures the amount of information shared
between x1 and x2 (how much knowing one reduces uncertainty
about the other).

I (x1; x2) = H(x1) + H(x2)− H(x1, x2)

= H(x1)− H(x1 | x2)

= H(x2)− H(x2 | x1)

= DKL(p(x1, x2)||p(x1)p(x2))

=

∫ +∞

−∞

∫ +∞

−∞
p(x1, x2) log

p(x1, x2)

p(x1)p(x2)
dx1 dx2

If x1 and x2 are independent, a neural network cannot predict one
given the other: I (x1; x2) = 0.

A practical example

Let x1 be interest rates and x2 be housing prices. One can
design a neural network fθ(x1) ≈ E [x2 | x1] given that:

I (x1; x2) > 0 ⇒ x1 and x2 share information

H(x2 | x1) < H(x2) ⇒ x1 reduces uncertainty about x2

E [x2 | x1] 6= E [x2] ⇒ conditional expectation varies with x1

This neural network learns the conditional expectation function by
minimizing the Mean Squared Error:

MSE =
1

N

N∑
i=1

(fθ(x1,i)− x2,i)
2

arg min
fθ

E [(fθ(x1)− x2)2] = E [x2 | x1].

Exercise: Verify codes 1-4 of this lecture and play with the neural
network.

A practical example

Let x1 be interest rates and x2 be housing prices. One can
design a neural network fθ(x1) ≈ E [x2 | x1] given that:

I (x1; x2) > 0 ⇒ x1 and x2 share information

H(x2 | x1) < H(x2) ⇒ x1 reduces uncertainty about x2

E [x2 | x1] 6= E [x2] ⇒ conditional expectation varies with x1

This neural network learns the conditional expectation function by
minimizing the Mean Squared Error:

MSE =
1

N

N∑
i=1

(fθ(x1,i)− x2,i)
2

arg min
fθ

E [(fθ(x1)− x2)2] = E [x2 | x1].

Exercise: Verify codes 1-4 of this lecture and play with the neural
network.

